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Abstract. Distributional uncertainty exists broadly in many real-world
applications, one of which in the form of domain discrepancy. Yet in the
existing literature, the mathematical definition of it is missing. In this
paper, we propose to formulate the distributional uncertainty both be-
tween the source(s) and target domain(s) and within each domain using
mutual information. Further, to reduce distributional uncertainty (e.g.
domain discrepancy), we (1) maximise the mutual information between
source and target domains and (2) propose a transferable feature learning
scheme, balancing two complementary and discriminative feature learn-
ing processes (general texture learning and self-supervised transferable
shape learning) according to the uncertainty. We conduct extensive ex-
periments on both domain adaption and domain generalisation using
challenging common benchmarks: Office-Home and DomainNet. Results
show the great effectiveness of the proposed method and its superiority
over the state-of-the-art methods.

Keywords: Distributional uncertainty, domain discrepancy, mutual in-
formation, object shape, self-supervised learning

1 Introduction

A fundamental assumption in machine learning is the similarity of training and
test distribution. Various algorithms have been proposed based on this assump-
tion, Convolutional Neural Networks (CNNs) among which achieved huge success
together with large scale training data. However, opposed to this ideal setting,
distributional uncertainty exists broadly in almost every real-world problem.

Domain discrepancy is a type of distributional uncertainty in which the dis-
similarity of two domains (distributions) is considered. Unsupervised Domain
Adaptation (UDA) aims at resolving the domain discrepancy problem and en-
hancing model transferability, while not requiring any labels for target domain.
Different approaches have been proposed to tackle it, such as direct minimisa-
tion of domain discrepancy [32] and domain adversarial learning [15]. Though
promising progress has been made, some critical issues still remain.
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Fig. 1. Examples of the Effiel Tower presented in different styles from the six domains
in DomainNet dataset [38]. Left to right: quickdraw, sketch, clipart, infograph, painting
and real. Best viewed in colour.

First of all, there lacks a unified and quantified explanation for the concept
of domain discrepancy. Existing methods either minimise the distributional dif-
ference between classifier outputs [44], or try to align intermediate features [19]
from different distributions. Yet a rigorous definition of domain discrepancy and
a precise measurement of it are missing.

Secondly, most methods are restricted to aligning a single source and a single
target domain at a time, as they assume that training and test data each follows
a single distribution. However, this is often not true in practice. In some tasks,
the presence of multiple distinct distributions in training is almost unavoidable,
for example, different camera-angle sub-domains in person re-identification tasks
[40]. Directly applying a single source to single target adaptation method to such
tasks is problematic. Since the adaptation performance across multiple domains
is bounded by the worst model obtained from a source domain that is least
similar to the target [56].

Further, contemporary methods try to align the output distributions by one
or more classifiers [35], while leaving the feature learning entirely handled by
CNNs. However one main drawback of CNNs is its lack of regularisation in
learning generalised and transferable features [39]. For example, CNNs are heav-
ily biased towards learning textures which may change dramatically across do-
mains, while neglecting object structural features such as shape that is often
more consistent [17]. For example in Figure 1, the Effiel Tower appears in vi-
sually diametrically different image styles but its shape remains consistent. The
situation becomes even worse when a distributional dissimilarity lies between
the training and the test data [38].

From our observations, the above issues are inherently caused by the same
fact which is the distributional uncertainty. The domain discrepancy in UDA
describes the distributional uncertainty between source and target. Single source
adaptation methods fail to consider the distributional uncertainty within the
source samples. The lack of regularisation in CNNs can be compensated by a
reduction in the distributional uncertainty of training data, such as providing
certain prior knowledge about the distribution.

In this paper, we propose to resolve the above issues by reducing distri-
butional uncertainty, combing Mutual Information Maximisation and Transfer-
able Feature Learning (abbreviated as MIMTFL). We formulate the estimation
of distributional uncertainty using Mutual Information (MI). During training,
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we calculate MI over each batch of samples to exam its uncertainty. We learn
to reduce the uncertainty by maximising MI between source and target, while
considering uncertainty within the source samples. We further leverage a self-
supervised transferable feature learning scheme by enforcing a balance between
texture and object shape features. According to the estimated uncertainty level,
the network learns to automatically balance texture and shape features for better
transferability.
In summary, we propose the following contributions:

{ A formulation to measure distributional uncertainty as a unified definition of
domain discrepancy. The proposed distributional uncertainty measurement
using mutual information is mathematically grounded, and generalise to not
only discrepancy between different domains, but also disagreement within
source.

{ A self-supervised transferable feature learning strategy that utilises MI to
automatically balance the learning of texture and shape features for better
generalisation.

{ Extensive results under various settings on two large-scale multi-domain
adaptation benchmarks with state-of-the-art performance to prove the ef-
fectiveness of the proposed method.

2 Related Work

2.1 Unsupervised Domain Adaptation

The main challenges in UDA come from two aspects. First, how to make the
source model transferable to the target in view of the distributional gap be-
tween the two. Secondly, how to make use of the unlabelled target samples. For
the first, learning a transferable representation for both the source and target
has attracted much attention. Methods including DDC [50], DAN [30] and JAN
[33] align the domains by minimising a domain discrepancy measurement be-
tween them. Domain adversarial learning [15,19] seems to be effective where the
gradients from a domain discriminator network trying to distinguish source and
target samples are reversed. It is also found that aligning the first, second and
even higher order moments of source and target distributions is helpful [47,43].

To use the unlabelled target samples, many semi-supervised learning tech-
niques are introduced into UDA algorithms. Pseudo-Labelling [28] and Label-
Propagation [58] are found to be useful to estimate the true labels of target
samples [5]. Another effective solution is the Mean-Teacher [48] model in which
an unsupervised consistency loss is enforced between a student model prediction
and a teacher model prediction [14].

2.2 Distributional Uncertainty

The study of distributional uncertainty spreads through various fields of science
and engineering. In control theory, researchers apply distributional uncertainty
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analysis to enhance robustness of controllers [34]. Evidence imprecision and un-
certainty modelling using fuzzy sets is shown critical in medical diagnosis [46].
Probabilistic machine learning values the representation and manipulation of
uncertainty in both data distributions and models, as it plays a central role in
scientific data analysis [18].

The connection between distributional uncertainty estimation and general-
isation has recently been uplifted significantly too. In modern deep learning,
explicit modelling of distributional uncertainty within the Bayesian framework
makes the network more robust to noisy data as well as achieving better general-
isation results on difficult computer vision tasks, such as semantic segmentation
and depth regression [24]. Kendall et al. [25] found that using uncertainty weight-
ing in multi-task learning allows effective simultaneous learning of various tasks,
which even outperforms individually learned models for each task. Uncertainty-
based reliability analysis in 3D vehicle detection from point cloud data brings
steady improvement in the model’s performance in adverse environment, such
as heavy occlusions, which is of great importance to promoting safe autonomous

driving [13]. Examples of benefits in generalisation can be found throughout a
variety of vision applications including optical flow estimation [22], people track-
ing in traffic scenes [2], so on and so forth.

2.3 Self-Supervised Visual Feature Learning

As a promising solution towards eliminating the need of costly human anno-
tations, self-supervised learning methods learn visual features from unlabelled
images on auxiliary tasks. The supervision signals for the auxiliary tasks are
usually automatically obtained without requiring any human labelling effort.
In other words, it absorbs advantages from supervised learning methods with
accurate labels, while saving the tedious labour for labelling.

So far, outstanding progress has been made in a wide range of vision tasks
with self-supervised visual feature learning. Zhang et al. [55] found learning to
colourise of de-coloured images eminently improve generalisation in the down-
stream recognition task. With an image inpainting auxiliary task, the network
captures not just appearance but also the semantics of visual structures [37].
Another popular method to learn structural features in an image is extracting
patches from it, and learning to predict their relative spatial locations, so-called
solving a jigsaw puzzle. The learned visual representation is seen to perform
incredibly well in object detection tasks [10], as well as effectively increasing
generalisation in standard Domain Generalisation tasks [4].

3 Methodology

We hereby introduce the details of MIMTFL, as illustrated in Figure 2. We first
elucidate the measurement of distributional uncertainty formulation using MI in
X3.1. Then move on to the MI-guided self-supervised learning of transferable
features including our proposed shape learning method, detailed in X3.2.
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Fig. 2. System pipeline: A reference shape is obtained for all the samples using an edge
detector in advance. During training, both the source and the target sample batch are
fed to the backbone feature extractor CNN. A shape loss is calculated via comparing
the generated shape by the shape learner and reference shape for each sample. The
CNN extracted features are also fed into a mutual information measurement module,

to estimate both inter-domain and intra-domain distributional uncertainty for source

and target domain. The estimated uncertainty is then used to automatically weight
the shape loss. The overall objective consists of the classi er task loss on the labelled
source samples, and the weighted shape loss on all the samplesBest viewed in colour.

3.1 Distributional Uncertainty Measurement using Ml

Preliminaries.  For distributional uncertainty estimation, we are interested in
the problem: given two batches of samples, how can we know whether they follow
the same distribution? Speci cally, how can we measure the similarity between
them? In information theory, the measure of uncertainty on a distribution p(X)
is the entropy H of X [45] on the sample spacé&, given as:

X
H(X) = p(x)logp(x) =  E[logp(X)]: 1)

x2X

Uncertainty Measurement. Mutual Information measures the reduction in
uncertainty for one variable X given a known value of another variableY , which
is de ned by:

I(X;Y)= H(X) H(XjY): (2)

MI between X and Y can be calculated using the Kullback-Leibler(KL) diver-
gence [26] between the joint entropyH (X;Y ) and product of the two individual
entropy H(X)H (Y).

L(X5Y) = D (HOGY)JH(X)H(Y)): @)

We calculatel (X ;YY) between two batches of sampleX andY as the con dence
of them belonging to the same distribution using Eq. (3). Note that for a single
distribution p(X), ideally, the MI within its observations is the entropy itself:



6 Jian Gao et al.

I (X;X)= H(X). However, we need to re-evaluate the value to detect noise in
the samples, which indeed often exist in real-world. Therefore, to measure the
uncertainty within a distribution, we use the below formula:

(X;X) = Dke (HXGX)jH (X)H (X)): (4)

In practice, the higher the measured MI, the lower the distributional uncer-

tainty. During learning, we maximise the MI between source and target to reduce
the uncertainty and learn a more generalised model. Note that although there
is also possibility that the MI between distributions [1] can be learnt instead

of calculated, it cannot be directly applied here. Since this would require the
distributions to be known, while we have one of the distributions (the target)

unknown.

3.2 Transferable Feature Learning

MI-Guided Transferable Feature Learning. Geirhos et al. [17] found that
CNNs recognise objects mainly according to their texture, while overlooking
other structural features such as shape and edges. This texture bias is observed
repeatedly with di erent network architectures across di erent tasks [53,41]. To
increase model transferability, we need to reduce such bias by introducing ap-
propriately balanced learning of texture and other non-texture features. In tasks
where texture varies drastically across observations, learning of other transfer-
able features should be attenuated. Whilst if texture may serve as a generic
feature across di erent distributions, the learning of texture should not be di-
minished.

We propose to further utilise the distributional uncertainty measured by mu-
tual information in x3.1 as the controlling factor for transferable feature learning.
To be speci c, we adopt the below learning object:

Ltotal = Lcls(x)+ X Ltrans (X)+ Y Ltrans (Y); (5)

XXy YY),
SRS IR A3} ©

where Ly is the supervised classi cation loss on the labelled source samples
X and Lyans the auxiliary loss for explicit learning of non-texture transferable
features on both X and unlabelled target samplesy .

The weighting term x and v, decided by MI, dedicates to balance between
texture and non-texture feature learning. The intuition is that, when Ml is small
which indicates high distributional uncertainty, learning of more transferable
features can be bene cial. Whilst larger Ml manifests a successful transfer within
the network and thus alleviating the need for complementary features other than
texture.

The selection of a properLyans €an be exhaustive. One option is increasing
the texture diversity in the training data. For example, some involve comprehen-
sive pre-de ned image augmentations [54,9,7], some apply learned style transfer
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[17,29]. However, the improvement in their generalisation comes at the cost of
huge computations in retrieving the enormous potential sample space. Not to
mention that, diverse training samples are often required in the rst place to
learn appropriate augmentation/transformation methods.

Self-Supervised Visual Feature Learning. Since the requirement for exhaus-
tive annotations has been identi ed as a major bottleneck for deep learning, the
concept of self-supervised learning is proposed as a promising solution [10]. In
self-supervised learning, rich information in the input that may be ignored by
the designated task learner is further mined by an auxiliary task. And the auxil-
iary task can be trained without requiring any human labelling e ort. Examples

of such tasks are colourisation of de-coloured images [55,27], jigsaw puzzle [10,4]
and inpainting [37]. Empirical results using these auxiliary tasks are found help-
ful in regularising the learning procedure and notably improving generalisation
[20]. Hence, we propose to employ self-supervised learning methods to explicitly
enforce non-texture feature learning.

One thing to note for our selection of the auxiliary lossL ¢ans IS that, no labels
should be required for the unlabelled target sample®’. And this ts seamlessly
into the setting of self-supervised learning. In theory, the aforementioned tasks
should be compatible within our framework, where their corresponding learning
objectives can be the choice ol 44ns in our Ml-guided transferable feature
learning.

While most of these methods are proven e ective to regularise the network
learning to be less biased towards easy-to-t texture, none of them exploits
object shape explicitly. This is, however, contradictory to the way by which
human recognise visual objects. Neuroscience study [19] found that, training
human participants on recognising objects composed of certain object shapes
signi cantly improves their performance in recognising other di erent objects
containing the same shapes. Motivated by the fact that shape plays a vital role
in human's visual perception and recognition paradigm, we propose a new self-
supervised shape learning task to better mimic human vision using CNNs. Note
that our new shape learning method serves as one new potential candidate for
the choice ofLyans , @and is in parallel with the aforementioned ones.

Self-Supervised Object Shape Learning. The target of object shape learn-
ing is to embed object structural information into the un-constrained features
that the network learns. Learning object shape as a complementary feature is
advantageous not only because it is more interpretable. In the existence of sharp
change in texture and colour, recognition using object shape is more reliable as it
is often more consistent and independent of the frequent appearance variations.

Based on the principle that we would like to avoid requiring any extra la-
belling e ort in creating a reference shape for each training sample, we design
a self-supervised shape learning scheme by creating reference shapes using edge
detectors. Edge detection as a traditional low-level vision task has been studied
thoroughly with mature tools formulated. The overall object shape can be ob-
tained by running an edge detector on an image. Here, the target of our learning
is a set of shape-embedded generic features that can contribute to the visual
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