
Segmentations-Leak: Membership Inference
Attacks and Defenses in Semantic Image

Segmentation

Yang He1,2, Shadi Rahimian1, Bernt Schiele2, and Mario Fritz1

1 CISPA Helmholtz Center for Information Security
2 Max Planck Institute for Informaticss
Saarland Informatics Campus, Germany

{yang.he, shadi.rahimian, fritz}@cispa.saarland, schiele@mpi-int.mpg.de

Abstract. Today’s success of state of the art methods for semantic
segmentation is driven by large datasets. Data is considered an im-
portant asset that needs to be protected, as the collection and anno-
tation of such datasets comes at significant efforts and associated costs.
In addition, visual data might contain private or sensitive information,
that makes it equally unsuited for public release. Unfortunately, recent
work on membership inference in the broader area of adversarial ma-
chine learning and inference attacks on machine learning models has
shown that even black box classifiers leak information on the dataset
that they were trained on. We show that such membership inference
attacks can be successfully carried out on complex, state of the art mod-
els for semantic segmentation. In order to mitigate the associated risks,
we also study a series of defenses against such membership inference
attacks and find effective counter measures against the existing risks
with little effect on the utility of the segmentation method. Finally,
we extensively evaluate our attacks and defenses on a range of relevant
real-world datasets: Cityscapes, BDD100K, and Mapillary Vistas. Our
source code and demos are available at https://github.com/SSAW14/
segmentation_membership_inference.

Keywords: Membership Inference; Data Privacy & Security; Forensics;
Semantic Segmentation

1 Introduction

The availability of large datasets is playing a key role in today’s state of the art
computer vision methods ranging from image classification (e.g. ImageNet [7]),
over semantic segmentation [6,21,35], to visual question answering [2]. There-
fore, research and industry alike have recognized the importance of large-scale
datasets [7,15,31,39] to push performance of computer vision algorithms. How-
ever, data collection and in particular annotation and curation of large datasets
comes at a substantial cost. There are sizable efforts from the research commu-
nity [6,11,35], and also industry has picked up the task of collection (e.g. [21])

https://github.com/SSAW14/segmentation_membership_inference
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as well as providing annotation services such as Amazon MTurk, which in turn
can be monetized and constitutes important assets to companies.

Consequently, such assets need protection e.g. as part of intellectual prop-
erty and it should be controlled which parts are made public (e.g. for research
purposes) and which part remain private. Based on these datasets, high per-
forming models are trained and then made public (e.g. as black box models)
via an API or as part of a product. One might assume that the information of
the training set remains contained within the trained parameters of the model
and therefore remains private. Beyond the aspect of intellectual property, data
might also include private information that were captured as part of the data
collection process, which are sensitive and important for safe and clean services.

Unfortunately, recent work on membership inference attacks [26,27,29] has
shown that even a black box model leaks information of the training data, aiming
to infer if a particular sample was used as part of the training data or not. Such
approaches have shown high success rates on a range of classification tasks and
have equally proven to be hard to fully prevent (= defend). While this constitutes
a potential threat to the machine learning model, it can also potentially be used
as a forensics technique to detect a potentially unauthorized use of data.

However, we are still missing even a basic understanding on if and how these
membership attack vectors extend to semantic segmentation, which is a ba-
sic computer vision task and has broad applications [4,13,16,17,37]. Hence, we
propose and study first membership inference attacks and defenses for semantic
segmentation. To reach this goal, we design an attack pipeline based on per-patch
analysis, and discover (1) not all the areas of an input are helpful to member-
ship inference, (2) structural information itself leaks membership privacy and
(3) effective defense mechanisms exists that can reduce the effectiveness of these
attacks substantially. Accordingly, we highlight our contributions to segmen-
tation task and review relevant work.

1.1 Contributions

Our main contributions are as follows. (1) We present the first work on mem-
bership inference attacks against semantic segmentation models under different
data/model assumptions. (2) We show structural outputs of segmentation have
severe risks of leaking membership. Our proposed structured loss maps achieve
the best attack results. (3) We present a range of defense methods to reduce
membership leakage. In the end, we show feasible solutions to protect against
membership attacks. (4) Extensive comparisons and ablation studies are pro-
vided in order to shed light on the core challenges of membership inference
attacks for semantic segmentation.
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1.2 Related Work

Recent attacks against machine learning models have drawn much attention
to communities focusing on attacking model functionality (e.g., adversarial at-
tacks [10,18,19,23,30,34]), or stealing functionality [24] or configurations [22] of
a model. In this paper, we detail the topics of data privacy and security in the
following.
Membership inference attack. Membership inference attacks have been suc-
cessfully achieved in many problems and domains, varying from biomedical data
[3], locations [25], purchasing records [27], and images [29].

It has been shown that machine learning models can be attacked to infer
the membership status of their training data. Shokri et al. [29] proposed mem-
bership inference attacks against classification models utilizing multiple shadow
models to mimic behaviors of the victim model. Shadow models were trained by
querying the victim model using examples with higher confidences from the vic-
tim model. Hence, a binary classifier was trained with information from shadow
models, and applied to attack the victim. Further, Salem et al. [27] demonstrated
only one shadow model is enough to reach similar results rather than multiple
shadow models. They also show that underlying distributions of data used to
train shadow models and the victim can be different, which allows for attacks
under relaxed assumptions. In addition, learning free attacks were proposed,
which constitutes a low-skill attack without knowledge about the model and
data distribution priors. Salem et al. [27] proposed to directly set a threshold on
the confidence scores of predictions to recognize memberships. Sablayrolles et
al. [26] set a threshold on loss values and achieved quite successful results. While
prior work has only studied classification models so far, our contribution is to
show the differences between segmentation and classification models and present
the first study of attacks and defenses on semantic segmentation models based on
new methods. Although the segmentation problem can be understood as pixel-
wise classification, it turns out the derived information is weak and needs to be
aggregated over a patch or even the full image for a successful attack. Beyond
this, we propose the first dedicated attacks that fully leverage the information
of the full segmentation output and hence lead to even stronger attack vectors.
Privacy-preserving machine learning. The goal of these techniques is to re-
duce information leakage with limited access to training data, which have been
applied to deep learning [1,28]. Differential privacy [9] allows learning the statis-
tical properties of a dataset while preserving the privacy of the individual data
points in it. Jayaraman et al. [14] discussed the connection between the effec-
tiveness of differential privacy and membership inference in practice. Besides,
Nasr et al. [20] provided membership protection for a classifier by training a
coupled attacker in an adversary manner. Zhang et al. [36] obfuscated training
data before feeding them to the model training task, which hides the statisti-
cal properties of an original dataset by adding random noises or providing new
samples. In our work, we compare a series of defense approaches to mitigate
membership leakage in semantic segmentation.
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2 Attacks against Black-box Semantic Segmentation
Models

Membership inference is to attack a victim, aiming to determine whether a
particular data point was part of the training data of the victim. Such attacks
exploit overfitting artifacts on training data [29,27,26]. Typical machine learn-
ing models tend to be overconfident on data points that were seen during the
training. Such overfitting issues lead to characteristic patterns and distributions
of confidence scores [29,27] or loss values [26] which has facilitated membership
inference attacks. As a result, successful attacks against classification models
can be achieved according to a shadow model trained by a malicious attacker,
mimicking the overfitting patterns and distribution gaps.

We show how such attacks can equally be constructed against models for
semantic segmentation with a specially designed pipeline and representations.
While such models can be understood as pixel-wise classification, it turns out
that the information that can be derived from a single pixel is rather weak.
Hence, we develop a method that aggregates such information over patches and
full images to arrive at stronger attacks. We first describe our pipeline for attack-
ing segmentation models, and then present two attack settings exploited in our
study, which have different constraints during attacks. Furthermore, we discuss
our evaluation methodology, and then show evaluation results.

Algorithm 1 Training an attacker
Input: DS = {(Xi, Yi)}i, V, Epoch
Output: Per-patch attacker AP
1: Query DS with V;
2: Partition DS into DS

in, DS
out;

3: Train a shadow model S with DS
in;

4: Initialize AP;
5: for i = 1; i ≤ Epoch; i + + do
6: for j = 1; j ≤ |DS |; j + + do
7: Crop a patch (X̂j , Ŷj) from (Xj , Yj);
8: if ((Xj ,Yj) ∈ DS

in) then
9: AP(S(X̂j), Ŷj)

learn−−−→ 1
10: else
11: AP(S(X̂j), Ŷj)

learn−−−→ 0
12: end if
13: end for
14: end for
15: return AP;

Algorithm 2 Testing (Membership In-
ference)
Input: Testing pair (X,Y), V, AP, N , τ
Output: Image-level inference result A
1: A = 0; i = 0;
2: while i < N do
3: Crop (X̂, Ŷ) from (X, Y); // patch selection
4: if Mean(V(X̂) ⊗ Ŷ) > τ) then
5: continue; // reject too confident patches
6: end if
7: A = A + AP(V(X̂), Ŷ)/N ;

i++;
8: end while
9: return A;

2.1 Methods

Our approach infers image-level membership information based on observing
predictions of segmentation models and correct labels. In this section, we describe
our membership inference pipeline based on per-patch analysis, as summarized in
Algorithm 1 and 2. Further, several design choices are discussed that significantly
contribute to the success of the attack and help to understand the essence in
attacking semantic segmentation models with structured outputs.
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Notation. We define the notation used through the paper. Let D{V,S} = {(Xi,Yi)}i
be two datasets including images X ∈ RH×W×3 and densely annotated GTs
Y ∈ RH×W×C with one-hot vectors, where C is the number of predefined labels.
For each dataset, we partition it into two parts for proving different membership
status, i.e., D{V,S} = D{V,S}

in ∪ D{V,S}
out . The victim model, which is trained on

DV
in and we aim for attacking, is denoted as V. To achieve attacks, we build a

shadow semantic segmentation model S with DS
in, for training an attacker. Let

P be the posterior of a segmentation output, i.e., P = S(X) or V(X), depend-
ing on the stages of membership inference. Our per-patch attacker is denoted
as AP(P,Y), taking P and Y as the inputs and outputs a binary classification
score for membership status. Finally, the image-level attacker is denoted as A.
Training. Our method is built upon a per-patch attacker AP, as described in
Algorithm 1. In line with previous work on membership inference [29,27], we
construct a shadow model S that is to some extent similar to V and therefore
is expected to exhibit similar behaviour and artifacts w.r.t. membership. In ad-
dition, S aims to capture semantic relations and dependencies between different
classes in structured outputs and provide training data to the patch classifier
with known membership labels. We prepare a dataset DS with the same la-
bel space to DV , and then S is trained on DV

in. The exact assumptions of our
knowledge on V that inform the construction of S are detailed in 2.2.
Construction of per-patch attacker. S provides training data for the per-patch
attacker AP, as we have complete membership information of S. This allows us
to train AP by achieving the binary In/Out classification on the data pairs from
DS

in and DS
out. AP can be any architecture taking image-like data as inputs, and

we discuss different data representations to train it as follows.
Data representation. We apply two representations of a data pair (X,Y) over
segmentation models, as the inputs of a per-patch attacker. In other words, we
train a classifier to compare the differences between P=S(X) and Y to determine
the membership status of (X,Y) in training the classifiers.

1. Concatenation. We concatenate P and Y over the channel dimension, lead-
ing to a representation with size H ×W × 2C.

2. Structured loss map. The structured loss map (SLM ∈ RH×W×1) com-
putes the cross-entropy loss values at all the locations (i, j), where SLM(i, j) =

−
∑C

c=1 Y(i, j, c) · log(P(i, j, c)). Previous work [26] shows the success of apply-
ing a threshold on the loss value of an image pair for image classification, and
this method can be easily applied to semantic segmentation. Despite this, we
show keeping structures of loss maps is still crucial to the success of attacking
semantic segmentation.
Testing. Given a data pair (X,Y) to determine if it was used to train V (i.e.,
(X,Y) ∈ DV

in), we are able to crop a patch (X̂, Ŷ) from the pair, and thus
the inference result is AP(V(X̂), Ŷ) according to the representation used in the
training. In order to further amplify the attack, we aggregate the information
of the per-patch attack on an image-level, therefore, the final inference result is
calculated by
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A =
1

N

N∑
i=1

AP(V(X̂i
), Ŷi

), (1)

where (X̂i, Ŷi) is the i-th cropped patch from (X̂, Ŷ).
Selection of patches. As our method is based on scoring each patch, the selec-
tion of patches plays an important role in obtaining stronger attacks. Besides, it
also helps us to understand which patches are particularly important for deter-
mine the membership status of an example. Therefore, we study the influence
of different patch selection schemes with the following choices:

1. Sliding windows. We crop patches on a regular grid with a fixed step size.
2. Random locations. We sample patches uniformly across the image.
3. Random locations with rejection. We emphasize the importance of different

patches for recognizing membership is not alike, therefore, this scheme aims to
reject patches, which do not contribute to final results or even provide misleading
information. We observe the patches with very strong confidences or very small
loss should be omitted. For example, road area counts for most pixels of an image
and are segmented very well, therefore, this scheme tends to select the bordering
areas between a road and other classes, instead of the center of a road.

As summarized in Algorithm 2, we construct image-level membership in-
ference attacks according to per-patch attacks, allowing us to leverage distinct
patches for successful attacks. Our pipeline is flexible to image sizes and aspect
ratios if different image sizes exist in a dataset and even cross multiple datasets.

2.2 Attack Settings

In our method, we train a shadow segmentation model S and an attacker A for
attacking a victim segmentation model V. Our two attack settings differ in the
knowledge on data distribution and model selection for training V and S.
Data & model dependent attacks: This attack assumes that the victims
model can be queried at training time of an attacker. Besides, this setting allows
to train a shadow model with the same architecture to the victim. Specifically,
S and V have the same learning protocol and post-processing techniques during
inference. Further, this attack assumes the data distributions of DV and DS are
also identical, which comes from the same database. Last, query with a victim
model is allowed to split DS into DS

in and DS
out, as listed in the 1-st line of

Algorithm 1, that we use the examples with stronger confidences to build DS
in.

Data & model independent attacks: For this attack, we only know the
victim model’s functionality and a defined label space. There is no query process
for constructing training set for S, instead, S is able to be trained with a dataset
of the different distribution, which leads to a cheaper and more practical attack.
Furthermore, the model configuration and training protocol of the victim are
unknown. The goal of the shadow model is to capture the membership status
for each example, and provide training data for attack model A. Particularly,
model and data distribution are completely different to victims, even there is no
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query process, which might be detected on the server. Therefore, we highlight
the severity of information leakage in this simplified attack.

2.3 Evaluation Methodology

We evaluate the performance of membership inference attacks with precision-
recall curves and receiver operating characteristic (ROC) curves. We regard the
images used during training as positive examples, and negatives if not. Therefore,
given a testing set with M image pairs used to train a model and N pairs not
used, random guess with probability 0.5/0.5 for both classes is able to achieve
precision M

M+N and recall 0.5. We set different thresholds in a classifier and
compare its precision-recall curve to the random guess performance, to observe
if attacks are successful. Similarly, we draw the random guess behavior in a ROC
curve, which is the diagonal of a plot. Furthermore, to compare different attacks
quantitatively, we apply maximum F-score ( 2·precison·recall

precison+recall ) in precision-recall
curves and AUC-score in ROC curves to evaluate attack performance. Last,
our method is based on per-patch attacks, therefore, we employ the same metrics
for per-patch evaluation, to help us understand and compare different attacks,
as well as defense methods in section 3, exhaustively.

2.4 Evaluation Results

Data and architectures. We conduct the experiments on street scene semantic
segmentation between various datasets, including Cityscapes [6], BDD100K [35]
and Mapillary Vistas [21], which are captured in different countries under diverse
weathers and image qualities, providing multiple domains. Besides, we apply
PSPNet [37], UperNet [33], Deeplab-v3+ [5] and DPC [4] as our segmentation
models. For per-patch attacker AP, we train a ResNet-50 [12] from scratch,
allowing us to visualize the regions contributing to the recognition of membership
for an example by class activation mapping [38]. In detail, the size of inputs for
ResNet-50 is 90×90 in spatial, corresponding to 713×713 image patches.
Comparison methods. To demonstrate the effectiveness of specific consider-
ations for segmentation models, we compare our pipeline to previous attackers
for classification models [26,27]. For [27], we adapt their shadow model based
attacker, by regarding each location as a classification problem. We also test
their learning-free attacker by only considering the mean of confidence scores of
a prediction. Besides, we compare the proposed method with [26], which employs
a threshold on the loss value.
Setup for data & model dependent attacks. For dependent attacks, we
conduct experiments with Cityscapes and PSPNet (a.k.a. PSP−→PSP). We split
Cityscapes into four parts, i.e., DV

in, DV
out, DS

in and DV
out, where the sizes of those

sets are as follows: |DV
in| =1488, |DV

out| =912, |DS
in| =555 and |DS

out| =520. We
train a victim model from ImageNet [7] pretrained models and lead to 59.88
mean IoU (mIoU) for segmentation. For evaluation of per-patch attacks, we
sample 29760 patches from DV

in and 30096 patches from DV
out. Therefore, this

setting leads to 62% and 49.7% precision for image-level and per-patch attacks
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Table 1: Data and model descriptions of victim and shadow models for indepen-
dent attacks.

Dataset Model Backbone In / Out

Cityscapes (Victim) PSPNet [37]
UperNet [33] ResNet-101 [12] 2975 / 500

BDD100K (Shadow)
Mapillary (Shadow)

Deeplab-v3+ [5]
DPC [4] Xception-71 [32] 4k / (3k+1k)

10k / (8k+2k)

Table 2: Comparison of different attackers (in %). We compare our attackers to
previous methods, including the learning-based attacker [27]∗ and learning-free
attackers by applying a threshold on a confidence score [27]+ or a loss value [26].
“−→” means the attacks with a shadow model of the left, and the victims are the
right, which can be PSPNet [37], UperNet [33], DPC [4] or Deeplab-v3+ [5].

Methods
Dependent Independent
[37]−→[37] [5]−→[37] [5]−→[33] [4]−→[37] [4]−→[33]
F AUC F AUC F AUC F AUC F AUC

Adapted [27]∗ 77.2 67.2 92.4 63.5 92.3 62.6 – – – –
Adapted [27]+ 77.4 62.0 92.3 63.4 92.3 59.2 92.3 63.4 92.3 59.2
Adapted [26] 82.2 74.9 94.4 81.4 93.0 72.4 94.4 81.4 93.0 72.4
Ours (C+GT, Full) 80.6 81.2 94.5 85.0 92.8 71.8 93.2 73.5 92.6 68.8
Ours (Loss, Full) 84.2 82.6 95.7 89.1 93.2 76.3 93.1 73.5 92.4 68.3
Ours (C+GT, Random) 83.4 82.7 95.0 86.1 95.4 88.5 92.9 74.9 94.4 85.5
Ours (Loss, Random) 84.8 84.6 95.7 90.8 95.8 94.3 94.0 77.7 93.3 79.4
Ours (C+GT, Rejection) 83.3 83.0 94.9 86.3 95.3 91.2 93.5 76.3 94.4 86.1
Ours (Loss, Rejection) 86.7 87.1 95.9 91.1 96.2 94.9 94.1 77.8 93.5 82.0

in random guess. The resulting F-scores for image-level and per-patch attacks
are 55.36% and 49.85% respectively, which are drawn in Fig. 1.
Setup for data & model independent attacks. For independent attacks,
we employ different segmentation models for shadow models and victims, as
summarized in Table 1. Particularly, BDD100K has completely compatible label
space to Cityscapes of 19 classes, but Mapillary Vistas has 65 labels. We merge
the some classes from Mapillary Vistas into Cityscapes, and ignore the others.
For victim models, we train a PSPNet and an UperNet using the official split of
Cityscapes, leading to 79.7 and 76.6 mIoU for segmentation. For shadow models,
we apply our splits with balanced In/Out distribution to train a binary classifier.
In the end, the F-score of random guess for image-level independent attack is
63.13%. Comparing it to the numbers in Table 2, we observe all the attackers
obtain much higher F-score than 63.13%, which shows the severe information
leakage of semantic segmentation models.
Results. Results of the different versions of our model as well as comparision
to previous work in presented in Table 2. While previous work on membership
inference targets classification models [27,26], we facilitate a comparison to these
approaches by extending them to the segmentation scenario. [27] proposes a
learning-based attacker and a learning-free attacker. We train their learning-
based attacker with 1×1 vector inputs, and test on all pixel locations. Final
image-level attacks are obtained by averaging the binary classification scores
of all locations. Similar to our method, we test different settings, and it fails to
achieve attacks with the shadow model DPC [4] in Table 1. Besides, we test their
learning-free attacker by averaging the confidence scores of all locations. Equally,
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Fig. 1: Evaluation of the importance of spatial structures for PSP−→PSP,
starting from our final model (Size 90).
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Fig. 2: Image-level comparison results w.r.t. patch selection and data repre-
sentations, under varying patch numbers.

we facilitate a comparison to [26] where we use the loss map for the segmentation
output. For our methods, we report the numbers for last two patch selection
strategies with sampling 10 patches. Besides, we also perform attacks with full
image inputs using our binary classifiers, which have a global average pooling
in the end and are able to handle different sizes of inputs. We emphasize that
the ratio of In/Out testing examples are different for dependent and independent
attacks, therefore, the numbers between them cannot be compared. We conclude
that recent models for semantic segmentation are susceptible to membership
inference attacks with AUC scores of the attacker up to 87.1% in the dependent
and 94.9% in the independent setting. Overall, we observe that our loss-based
method with rejection scheme performs best in most settings and measures.
Importance of spatial structures. Key to strong attacks is exploiting the
structural information of an output from a segmentation model. Hence, we con-
duct attacks with gradually reduced structural inputs in our dependent attacks
in order to analyze the importance of this structural information for our goal.
Our final model takes 90×90 blocks as inputs for per-patch attackers. Therefore,
we crop sub-blocks from our final model with input sizes of 60, 45, 30, 15 for
providing different level of structures. We compare the precision-recall curves
for per-patch attacks and ROC curves for image-level attacks in Fig. 1. We note
that all the feature vectors in the blocks of different sizes have the same scale
of receptive fields. We apply the same architecture of per-patch attacker for
sizes 90-30, but modify the ResNet-50 with fewer pooling operations for size 15,
because its spatial size is too small. First, we compare the per-patch attack per-
formance, and are able to observe that attacks become harder with decreasing
patch sizes, where smaller patches provide less structures. Second, we compare
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image-level attacks for them, where random selection strategy is applied to in-
tegrate all patches. We sample 5, 20, 20, 30, 30 random patches for size 90, 60,
45, 30, and 15 to integrate image-level results. Consequently, size 90 achieves
the best performance, even though other attackers obtain very close image-level
results. Last, we highlight that our concatenation-based attacker degenerates to
previous work [27] with 1×1 vector inputs. We observe that 1×1 inputs keep this
decreasing trend and achieve worse results than size 15, which can be found in
Table 2. From this results, we conclude that structures are of great importance
in membership inference attacks for semantic segmentation, so that an attacker
is able to mine some In/Out confidence or loss patterns over an array input.
Analysis of patch selection and data representation. We test our three
sampling strategies and two representations as depicted in section 2.1. Fig. 2
plots the image-level comparison results. For sliding windows, we sample at
least 6 patches to guarantee an entire image can be covered. For random loca-
tions, we sample different numbers of patches for image-level attacks to observe
the influence of patch numbers, starting from one patch. We conduct this ex-
periments for 3 times and report the mean. In summary, we observe these two
strategies achieves comparable performance when the same numbers of patches
are used. Specifically, sliding windows perform better on dependent attacks with
loss maps, and random locations are better for independent attacks (Deeplab-
v3+ −→PSP, and Deeplab-v3+ −→Uper), which may be caused by inconsistent
data distributions or different behaviors of segmentation models. Last, we test
our random locations with rejection strategy. To avoid the affect of random
seeds, we sample the same locations to previous random locations if a patch
is not rejected. We can see clear improvements if we sample very few patches,
whose results are sensitive to sampled locations. In street scenes, road has a
large portion of pixels, therefore, it tend to sample a road patch, which has the
highest accuracy over all the classes and less discrimination for In/Out clas-
sification. After ignoring those patches, performance is improved because the
rejection helps us avoid those less informative patches. To conclude, not all the
regions contribute to successful attacks for segmentation, that we need a regime
to determine membership status of an image, instead of processing the whole
like previous work for classification.

Comparing our patch-based attacks to the full image attacks, we realize us-
ing full images as inputs makes performance significantly decreased, even though
the same classifier is applied. The classification for full images may be affected
by misleading areas. Hence, partitioning an image into many patches helps fo-
cus on local patterns and makes a better decision. Besides, we observe that
our rejection scheme achieves better performance than random scheme, which
further supports our argument on the difference between segmentation and clas-
sification. In addition, our concatenation-based attacker outperforms [27], which
demonstrates the importance of spatial structures, similar to Fig. 1. From our
results, [26] is able to obtain acceptable performance but worse than our struc-
tured loss map-based attackers, which hold the structural information. Finally,
our novel structured loss maps achieve better results than concatenation and
other methods [27,26] in most cases.
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3 Defenses

To mitigate the membership leakage and protect the authority of a model, we
study several defenses for semantic segmentation models, while maintaining their
utility with little performance degeneration. When a model is deployed, a ser-
vice provider has all rights to access the model and data. Our work shows for
the first time a feasible solution for protecting very large semantic segmentation
model. As a consequence, we manipulate the model in training or testing stages
by reducing the distribution gaps between training data and others w.r.t. con-
fidence scores of predictions or loss values, including Argmax, Gauss, Dropout
and DPSGD. The first two methods can be applied in any segmentation models
and last two can be applied in deep neural networks.
Settings. We analyze the performance of image-level attacks according to ran-
dom locations in this section, which are easily compared to the results without
defenses in Table 2. Because Gaussian noises, or dropout will change output
distributions, rejection scheme may sample different patches, we only test the
random location schemes and sample patches at the same locations for different
defenses, and keep consistent to previous attacks.

For dependent attacks, our shadow and victim models have the same post-
processing and learning protocol, as claimed in section 2.2. In other words, we
employ the same defenses and strength factors for them in this setting. For
independent attacks, we report the settings of Deeplab-v3+ −→PSP and Deeplab-
v3+ −→Uper, which are the most successful. We only employ defenses on victim
models as protections for released black-box semantic segmentation models.
Evaluation methodology. Due to the different ratios for In/Out examples in
various settings, we do not report their F-scores in this section. Instead, we only
employ AUC-score to compare different defense methods, expecting to reduce
the original attacks’ AUC-scores to 0.5, that random guess in all the settings hold
this number. Furthermore, an ideal defense is supposed to make attacks hard and
preserve segmentation utility at the same time. Therefore, we apply mIoU [17]
to evaluate the segmentation performance and jointly compare different defense
methods w.r.t. capability of membership protection and utility of segmentation.

3.1 Methods and Results
Argmax. It only returns predicted labels instead of posteriors for an image.
We use one-hot vectors to complete attacks for our methods and others [27,26].
Obviously, previous learning-free attacker [27] based on confidence scores fails to
recognize membership states, because every example has confidence 1. In Fig. 3,
we show the comparison results for all the other methods. Because argmax is
very easy to be noticed, we train binary classifiers for independent attacks with
argmax operation as well. In general, argmax only reduces membership leakage
in segmentation models a little for all the attackers. A model already leaks
information when it only returns predicted labels. To conclude, we highlight the
difference to protecting classification, that argmax cannot successfully protect
the membership privacy for segmentation.
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Fig. 3: Performance comparison for Argmax defense.

Gauss. To hide overfitting artifacts or patterns, we add Gaussian noises on the
posteriors with different variances, varying from 0.01 to 0.1 with step 0.01 for
independent attacks. To further test the defense for dependent attacks, we add
very strong noises to variance 0.4. After noising, we set the values into 0 in
case they are smaller than 0, and then normalize each location individually. Seg-
mentation performance is decreased with stronger noises, therefore, we show the
joint privacy-segmentation plots in Fig. 4(a) to observe the defense behaviors
as well as the maintained utility of the segmentation method. First, we observe
Gauss protects PSPNet and UperNet in independent attacks successfully, which
reduces AUC-scores from 0.9 to less than 0.6, while only losing 0.2 mIoU. Sec-
ond, we observe our loss-based attackers are more sensitive to Gaussian noises.
Despite stronger attacks of structured loss maps, they are easier to protect with
Gaussian noises. Finally, we realize this defense is hard to mitigate leakage for
dependent attacks. Even though we employ very strong noises for this, losing
mIoU from 59.88 to 23.17, it still has more than 0.75 AUC-scores for both at-
tacks. To conclude, Gauss is hard to protect a model when the noises of the same
distribution are added to victim and shadow models, and binary classifiers can
pick useful information from noisy inputs.
Dropout. It is used to avoid overfitting in training a deep neural networks,
that we applied in training our victim model with dropout ratio 0.1. However,
it does not hide membership from our studies in section 2. Therefore, we enable
dropout operation during testing to blur a prediction. We realize a network still
produces decent results when we use a different dropout ratio. Hence, we apply
dropout ratio 0.1, 0.5 and 0.9 to obfuscate a prediction at different degrees. We
show the joint plots in Fig. 4(b). From our study, we observe enabling dropout
during test is able to slightly mitigate membership leakage, but segmentation
performance decreases a lot when a large ratio is applied.
DPSGD. Differential Privacy SGD (DPSGD) [1] adds Gaussian noises on the
clipped gradients for individual examples of a training batch, in a way that
the learnt parameters and hence all derived results such as predictions are dif-
ferentially private. We apply DPSGD in our study to protect a model. Before
training, we collect gradient statistics over entire training data for different layers
of a network, and set individual clipping factors for all the layers. Next, we train
PSPNet with Gaussian variances 10-3, 4×10-3 for dependent settings, and vari-
ances 10-3, 4×10-3, 8×10-3 for independent settings. For UperNet, we train with
10-6, 10-3, 3×10-3, 6×10-3. Theoretically, the Gaussian noises used in our model
is not enough to guarantee a tight differential privacy bound [8]. However, there
is a gap between theoretical garuantees and emperical defenses. prior work has
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shown practical defenses from small gaussian noise and hence loose bounds [14].
In our work, we demonstrate this in semantic segmentation models and show the
utility-privacy plots in Fig. 4(c). We observe that DPSGD successfully protect
memberships in all the settings, in particular, it will not hamper the utility of
segmentation models which only reduces 1.12, 1.36 and 0.75 mIoU when noises
with 1e-6 are applied in three rows. Therefore, we recommend DPSGD to train
a segmentation model for protecting membership privacy in practise.
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Fig. 4: Joint plots for different defenses. x-axis is the
AUC-score for membership protection and y-axis is
the mIoU for segmentation utility. optimal defenses
achieve 0.5 AUC-score while preserving segmentation
utility, as drawn with the red diamond.

Summary of defenses.
In spite of the suc-
cess of membership infer-
ence under various set-
tings, we point out fea-
sible solutions which can
significantly reduce the
risk of information leak-
age. (1) Adding Gaus-
sian noises helps pre-
vent leakage in indepen-
dent settings from un-
known attackers. Trade-
off between model de-
generation and informa-
tion leakage is able to
be considered to choose
a suitable noise level.
Hence, we recommend
this method as a basic
protection without fur-
ther costs to prevent po-
tential independent at-
tacks, which are very cheap to implement. (2) For neural networks, we suggest
applying DPSGD to train a model, which mitigates the leakage in all the settings
with limited model degeneration, even though it adds noises on the gradients
during training and hence requires increased training time.

3.2 Interpretability

One of difference between attacking segmentation and classification is on the
input form of the binary classifier, where the input of segmentation can be re-
garded as an image. Hence, our method can provide interpretations for different
examples, indicating important regions for recognizing membership status. Be-
sides, interpretations also help us to understand and compare different defenses.
We apply class activation maps (CAMs) [38] to highlight the areas that help to
detect examples/patches from training set in Fig. 5. Besides, we also compare
the activation areas before and after defenses with structured loss maps.
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Fig. 5: Class activation maps (CAMs) and structured loss maps (SLMs) for in-
dependent attack Deeplab-v3+ −→Uper.

First, we observe our attacker is able to mine some regions with specific
objects or intersections between two classes, even our attacker has no interaction
with a victim. Second, we compare the attacker’s different behaviors for those
defenses. We can see argmax can simply change the CAM to different intensities,
but still hold the major layout of the original CAM. For Gaussian noises, we
employ variance 0.1 here, and can apparently observe noises on the structural
loss map for all the pixel locations, therefore, it makes all the examples have a
similar CAM. For dropout, it will change structured loss maps in many places
and then change the CAM. In particular, it changes the locations with strong
loss values more than others. For DPSGD, we can see it has very similar loss
maps to the original model. The only differences are on some regions hard to
segment. Even DPSGD changes the loss maps a little, the final CAMs are able to
change a lot for some examples, therefore, it helps defend stealing memberships
while preserving segmentation performance very well.

4 Conclusion
We have provided the first membership inference attacks and defenses for seman-
tic segmentation models by extending previous membership attacker for classi-
fication and proposing a new specific representation (i.e., structured loss maps).
Our study is conducted under two different settings with various model/data as-
sumptions. We show that spatial structures are important to achieve successful
attacks in segmentation, and our structured loss maps achieve the best results
among all. Besides, we study defense methods to reduce membership leakage
and provide safe segmentation. As a result, we suggest to add Gaussian noises
on the posteriors in inference, or apply differential privacy in training. We hope
that our work contributes to the awareness of novel threats that modern deep
learning models pose – such as leakage of information on the training data. Our
contributions shows that such threats can be mitigated with little impact on the
utility of the overall model.
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