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Abstract. Current deep visual recognition systems suffer from severe
performance degradation when they encounter new images from classes
and scenarios unseen during training. Hence, the core challenge of Zero-
Shot Learning (ZSL) is to cope with the semantic-shift whereas the main
challenge of Domain Adaptation and Domain Generalization (DG) is the
domain-shift. While historically ZSL and DG tasks are tackled in isola-
tion, this work develops with the ambitious goal of solving them jointly,
i.e. by recognizing unseen visual concepts in unseen domains. We present
CuMix (Curriculum Mixup for recognizing unseen categories in unseen
domains), a holistic algorithm to tackle ZSL, DG and ZSL+DG. The
key idea of CuMix is to simulate the test-time domain and semantic
shift using images and features from unseen domains and categories gen-
erated by mixing up the multiple source domains and categories available
during training. Moreover, a curriculum-based mixing policy is devised
to generate increasingly complex training samples. Results on standard
ZSL and DG datasets and on ZSL+DG using the DomainNet benchmark
demonstrate the effectiveness of our approach.
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1 Introduction

Despite their astonishing success in several applications [12, 34], deep visual mod-
els perform poorly for the classes and scenarios that are unseen during training.
Most existing approaches are based on the assumptions that (a) training and
test data come from the same underlying distribution, i.e. domain shift, and (b)
the set of classes seen during training constitute the only classes that will be seen
at test time, i.e. semantic shift. These assumptions rarely hold in practice and,
in addition to depicting different semantic categories, training and test images
may differ significantly in terms of visual appearance in the real world.

To address these limitations, research efforts have been devoted to designing
deep architectures able to cope with varying visual appearance [7] and with novel
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Fig. 1. Our ZSL+DG problem. During training we have images of multiple categories
(e.g. elephant,horse) and domains (e.g. photo, cartoon). At test time, we want to recog-
nize unseen categories (e.g. dog, giraffe), as in ZSL, in unseen domains (e.g. paintings),
as in DG, exploiting side information describing seen and unseen categories.

semantic concepts [47]. In particular, the domain-shift problem [15] has been
addressed by proposing domain adaptation (DA) models [7] that assume the
availability target domain data during training. To circumvent this assumption,
a recent trend has been to move to more complex scenarios where the adaptation
problem must be either tackled online [14, 24], with the help of target domain
descriptions [23], auxiliary data [32] or multiple source domains [25, 26, 36]. For
instance, domain generalization (DG) methods [19, 21, 5] aim to learn domain-
agnostic prediction models and to generalize to any unseen target domain.

Regarding semantic knowledge, multiple works have designed approaches for
extending deep architectures to handle new categories and new tasks. For in-
stance, continual learning methods [18] attempt to sequentially learn new tasks
while retaining previous knowledge, tackling the catastrophic forgetting issue.
Similarly, in open-world recognition [4] the goal is to detect unseen categories
and successfully incorporate them into the model. Another research thread is
Zero-Shot Learning (ZSL) [47], where the goal is to recognize objects unseen
during training given external information about the novel classes provided in
forms of semantic attributes [17], visual descriptions [2] or word embeddings [27].

Despite these significant efforts, an open research question is whether we
can tackle the two problems jointly. Indeed, due to the large variability of visual
concepts in the real world, in terms of both semantics and acquisition conditions,
it is impossible to construct a training set capturing such variability. This calls
for a holistic approach addressing them together. Consider for instance the case
depicted in Fig. 1. A system trained to recognize elephants and horses from
realistic images and cartoons might be able to recognize the same categories in
another visual domain, like art paintings (Fig. 1, bottom) or it might be able
to describe other quadrupeds in the same training visual domains (Fig. 1, top).
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On the other hand, how to deal with the case where new animals are shown in
a new visual domain is not clear.

To our knowledge, our work is the first attempt to answer this question,
proposing a method that is able to recognize unseen semantic categories in un-
seen domains. In particular, our goal is to jointly tackle ZSL and DG (see Fig.1).
ZSL algorithms usually receive as input a set of images with their associated se-
mantic descriptions, and learn the relationship between an image and its seman-
tic attributes. Likewise, DG approaches are trained on multiple source domains
and at test time are asked to classify images, assigning labels within the same
set of source categories but in an unseen target domain. Here we want to address
the scenario where, during training, we are given a set of images of multiple do-
mains and semantic categories and our goal is to build a model able to recognize
images of unseen concepts, as in ZSL, in unseen domains, as in DG.

To achieve this, we need to address challenges usually not present when these
two classical tasks, i.e. ZSL and DG, are considered in isolation. For instance,
while in DG we can rely on the fact that the multiple source domains permit to
disentangle semantic and domain-specific information, in ZSL+DG we have no
guarantee that the disentanglement will hold for the unseen semantic categories
at test time. Moreover, while in ZSL it is reasonable to assume that the learned
mapping between images and semantic attributes will generalize also to test
images of the unseen concepts, in ZSL+DG we have no guarantee that this will
happen for images of unseen domains.

To overcome these issues, during training we simulate both the semantic
and the domain shift we will encounter at test time. Since explicitly generating
images of unseen domains and concepts is an ill-posed problem, we sidestep this
issue and we synthesize unseen domains and concepts by interpolating existing
ones. To do so, we revisit the mixup [53] algorithm as a tool to obtain partially
unseen categories and domains. Indeed, by randomly mixing samples of different
categories we obtain new samples which do not belong to a single one of the
available categories during training. Similarly, by mixing samples of different
domains, we obtain new samples which do not belong to a single source domain
available during training.

Under this perspective, mixing samples of both different domains and classes
allows to obtain samples that cannot be categorized in a single class and domain
of the one available during training, thus they are novel both for the semantic and
their visual representation. Since higher levels of abstraction contain more task-
related information, we perform mixup at both image and feature level, showing
experimentally the need for this choice. Moreover, we introduce a curriculum-
based mixing strategy to generate increasingly complex training samples. We
show that our CuMix (Curriculum Mixup for recognizing unseen categories in
unseen domains) model obtains state-of-the-art performances in both ZSL and
DG in standard benchmarks and it can be effectively applied to the combination
of the two tasks, recognizing unseen categories in unseen domains.7

7 The code is available at https://github.com/mancinimassimiliano/CuMix
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To summarize, our contributions are as follows. (i) We introduce the ZSL+DG
scenario, a first step towards recognizing unseen categories in unseen domains.
(ii) Being the first holistic method able to address ZSL, DG, and the two tasks
together, our method is based on simulating new domains and categories during
training by mixing the available training domains and classes both at image and
feature level. The mixing strategy becomes increasingly more challenging during
training, in a curriculum fashion. (iii) Through our extensive evaluations and
analysis, we show the effectiveness of our approach in all three settings: namely
ZSL, DG and ZSL+DG.

2 Related Works

Domain Generalization (DG). Over the past years the research community
has put considerable efforts into developing methods to contrast the domain
shift. Opposite to domain adaptation [7], where it is assumed that target data
are available in the training phase, the key idea behind DG is to learn a domain
agnostic model to be applied to any unseen target domain.

Previous DG methods can be broadly grouped into four main categories.
The first category comprises methods which attempt to learn domain-invariant
feature representations [28] by considering specific alignment losses, such as max-
imum mean discrepancy (MMD), adversarial loss [22] or self-supervised losses
[5]. The second category of methods [19, 15] develop from the idea of creating
deep architectures where both domain-agnostic and domain-specific parameters
are learned on source domains. After training, only the domain-agnostic part is
retained and used for processing target data. The third category devises specific
optimization strategies or training procedures in order to enhance the general-
ization ability of the source model to unseen target data. For instance, in [20]
a meta-learning approach is proposed for DG. Differently, in [21] an episodic
training procedure is presented to learn models robust to the domain shift. The
latter category comprises methods which introduce data and feature augmenta-
tion strategies to synthesize novel samples and improve the generalization ca-
pability of the learned model [39, 43, 42]. These strategies are mostly based on
adversarial training [39, 43].

Our work is related to the latter category since we also generate synthetic
samples with the purpose of learning more robust target models. However, dif-
ferently from previous methods, we specifically employ mixup to perturb feature
representations. Recently, works have considered mixup in the context of do-
main adaptation [51] to e.g. reinforce the judgments of a domain discrimination.
However, we employ mixup from a different perspective i.e. simulating semantic
and domain shift we will encounter at test time. To this extent, we are not aware
of previous methods using mixup for DG and ZSL.
Zero-Shot Learning (ZSL). Traditional ZSL approaches attempt to learn
a projection function mapping images/visual features to a semantic embed-
ding space where classification is performed. This idea is achieved by directly
predicting image attributes e.g. [17] or by learning a linear mapping through
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margin-based objective functions [1, 2]. Other approaches explored the use of
non-linear multi-modal embeddings [45], intermediate projection spaces [54, 55]
or similarity-based interpolation of base classifiers [6]. Recently, various methods
tackled ZSL from a generative point of view considering Generative Adversarial
Networks [48], Variational Autoencoders (VAE) [38] or both of them [50]. While
none of these approaches explicitly tackled the domain shift, i.e. visual appear-
ance changes among different domains/datasets, various methods proposed to
use domain adaptation technique, e.g. to refine the semantic embedding space,
aligning semantic and projected visual features [38] or, in transductive scenar-
ios, to cope with the inherent domain shift existing among the appearance of
attributes in different categories [16, 9, 10]. For instance, in [38] a distance among
visual and semantic embedding projected in the VAE latent space is minimized.
In [16] the problem is addressed through a regularised sparse coding framework,
while in [9] a multi-view hypergraph label propagation framework is introduced.

Recently, works have considered also coupling ZSL and DA in a transductive
setting. For instance, in [56] a semantic guided discrepancy measure is employed
to cope with the asymmetric label space among source and target domains.
In the context of image retrieval, multiple works addressed the sketch-based
image retrieval problem [52, 8], even across multiple domains. In [40] the authors
proposed a method to perform cross-domain image retrieval by training domain-
specific experts. While these approaches integrated DA and ZSL, none of them
considered the more complex scenario of DG, where no target data are available.

3 Method

In this section, we first formalize the Zero-Shot Learning under Domain General-
ization (ZSL+DG). We then describe our approach, CuMix , which, by perform-
ing curriculum learning through mixup, simulates the domain- and semantic-shift
the network will encounter at test time, and can be holistically applied to ZSL,
DG and ZSL+DG.

3.1 Problem Formulation

In the ZSL+DG problem, the goal is to recognize unseen categories (as in ZSL)
in unseen domains (as in DG). Formally, let X denote the input space (e.g. the
image space), Y the set of possible classes and D the set of possible domains.
During training, we are given a set S = {(xi, yi, di)}ni=1 where xi ∈ X , yi ∈ Ys

and di ∈ Ds. Note that Ys ⊂ Y and Ds ⊂ D and, as in standard DG, we
have multiple source domains (i.e. Ds = ∪mj=1dj , with m > 1) with different
distributions i.e. pX (x|di) 6= pX (x|dj), ∀i 6= j.

Given S our goal is to learn a function h mapping an image x of domains
Du ⊂ D to its corresponding label in a set of classes Yu ⊂ Y. Note that in
standard ZSL, while the set of train and test domains are shared, i.e. Ds ≡ Du,
the label sets are disjoint i.e. Ys ∩ Yu ≡ ∅, thus Yu is a set of unseen classes.
On the other hand, in DG we have a shared output space, i.e. Ys ≡ Yu, but
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a disjoint set of domains between training and test i.e. Ds ∩ Du ≡ ∅, thus Du

is a set of unseen domains. Since the goal of our work is to recognize unseen
classes in unseen domains, we unify the settings of DG and ZSL, considering
both semantic- and domain-shift at test time i.e. Ys ∩Yu ≡ ∅ and Ds ∩Du ≡ ∅.

In the following we divide the function h into three parts: f , mapping images
into a feature space Z, i.e. f : X → Z, g going from Z to a semantic embedding
space E , i.e. g : Z → E , and an embedding function ω : Yt → E where Yt ≡ Ys

during training and Yt ≡ Yu at test time. Note that ω is a learned classifier for
DG while it is a fixed semantic embedding function in ZSL, mapping classes into
their vectorized representation extracted from external sources. Given an image
x, the final class prediction is obtained as follows:

y∗ = argmaxyω(y)
ᵀ
g(f(x)). (1)

In this formulation, f can be any learnable feature extractor (e.g. a deep neural
network), while g any ZSL predictor (e.g. a semantic projection layer, as in [46]
or a compatibility function among visual features and labels, as in [1, 2]). The
first solution to address the ZSL+DG problem could be training a classifier using
the aggregation of data from all source domains. In particular, for each sample
we could minimize a loss function of the form:

LAGG(xi, yi) =
∑
y∈Ys

`(ω(y)ᵀg(f(xi)), yi) (2)

with ` an arbitrary loss function, e.g. the cross-entropy loss. In the following,
we show how we can use the input to Eq. (2) to effectively recognize unseen
categories in unseen domains.

3.2 Simulating Unseen Domains and Concepts through Mixup

The fundamental problem of ZSL+DG is that, during training, we have neither
access to visual data associated to categories in Yu nor to data of the unseen
domains Du. One way to overcome this issue in ZSL is to generate samples of
unseen classes by learning a generative function conditioned on the semantic
embeddings in W = {ω(y)|y ∈ Ys} [48, 50]. However, since no description is
available for the unseen target domain(s) in Du, this strategy is not feasible in
ZSL+DG. On the other hand, previous works on DG proposed to synthesize
images of unseen domains through adversarial strategies of data augmentation
[43, 39]. However, these strategies are not applied to ZSL since they cannot easily
be extended to generate data for unseen semantic categories Yu.

To circumvent this issue, we introduce a strategy to simulate, during training,
novel domains and semantic concepts by interpolating from the ones available
in Ds and Ys. Simulating novel domains and classes allows to train the network
to cope with both semantic- and domain-shift, the same situation our model
will face at test time. Since explicitly generating inputs of novel domains and
categories is a complex task, in this work we propose to achieve this goal, by mix-
ing images and features of different classes and domains, revisiting the popular
mixup [53] strategy.
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Fig. 2. Our CuMix Framework. Given an image (bottom, horse, photo), we randomly
sample one image from the same (middle, photo) and one from another (top, cartoon)
domain. The samples are mixed through φ (white blocks) both at image and feature
level, with their features and labels projected into the embedding space E (by g and
ω respectively) and there compared to compute our final objective. Note that φ varies
during training (top part), changing the mixing ratios in and across domains.

In practice, given two elements ai and aj of the same space (e.g. ai, aj ∈ X ),
mixup [53] defines a mixing function ϕ as follows:

ϕ(ai, aj) = λ · ai + (1− λ) · aj (3)

with λ sampled from a beta distribution, i.e. λ ∼ Beta(β, β), with β an hyperpa-
rameter. Given two samples (xi, yi) and (xj , yj) randomly drawn from a training
set T , a new loss term is defined as:

LMIXUP((xi, yi), (xj , yj)) = LAGG(ϕ(xi, xj), ϕ(ȳi, ȳj)) (4)

where ȳi ∈ <|Y
s| is the one-hot vectorized representation of label yi. Note that,

when mixing two samples and label vectors with ϕ, a single λ is drawn and
applied within ϕ in both image and label spaces. The loss defined in Eq.(4) forces
the network to disentangle the various semantic components (i.e. yi and yj)
contained in the mixed inputs (i.e. xi and xj) plus the ratio λ used to mix them.
This auxiliar task acts as a strong regularizer that helps the network to e.g. being
more robust against adversarial examples [53]. Note however that the function
ϕ creates input and targets which do not represent a single semantic concept
in T but contains characteristics taken from multiple samples and categories,
synthesising a new semantic concept from the interpolation of existing ones.

For recognizing unseen concepts in unseen domains at test time, we revisit
ϕ to obtain both cross-domain and cross-semantic mixes during training, simu-
lating both semantic- and domain-shift. While simulating the semantic-shift is a
by-product of the original mixup formulation, here we explicitly revisit ϕ in or-
der to perform cross-domain mixups. In particular, instead of considering a pair
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of samples from our training set, we consider a triplet (xi, yi, di), (xj , yj , dj) and
(xk, yk, dk). Given (xi, yi, di), the other two elements of the triplet are randomly
sampled from S, with the only constraint that di = dk, i 6= k and dj 6= di. In this
way, the triplet contains two samples of the same domain (i.e. di) and a third
of a different one (i.e. dj). Then, our mixing function φ is defined as follows:

φ(ai, aj , ak) = λai + (1− λ)(γaj + (1− γ)ak) (5)

with γ sampled from a Bernoulli distribution γ ∼ B(α) and a representing
either the input x or the vectorized version of the label y, i.e. ȳ. Note that we
introduced a term γ which allows to perform either intra-domain (with γ = 0)
or cross-domain (with γ = 1) mixes.

To learn a feature extractor f and a semantic projection layer g robust to
domain- and semantic-shift, we propose to use φ to simulate both samples and
features of novel domains and classes during training. Namely, we simulate the
semantic- and domain-shift at two levels, i.e. image and class levels. Given a
sample (xi, yi, di) ∈ S we define the following loss:

LM-IMG(xi, yi, di) = LAGG(φ(xi, xj , xk), φ(ȳi, ȳj , ȳk)). (6)

where (xi, yi, di),(xj , yj , dj),(xk, yk, dk) are randomly sampled from S, with di =
dk and dj 6= dk. The loss term in Eq. (6) enforces the feature extractor to
effectively process inputs of mixed domains/semantics obtained through φ. Ad-
ditionally, to also act at classification level, we design another loss which forces
the semantic consistency of mixed features in E . This loss term is defined as:

LM-F(xi, yi, di) =
∑
y∈Ys

`

(
ω(y)ᵀg

(
φ(f(xi), f(xj), f(xk))

)
, φ(ȳi, ȳj , ȳk)

)
(7)

where, as before, (xj , yj , dj), (xk, yk, dk) ∼ S, with di = dk, i 6= k and dj 6= dk
and ` is a generic loss function e.g. the cross-entropy loss. This second loss term
forces the classifier ω and the semantic projection layer g to be robust to features
with mixed domains and semantics.

While we can simply use a fixed mixing function φ, as defined in Eq. (5), for
Eq. (6) and Eq. (7), we found that it is more beneficial to devise a dynamic φ
which changes its behaviour during training, in a curriculum fashion. Intuitively,
minimizing the two objectives defined in Eq.(6) and Eq.(7) requires our model to
correctly disentangle the various semantic components used to form the mixed
samples. While this is a complex task even for intra-domain mixes (i.e. when
only the semantic is mixed), mixing samples across domains makes the task even
harder, requiring to isolate also domain specific factors. To effectively tackle this
task, we choose to act on the mixing function φ. In particular, we want our φ to
create mixed samples with progressively increased degree of mixing both with
respect to content and domain, in a curriculum-based fashion.

During training we regulate both α (weighting the probability of cross-
domain mixes) and β (modifying the probability distribution of the mix ratio



Towards Recognizing Unseen Categories in Unseen Domains 9

λ), changing the probability distribution of the mixing ratio λ and of the cross-
domain mix γ. In particular, given a warm-up step of N epochs and being s the
current epoch we set β = min( s

N βmax, βmax)), with βmax as hyperparameter,

while α = max(0,min( s−N
N , 1). As a consequence, the learning process is made

of three phases, with a smooth transition among them. We start by solving the
plain classification task on a single domain (i.e. s < N ,α = 0,β = s

N βmax,).
In the subsequent step (N ≤ s < 2N) samples of the same domains are mixed
randomly, with possibly different semantics (i.e. α = s−N

N , β = βmax). In the
third phase (s ≥ 2N), we mix up samples of different domains (i.e. α = 1),
simulating the domain shift the predictor will face at test time. Figure 2, shows
a representation of how φ varies during training (top, white block).
Final objective. The full training procedure, is represented in Figure 2. Given
a training sample (xi, yi, di), we randomly draw other two samples, (xj , yj , dj)
and (xk, yk, dk), with di = dk, i 6= k and dj 6= di, feed them to φ and obtain the
first mixed input. We then feed xi, xj , xk and the mixed sample through f , to
extract their respective features. At this point we use features extracted from
other two randomly drawn samples (in the figure, and just for simplicity, xj and
xk with same mixing ratios λ and γ), to obtain the feature level mixed features
needed to build the objective in Eq.(7). Finally, the features of xi and the two
mixed variants at image and feature level, are fed to the semantic projection layer
g, which maps them to the embedding space E . At the same time, the labels in
Ys are projected in E through ω. Finally, the objectives defined in Eq.(2),Eq.(6)
and Eq.(7) functions are then computed in the semantic embedding space. Our
final objective is:

LCuMIX(S) = |S|−1
∑

(xi,yi,di)∈S

LAGG(xi, yi) + ηILM-IMG(xi, yi, di) + ηFLM-F(xi, yi, di)

(8)
with ηI and ηF hyperparameters weighting the importance of the two terms. As
`(x, y) in both LAGG, LM-IMG and LM-F, we use the standard cross-entropy loss,
even if any ZSL objective can be applied. Finally, we highlight that the opti-
mization is performed batch-wise, thus also the sampling of the triplet considers
the current batch and not the full training set S. Moreover, while in Figure 2
we show for simplicity that the same samples are drawn for LM-IMG and LM-F,
in practice, given a sample, the random sampling procedure of the other two
members of the triplet is held-out twice, one at the image level and one at the
feature level. Similarly, the sampling of the mixing ratios λ and cross domain
factor γ of φ is held-out sample-wise and twice, one at image level and one at
feature level. As in Eq. (3), λ and γ are kept fixed across mixed inputs/features
and their respective targets in the label space.
Discussion. We present similarities between our framework with DG and ZSL
methods. In particular, presenting the classifier with noisy features extracted by
a non-domain specialist network, has a similar goal as the episodic strategy for
DG described in [21]. On the other hand, here we sidestep the need to train
domain experts by directly presenting as input to our classifier features of novel
domains that we obtain by interpolating the available sources samples. Our
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Fig. 3. ZSL results on CUB, SUN, AWA and FLO datasets with ResNet-101 features.

method is also linked to mixup approaches developed in DA [51]. Differently
from them, we use mixup to simulate unseen domains rather then to progressively
align the source to the given target data.

Our method is also related to ZSL frameworks based on feature generation
[48, 50]. While the quality of our synthesized samples is lower since we do not ex-
ploit attributes for conditional generation, we have a lower computational cost.
In fact, during training we simulate the test-time semantic shift without gener-
ating samples of unseen classes. Moreover, we do not require additional training
phases on the generated samples or the availability of unseen class attributes to
be available beforehand.

4 Experimental results

4.1 Datasets and implementation details

We assess CuMix in three scenarios: ZSL, DG and the proposed ZSL+DG setting.
ZSL. We conduct experiments on four standard benchmarks: Caltech-UCSD-
Birds 200-2011 (CUB) [44], SUN attribute (SUN) [31], Animals with Attributes
(AWA) [17] and Oxford Flowers (FLO) [29]. CUB contains 11,788 images of 200
bird species, with 312 attributes, SUN 14,430 images of 717 scenes annotated
with 102 attributes, and AWA 30,475 images of 50 animal categories with 85
attributes. Finally, FLO is a fine-grained dataset of flowers, containing 8,189 im-
ages of 102 categories. As semantic representation, we use the visual descriptions
of [35], following [48, 46]. For each dataset, we use the train, validation and test
split provided by [47]. In all the settings we employ features extracted from the
second-last layer of a ResNet-101 [13] pretrained on ImageNet as image repre-
sentation. For CuMix , we consider f as the identity function and as g a simple
fully connected layer, perform our version of mixup directly at the feature-level
while applying our alignment loss in the embedding space. All hyperparameters
have been set following [47].
DG. We perform experiments on the PACS dataset [19]with 9,991 images of 7
semantic classes in 4 different visual domains, art paintings, cartoons, photos and
sketches. For this experiment we use the standard train and test split defined in
[19], with the same validation protocol. We use as base architecture a ResNet-18



Towards Recognizing Unseen Categories in Unseen Domains 11

[13] pretrained on ImageNet. For our model, we consider f to be the ResNet-18
while g to be the identity function. We use the same training hyperparameters
and protocol of [21].
ZSL+DG. Since no previous work addressed the problem of ZSL+DG, there
is no benchmark on this task. As a valuable benchmark, we choose Domain-
Net [33], a recently introduced dataset for multi-source domain adaptation [33]
with a large variety of domains, visual concepts and possible descriptions. It con-
tains approximately 600’000 images from 345 categories and 6 domains, clipart,
infograph, painting, quickdraw, real and sketch.

To convert this dataset from a DA to a ZSL scenario, we need to define an
unseen set of classes. Since our method uses a network pretrained on ImageNet
[37], the set of unseen classes can not contain any of the classes present in
ImageNet following the good practices in [49]. We build our validation + test
set with 100 classes that contain at least 40 images per domain and that has no
overlap with ImageNet. We reserve 45 of these classes for the unseen test set,
matching the number used in [40], and the remaining 55 classes for the unseen
validation set. The remaining 245 classes are used as seen classes during training.

We set the hyperparameters of each method by training on all the images of
the seen classes on a subset of the source domains and validating on all the images
of the validation set from the held-out source domain. After the hyperparameters
are set, we retrain the model on the training set, i.e. 245 classes, and validation
set, i.e. 55 classes, of a total number of 300 classes. Finally, we report the final
results on the 45 unseen classes. As semantic representation we use word2vec
embeddings [27] extracted from the Google News corpus and L2 -normalized,
following [40]. For all the baselines and our method, we employ as base architec-
ture a ResNet-50 [13] pretrained on ImageNet, using the same number of epochs
and SGD with momentum as optimizer, with the same hyperparameters of [40].

4.2 Results

ZSL. In the ZSL scenario, we choose as baselines standard inductive methods
plus more recent approaches. In particular we report the results of ALE [1],
SJE [2], SYNC [6], GFZSL [41] and SPNet [46]. ALE [1] and SJE [2] are lin-
ear compatibility methods using a ranking loss and the structural SVM loss
respectively. SYNC [6] learns a mapping from the feature space and the se-
mantic embedding space by means of phantom classes and a weighted graph.
GFZSL [41] employs a generative framework where each class-conditional dis-
tribution is modeled as a multivariate Gaussian. Finally, SPNet [46] learns a
semantic projection function from the feature space through the image embed-
ding space by minimizing the standard cross-entropy loss.

Our results grouped by datasets are reported in Figure 3. Our model achieves
performance either superior or comparable to the state-of-the-art in all bench-
marks but AWA. We believe that in AWA learning a better alignment between
visual features and attributes may not be as effective as improving the quality of
the visual features. Especially, although the names of the test classes do not ap-
pear in the training set of ImageNet, for AWA being a non-fine-grained dataset,
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Table 1. Domain Generalization accuracies on PACS with ResNet-18.

AGG DANN MLDG CrossGrad MetaReg JiGen Epi-FCR CuMix
Target [11] [20] [39] [3] [5] [21]

Photo 94.9 94.0 94.3 94.0 94.3 96.0 93.9 95.1
Art 76.1 81.3 79.5 78.7 79.5 79.4 82.1 82.3
Cartoon 73.8 73.8 77.3 73.3 75.4 75.3 77.0 76.5
Sketch 69.4 74.3 71.5 65.1 72.2 71.4 73.0 72.6

Average 78.5 80.8 80.7 80.7 77.8 80.4 81.5 81.6

the information content of the test classes is likely represented by the ImageNet
training classes. Moreover, for non-fine-grained datasets, finding labeled training
data may not be as challenging as it is in fine-grained datasets. Hence, we argue
that zero-shot learning is of higher practical interest in fine-grained settings. In-
deed our proposed model is effective in fine-grained scenarios (i.e. CUB, SUN,
FLO) where it consistently outperforms the state-of-the-art approaches.

These results show that our model based on mixup achieves competitive per-
formances on ZSL by simulating the semantic shift the classifier will experience
at test time. To this extent, our approach is the first to show that mixup can be
a powerful regularization strategy for the challenging ZSL setting.
DG. The second series of experiments consider the standard DG scenario. Here
we test our model on the PACS dataset using a ResNet-18 architecture. As
baselines for DG we consider the standard model trained on all source domains
together (AGG), the adversarial strategies in [11] (DANN) and [39], the meta
learning-based strategy MLDG [20] and MetaReg [3]. Moreover we consider the
episodic strategy presented in [21] (Epi-FCR).

As shown in Table 1, our model achieves competitive results comparable to
the state-of-the-art episodic strategy Epi-FCR [21]. Remarkable is the gain ob-
tained with respect to the adversarial augmentation strategy CrossGrad [39]. In-
deed, synthesizing novel domains for domain generalization is an ill-posed prob-
lem, since the concept of unseen domain is hard to capture. However, with CuMix
we are able to simulate inputs/features of novel domains by simply interpolat-
ing the information available in the samples of our sources. Despite containing
information available in the original sources, our approach allows to produce a
model more robust to domain shift.

Another interesting comparison is against the self-supervised approach JiGen
[5]. Similarly to [5] we employ an additional task to achieve higher generalization
abilities to unseen domains. While in [5] the JigSaw puzzles [30] are used as a
secondary self-supervised task, here we employ the mixed samples/features in
the same manner. The improvement in the performances of our method high-
lights that recognizing the semantic of mixed samples acts as a more powerful
secondary task to improve robustness to unseen domains.

Finally, it is worth noting that CuMix performs a form of episodic training,
similar to Epi-FCR [21]. However, while Epi-FCR considers multiple domain-
specific architectures (to simulate the domain experts needed to build the episodes),
we require a single domain agnostic architecture. We build our episodes by mak-
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Table 2. Ablation on PACS dataset with ResNet-18 as backbone.

LAGG LM-IMG LM-F Curriculum Art Cartoon Photo Sketch Avg.

3 76.1 73.8 94.9 69.4 78.5

3 3 78.4 72.7 94.7 59.5 76.3
3 3 81.8 76.5 94.9 71.2 81.1
3 3 3 82.7 75.4 95.4 71.5 81.2

3 3 3 3 82.3 76.5 95.1 72.6 81.6

ing the mixup among images/features of different domains increasingly more
drastic. Despite not requiring any domain experts, CuMix achieves compara-
ble performances to Epi-FCR, showing the efficacy of our strategy to simulate
unseen domain shifts.

Ablation study. In this section, we ablate the various components of our
method. We performed the ablation on the PACS benchmark for DG, since
this allows us to show how different choices act on the generalization to un-
seen domains. In particular, we ablate the following implementation choices:
1) mixing samples at the image level, feature level or both 2) impact of our
curriculum-based strategy for mixing features and samples.

As shown in Table 2, mixing samples at feature level produces a clear gain on
the results with respect to the baseline, while mixing samples only at image level
can even harm the performance. This happens particularly in the sketch domain,
where mixing samples at feature level produces a gain of 2% while at image level
we observe a drop of 10% with respect to the baseline. This could be explained
by mixing samples at image level producing inputs that are too noisy for the
network and not representative of the actual shift experienced at test time.
Mixing samples at feature level instead, after multiple layers of abstractions,
allows to better synthesize the information contained in the different samples,
leading to more reliable features for the classifier. Using both of them allows to
obtain higher results in almost all domains.

Finally, we analyze the impact of the curriculum-based strategy for mixing
samples and features. As the table shows, adding the curriculum strategy allows
to boost the performances for the most difficult cases (i.e. sketches) producing a
further accuracy boost. Moreover, applying this strategy allows to stabilize the
training procedure, as demonstrated experimentally.

ZSL+DG. On the proposed ZSL+DG setting we use the DomainNet dataset,
training on five out of six domains and reporting the average per-class accuracy
on the held-out one. We report the results for all possible target domains but
one, i.e. real photos, since our backbone has been pretrained on ImageNet, thus
the photo domain is not an unseen one. Since no previous methods addressed
the ZSL+DG problem, in this work we consider simple baselines derived from
the literature of both ZSL and DG. The first baseline is a standard ZSL model
without any DG algorithm (i.e. the standard AGG): as ZSL method we con-
sider SPNet [46]. The second baseline is a DG approach coupled with a ZSL
algorithm. To this extent we select the state-of-the-art Epi-FCR as the DG ap-
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Table 3. ZSL+DG scenario on the DomainNet dataset with ResNet-50 as backbone.

Method Clipart Infograph Painting Quickdraw Sketch Avg.

SPNet 26.0 16.9 23.8 8.2 21.8 19.4
mixup+SPNet 27.2 16.9 24.7 8.5 21.3 19.7
Epi-FCR+SPNet 26.4 16.7 24.6 9.2 23.2 20.0

CuMix 27.6 17.8 25.5 9.9 22.6 20.7

proach, coupling it with SPNet. As a reference, we also evaluate the performance
of standard mixup coupled with SPNet.

As shown in Table 3, our method achieves competitive performances in
ZSL+DG setting when compared to a state-of-the-art approach for DG (Epi-
FCR) coupled with a state-of-the-art one for ZSL (SPNet), outperforming this
baseline in almost all settings but sketch and, in average by almost 1%. Particu-
larly interesting are the results on the infograph and quickdraw domains. These
two domains are the ones where the shift is more evident as highlighted by the
lower results of the baseline. In these scenarios, our model consistently outper-
forms the competitors, with a remarkable gain of more than 1.5% in average
accuracy per class with respect to the ZSL only baseline. We want to highlight
also that DomainNet is a challenging dataset, where almost all standard DA
approaches are ineffective or can even lead to negative transfer [33]. Our method
however is able to overcome the unseen domain shift at test time, improving
the performance of the baselines in all scenarios. Our model consistently outper-
forms SPNet coupled with the standard mixup strategy in every scenario. This
demonstrates the efficacy of the choices in CuMix for revisiting mixup in order
to recognize unseen categories in unseen domains.

5 Conclusions

In this work, we propose the novel ZSL+DG scenario. In this setting, during
training, we are given a set of images of multiple domains and semantic cate-
gories and our goal is to build a model able to recognize unseen concepts, as
in ZSL, in unseen domains, as in DG. To solve this problem we design CuMix,
the first algorithm which can be holistically and effectively applied to DG, ZSL
and ZSL+DG. CuMix is based on simulating inputs and features of new do-
mains and categories during training by mixing the available source domains
and classes, both at image and feature level. Experiments on public benchmarks
show the effectiveness of CuMix, achieving state-of-the-art performances in al-
most all settings in all tasks. Future works will investigate the use of alternative
data-augmentation schemes in the ZSL+DG setting.
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