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In the following supplementary materials, we provide: additional discussions
of our method in the broader context of implicit generative models in Section A,
details about the datasets used in Section B, more implementation details in
Section C, more in-depth evaluation details and quantitative results in Section D,
and finally more visualizations in Section E.

A Further Discussion on Implicit Generative Models

A.1 Implicit Generative Models

Typical probabilistic models for motion forecasting define an explicit parameter-
ized output distribution over each actor n and trajectory waypoints across time
t, ynt . Examples are the methods proposed in [3, 5, 6], which parameterize their
output distribution as a mixture of Gaussians, which can be sampled efficiently
and provides a likelihood evaluation but assumes 1) independence across actors,
and 2) a particular shape of the output distribution. In contrast, implicit gener-
ative models define a output distribution pθ(Y ) implicitly by specifying a latent
distribution p(Z) from which we can sample, followed by a mapping fθ : Z → Y,
which we refer to as the decoder.

In particular, we can characterize the decoder in two ways:

1. via a specified and tractable conditional likelihood pθ(Y |Z). In this case,
many tools are available for inference and learning. Variational inference, and
in particular the variational auto-encoder (VAE) [12], is a common choice.

2. via a stochastic sampling procedure where p(Y |Z) is not specified. In this
case, likelihood-free inference methods are required for learning. Density es-
timation by comparison has been proposed [15] using either density ratio
(GAN) or density difference (MMD). These methods, however, are generally
more difficult to optimize.

In our model, we define fθ as a deterministic function (parameterized by a
graph neural network), since we wish the latent Z to capture all the uncertainty
in a scene and have Y be deterministic given Z. To sidestep the difficulty of
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likelihood-free inference, particularly in a complex model where we optimize
both perception and motion forecasting end-to-end, we make a mild assumption
to leverage variational inference for learning. In the following sections, we provide
a preliminary on variational inference before providing a detailed analysis of our
model and learning approach.

A.2 Variational Inference

The variational auto-encoder (VAE) [13] specifies a directed graphical model
with latent variables z and output variables y. Conditional variational auto-
encoder (CVAE) [19] extends this formulation to the conditional generative set-
ting, with additional input variables x. Now, for a given observation x, z is drawn
from the conditional prior distribution p(z|x) and output y is generated from
the distribution p(y|x, z).

The learning objective for the conditional generative model is maximizing
the conditional log likelihood log p(y|x). But since marginalizing over continu-
ous latent variables z is intractable, it is typical to apply the Stochastic Gradient
Variational Bayes (SGVB) framework and optimize the following evidence vari-
ational lower bound (ELBO) instead:

log p(y|x) ≥ Eqφ(z|x,y)[log pθ(y|x, z)]−KL(qφ(z|x, y)||pγ(z|x))

Here, qφ(z|x, y) is the learned approximate posterior, pγ(z|x) the learned ap-
proximate prior, and pθ(y|x, z) the learned decoder.

Followup works have proposed further modifications to this objective to en-
courage disentanglement, prevent posterior collapse, and improve training sta-
bility. In this work, we follow [9] in extending the ELBO objective with an
additional hyperparameter β:

LELBO = −Eqφ(z|x,y)[log pθ(y|x, z)] + βKL(qφ(z|x, y)||pγ(z|x))

A.3 Analysis of Our Method

We recall that to capture the joint distribution over all the actor trajectories
we employ a deterministic decoder Y = f(X,Z), letting the latent variable Z
capture all the stochasticity. Thus, instead of optimizing the likelihood based
reconstruction objective that appears in the ELBO, we opted for a Huber loss
on the trajectory waypoints. This choice can be interpreted as an assumption
of pθ(Y |X,Z) being a Gaussian/Laplacian with fixed diagonal covariance. For
simplicity, let’s assume our Huber loss is always active within the L2 segment,
but the following derivation could be easily done with a Laplacian as well. In
this view, we can further interpret β as the variance of the underlying Gaussian,
as follows:
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Lforecast = ||Y − YGT ||22 + βKL(qφ(Z|X,Y )||pγ(Z|X))

∝ 1

β
||Y − YGT ||22 +KL(qφ(Z|X,Y )||pγ(Z|X))

∝ Eqφ(Z|X,Y )

[
logN (YGT |fθ(X,Z),

β

2
I)

]
+KL(qφ(Z|X,Y )||pγ(Z|X))

To see this, recall the log likelihood of Gaussian with diagonal covariance:

logN (YGT |µ, σ2I) = − 1

2σ2

N∑
n=1

T∑
t=1

(ytn,GT − µt)2 − cσ

logN (YGT |µ, σ2I =
β

2
I) = − 1

β

N∑
n=1

T∑
t=1

(ytn,GT − µt)2 − cσ

where cσ can be neglected since it is constant relative to µ, and thus does not
contribute to its gradient.

Empirically we found β = 0.05 to yield the best results. Under the inter-
pretation above, this would translate into using a fixed variance of 2.5cm while
learning our model. We note that this is extremely small in the context of mo-
tion forecasts (where vehicles can easily travel 50 meters in 5 seconds), and thus
consistent with our goal of approximating Y as a deterministic mapping from X
and Z, letting Z capture (nearly) all the uncertainty at a scene level.

B Datasets

We benchmark our approach on two datasets: ATG4D [23] and nuScenes [2].
This allow us to test the effectiveness of our approach in two vehicle platforms
with different LiDAR sensors and maps, driving in multiple cities across the
world.

ATG4D Our dataset contains more than one million frames collected over sev-
eral cities in North America with a 64-beam, roof-mounted LiDAR. Our labels
are very precise 3D bounding box tracks with a maximum distance from the
self-driving vehicle of 100 meters. There are 6500 snippets in total, each 25 sec-
onds long. In each city, we have access to high definition maps capturing the
geometry and the topology of each road network. Following previous works in
joint perception and motion forecasting [3, 4, 14] we consider a rectangular re-
gion centered around the self-driving vehicle that spans 144 meters along the
direction of its heading and 80 meters across. In these experiments, the model is
given one second of LiDAR history and has to predict 5 seconds into the future.

nuScenes This dataset consists of 1,000 snippets of 20 seconds each, collected
in Boston and Singapore (right-side vs. left-side driving). Their 32-beam LiDAR
captures a sparser point cloud than the one in ATG4D, making object detection
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more challenging. High definition maps are also provided. We use the evaluation
setup proposed in their perception benchmark, where the previous 10 LiDAR
sweeps (0.5 seconds) are fed to the model, and the region of interest is a circle
of 50 meters radius around the SDV. The prediction horizon is 5 seconds.

C Implementation Details

In this section, first we provide implementation details about each component in
our joint perception and motion forecasting model. We then discuss the required
adaptations for the baselines.

C.1 ILVM Details

LiDAR Pointcloud Parameterization: Following [23], we use a voxelized
representation of the 3D LiDAR point cloud in Bird’s Eye View (BEV) as
the main input to our model. As in its follow-up work [22], we normalize the
height dimension with dense ground-height information provided by HD maps
for ATG4D dataset only (nuScenes does not provide this information). To
exploit motion cues, we leverage multiple LiDAR sweeps by compensating the
ego-motion (i.e. projecting the past sweeps to the coordinate frame of the current
sweep), as proposed by [14]. Following [4], we ravel the height and time dimension
into the channel dimension, to use 2D convolution to process spatial-temporal
information efficiently. The final representation is a 3D occupancy tensor of di-
mensions ( L

∆L ,
W
∆W , H·T

∆H·∆T ). Here, L = 144, W = 80, and H = 5 are the spatial
dimensions in meters. ∆L = ∆W = ∆H = 0.2 m/pixel are the resolutions for
the spatial dimensions, T = 5 seconds is the prediction horizon, and ∆T = 0.5
seconds/time-step is the time resolution.

High-Definition Maps Parameterization: We use a rasterized map repre-
sentation encoding traffic elements such as intersections, lanes, roads, and traffic
lights. Elements with different semantics are encoded into different channels in
the raster, as proposed by [4].

The map elements we rasterize are the following: drivable surface polygons,
road polygons, intersection polygons, vehicle lane polygons going straight, ded-
icated left and right vehicle lane polygons, dedicated bike lane polygons, ded-
icated bus lane polygons, centerline markers for all lanes, lane dividers for all
lanes with semantics (allowed to cross, not allowed to cross, might be allowed
to cross). This gives us a total of 13 different map channels combining these
elements.

Shared Perception Backbone: We use a lightweight backbone network adapted
from [23] for feature extraction. In particular, we instantiate two separate streams
such that the voxelized LiDAR and rasterized map are processed separately first.
The resulting features from both streams are then concatenated feature-wise
since they share the same spatial resolution, and finally fused by a convolutional
header. Our LiDAR backbone uses 2, 2, 3, and 6 layers in its 4 residual blocks.
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The convolutions in the residual blocks of our LiDAR backbone have 32, 64,
128 and 256 filters with a stride of 1, 2, 2, 2 respectively. The backbone that
processes the high-definition maps uses 2, 2, 3, and 3 layers in its 4 residual
blocks. The convolutions in the residual blocks of our map backbone have 16,
32, 64 and 128 filters with a stride of 1, 2, 2, 2 respectively. For both back-
bones, the final feature map is a multi-resolution concatenation of the outputs
of each residual block, as explained in [7]. This gives us 4x down-sampled fea-
tures with respect to the input. The header network consists of 4 convolution
layers with 256 filters per layer. We use GroupNorm [21] because of our small
batch size (number of frames) per GPU. These extracted features inform both
the downstream detection and motion forecasting networks, explained next.

Object Detection: We use two convolutional layers to output a classification
(i.e. confidence) score and a bounding box for each anchor location following
the output parameterization proposed in [23], which are finally reduced to the
final set of candidates by applying non-maximal suppression (NMS) with an IoU
of 0.1, and finally thresholding low probability detections (given by the desired
common recall).

Actor Feature Extraction: To arrive at the final actor level features xn,
we apply rotated ROI Align [10] to extract fixed size spatial feature maps for
bounding boxes with arbitrary shapes and rotations from our global feature
map extracted by the backbone. We pool a region around each actor in its frame
with an axis defined by the actor’s centroid orientation. The region in BEV space
spans for 10m backwards, 70m in front, and 40m to both sides of the actor. After
applying the rotated ROI Align operator, we get a feature map for each actor of
size 40 x 40 x 256. We then apply a 4-layer down-sampling convolutional network
followed by max-pooling along the spatial dimensions to reduce the feature map
to a 512-dimensional feature vector per actor. The convolutional network uses a
dilation factor of 2 for the convolutional layers to enlarge the receptive field for
the per-actor features, which we found to be important. We use ReLU as the
non-linearity and GroupNorm for normalization.

Scene Interaction Module: Our scene interaction module is inspired by [3],
and is used in our Prior, Encoder, and Decoder networks. Our edge or message
function consists of a 3-layer MLP that takes as input the hidden states of the
2 terminal nodes at each edge in the graph at the previous propagation step as
well as the projected coordinates of their corresponding bounding boxes. We use
feature-wise max-pooling as our aggregate function in order to be more robust to
changes in the graph topology between training and inference, since at training
we use the ground-truth bounding boxes but at inference employ the detected
bounding boxes. To update the hidden states we use a GRU cell. Finally, to
output the results from the graph propagations, we use a 2-layer MLP.

Motion Forecasting: The inference of our motion forecasting model is ex-
plained step-by-step in Algorithm 1. Our Priorγ and Encoderφ modules are both
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composed of 2 SIMs with different parameters, one that predicts the latent means
Zµ and one that predicts the latent sigmas Zσ. We use the same input, hidden,
and output dimension of 64 for these SIMs. To obtain the 64-dimensional input
H0 to the Priorγ SIMs, we use a 2-layer MLP to summarize the 512-dimensional
actor feature X. For Encoderφ, we use an additional 2-layer MLP to embed the
ground truth future trajectories YGT into a 64-dimensional embedding first, then
summarize the concatenated 576-dimensional vector into the 64-dimensional in-
put H0 to the SIMs. The Decoderθ is implemented with a single SIM, which takes
a 576-dimensional input H0 (i.e. direct concatenation of 512-dimensional actor
features X and 64-dimensional latent sample Zs), and outputs a 20-dimensional
vector Y s (i.e. 10 waypoints with (x, y) coordinates) for each actor. Although
we have described the algorithm as sequential over scenes 1 . . . S for clarity in
the algorithm, the sampling and decoding of all scenes can be done in parallel.

Algorithm 1 Motion Forecasting

Input: Actor features X =
{
x1, x2, · · · , xN

}
. BEV locations of object detections C ={

c0, c1, ..., cN
}

Number of scene samples to generate S.

Output: Scene trajectory samples in bird’s-eye-view space
{
Y 1, Y 2, · · · , Y S

}
, where

Y s =
{
ys1, y

s
2, ..., y

s
N

}
(N is the number of detected actors).

1:
{
Zµ, Zσ

}
← Priorγ(X,C) . Use SIM modules to output latent distribution

2: for s = 1, ..., S do . Run for all requested number of samples
3: Zs ∼ N

({
Zµ, Zσ · I

})
. Sample a scene latent from diagonal gaussian

4: Hs =
{

MLP(xn ⊕ zsn) : ∀n ∈ 1 . . . N
}

5: Y s = Decoderθ(H
s, C) . Use SIM module to decode trajectory sample

6: return
{
Y 1, Y 2, · · · , Y S

}

Optimization Details: We use the Adam optimizer [11] with an initial learning
rate of 1.25e-5 and no weight decay. To weigh the multi-task objective, we use
[α, λ, β] = [0.1, 0.5, 0.05]. We follow [8] in using a cyclic annealing schedule for
β. More specifically, we perform warmup for 40k steps in 10k step cycles.

C.2 Baseline Details

Here we provide the implementation details behind how we updated our baseline
models to meet our perception and prediction setting. There are basically two
options for comparison:

(a) use an off-the-shelf detector and tracker to provide past trajectories, or
(b) replace their past trajectory encoders by our backbone and per actor feature

extraction.

SpAGNN [3] showed that (a) using an off-the-shelf tracker (Unscented Kalman
Filter + Hungarian matching) results in much worse performance than option
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(b), so we stick to the latter for a fair comparison where all methods use the
same architecture to extract actor features X from sensor data, which is trained
end-to-end with the motion forecasting module for each baseline.

Explicit Marginal Likelihood Models: SpAGNN [3] was originally proposed
in the joint perception and prediction setting and therefore does not require
any adaptation. We adapt MTP [6] and MultiPath [5] to use our backbone
network, object detection and per actor feature extraction and then apply their
proposed mixture of trajectories output parameterization, where each way-point
is a gaussian.

A detail worth noting is that these baselines do not propose a way to get
temporally consistent samples, since the gaussians are independent across time
(the models are not auto-regressive). Thus, we introduce a heuristic sampler to
get temporally consistent samples from this model. The sampled trajectories are
extracted using the re-parameterization trick for a bi-variate normal:

ysn,t = µn,t +An,t · εsn

where the model predicts a normal distribution N
(
ysn,t|µn,t, Σn,t

)
per waypoint

t, (An,t)
T · An,t = Σn,t is the cholesky decomposition of the covariance matrix,

and εsn ∼ N (0, I) is the noise sampled from a standard bi-variate normal dis-
tribution. Note that the noise εsn is constant across time t for a given sample
s and actor n. Intuitively, having a constant noise across time steps allows us
to sample waypoints whose relative location with respect to its predicted mean
and covariance is constant across time (i.e. translated by the predicted mean
and scaled by the predicted covariance per time).

Autoregressive Models While many papers that utilize auto-regressive mod-
els [16,17,20] use fully observed states as dynamic inputs, we extend these models
to the joint detection and motion forecasting task. For all auto-regressive mod-
els, we use the detection backbone and the actor feature extraction modules that
we use for all models, including ours.

Due to the compounding error problem [18] found in auto-regressive models,
we had to make some adjustments to the training procedure to account for the
noise in the t−1 conditioning space. Typically during training for auto-regressive
models, a one-step prediction distribution given the previous ground-truth value
p (yt+1|x, yt,GT ) is learned. This can cause a catastrophic mismatch between the
input distribution that the model sees during training and that it sees during
inference. To help simulate the noise it sees during inference, we add gaussian
noise to the conditioning state ỹ = yGT +ε where ε ∼ N (0, I · α). The parameter
α defines to the amount of noise we expect in meters between time-steps (we
use a value of 0.2m in our experiments.) We note that we also tried scheduled
sampling [1], but adding white noise worked better.

For ESP [17], we extended our R2P2-MA implementation with the ”whisker”
indexing technique to get added context into the feature map at the location



8 S. Casas, C. Gulino, S. Suo, R. Liao, K. Luo, R. Urtasun

Fig. 1: Precision-Recall curve at IoU 0.5 and 0.7. Legend shows mAP (mean
Average Precision) for each model. Note: horizontal axis starts at 0.7 recall.

of the conditioning state ỹt. Due to memory constraints, we had to limit the
radii of the whiskers to [1m, 2m, 4m] while keeping the seven angle bins. We
also reproduced the social context conditions but with a minor modification.
While the original paper specified a fixed number of actors, we used k-nearest
neighbors to select a set amount of M = 4 neighbors to gather social features and
model the distribution p (yn,t+1|x, yn,t, y1,t, y2,t, · · · , yM,t). Lastly, We note that
the originally proposed SocialLSTM and NRI do not leverage any sensor or map
data, but since we share the feature extraction architecture for all models, their
adaptations do have access to these cues making their methods more powerful
than originally proposed.

D Additional Evaluation Details and Results

In this section, we present additional evaluation details and quantitative results
on detection and motion forecasting.

D.1 Detection

Fig. 1 shows that our model achieves the best detection performance at both
IoU thresholds. Since all models have the same backbone and detection header,
we conjecture that our learning objective eases the joint optimization of both
detection and motion forecasting.
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D.2 Motion Forecasting

For ATG4D experiments, we operate the object detector at a 90% common
recall point. In nuScenes experiments, we operate the object detector at an
80% common recall point, since detection is more challenging in this dataset
due to the sparser 32-beam LiDAR sensor (as opposed to 64-beam in ATG4D).

Ground truth distribution Prediction

Accurate model Low precision, high recall High precision, low recall

Fig. 2: Diversity vs. Precision for an individual actor

Diversity vs. Precision in multimodal prediction Fig. 2 showcases three
different predictions that exhibit different qualities, which we use to illustrate
the language used throughout the paper. On the left we show an accurate model
that can nicely capture the bimodal distribution due to the branching map
topology. On the middle, a prediction model predicts high diversity samples
(high recall), but has low precision as it predicts unrealistic samples that are out
of distribution. On the right, we show a high-precision prediction, meaning that
all the samples are within the true data distribution, but low recall or diversity,
meaning that it misses some modes of the ground-truth distribution.

Ground-truth Predicted Scene 3Predicted Scene 2 minFDE minSFDEPredicted Scene 1

Fig. 3: Coverage metrics: actor-level (minFDE) vs. scene-level (minSFDE). The
first column shows the groun-truth trajectories, the next 3 are possible futures
predicted by the model, the last 2 show the trajectory samples selected by each
metric (which are different), as well as their error (red arrows).
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Actor-level vs. Scene-level metrics Fig. 3 motivates the need for scene-level
metrics to evaluate the characterization of the joint distribution over actors.
In particular, minFDE (actor-level minimum displacement error) will take the
minimum error trajectory for each actor regardless of which scene prediction it
belongs to. In contrast, minSFDE (our proposed scene-level counterpart) takes
the trajectories from the predicted scene with less average error across vehicles,
thus selecting the scene that is most consistent with the ground-truth as a whole.

Scene Consistency – Sample Collisions Here, we demonstrate that our
models produce scene-level samples that are more socially consistent regardless
of which recall point we operate our object detector. Figure 4 shows our Scene
Collision Rate (SCR) at different detection recall points (also known as operating
point). As the recall point is chosen to be higher and higher there are more low
probability actors in the scene which greatly increases the chances of a predicted
collision, as expected. When analyzing the results, it is clear that just sharing
social features as [3] does is not enough to create scene consistent samples.
Models that do joint sampling such as ILVM and ESP [17] do markedly better
on this measure. Interestingly, ILVM barely sees an increase in the amount of
collisions as recall increases, which shows that our model is able to generate
scene consistent samples no matter the complexity of the scene.

Fig. 4: ILVM models social interaction consistently well at different recall levels.

Sample Quality – Cumulative Hit Rate: So far in the motion forecasting
literature, actor-level precision (meanFDE) and recall (minFDE) metrics of the
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trajectory samples have been proposed, but no attempt has been made to com-
bine them in a single metric, despite the fact that the previous metrics have
evident drawbacks. For instance, meanFDE disregards the fact that multiple
plausible futures could be very far apart and overly penalizes multi-modality,
while a low minFDE can be achieved by just predicting fanned out distributions
that cover big spaces. Here, we propose to use a cumulative Hit Rate curve,
where the horizontal axis corresponds to the L2 error threshold, and the vertical
axis to the percentage of samples that fall under such error. Moreover, we extend
this notion to also capture failures in the object detector, by considering that
false positive and false negative detections always have error higher than the
threshold, thus obtaining a holistic metric for joint perception and prediction.
We now define this metric mathematically. We use ŷ to denote the ground truth
future yGT .

Hit Rate (y, ŷ, t, ε) =
1

NS

N∑
n=1

S∑
s=1

Hit
(
yt,sn , ŷtn, y

0
n, ŷ

0
n, ε
)

Hit
(
yt,sn , ŷtn, y

0
n, ŷ

0
n, ε
)

=

{
1 if IoU

(
y0n, ŷ

0
n

)
> 0.5 and ||yt,sn − ŷtn||2 < ε

0 otherwise

Thus Hit Rate finds the percentage of samples that are true positive detec-
tions and have an L2 error below a threshold ε. We sweep ε values of 0.0m to
5.0m to get the broader curve which gives us the distribution on how likely each
model is to get a detection and sample close to the ground-truth. We do not
compute the metric above 5 meter error since we consider that to always be a
bad sample or ”miss”. Fig. 5 shows that Our ILVM significantly outperforms all
baselines in cumulative hit rate across across all time steps.

Fig. 5: ILVM obtains the best hit rate at all time-steps in the prediction horizon.
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Sample Quality – Breakdown We define Along-Track and Cross-Track dis-
tance as the longitudinal and lateral distance after projecting motion forecasts
into the ground-truth actor trajectory coordinate. This breakdown is important,
since lateral error is semantically more significant than longitudinal error for the
downstream task of ego-motion planning.

Fig. 6 provides an in-depth analysis of the sample quality of our motion fore-
casts by examining the error breakdown between Along-Track and Cross-Track.
Furthermore, we highlight the robustness of our model in recovering ground-
truth scenes when given different number of samples.

The results showcase that model rankings may not be consistent in the break-
down of Along-Track vs. Cross-Track. In particular, we find the main contributor
to ILVM’s advantage is better Along-Track forecast, while having equal or bet-
ter Cross-Track. This implies that our model is able to better estimate overall
current and future velocity of the actors while having the same precision on their
path as ESP, and significantly better than the other baselines.

Fig. 6: Our ILVM outperforms more significantly in along track error than cross
track error for both scene-level minADE and minFDE metrics.
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Sample Quality – Precision Diversity Tradeoff In Fig. 7, we showcase the
progression of scene-level sample quality metrics of Our ILVM during training.
While the precision metric (meanSFDE) continues to improve past 50k itera-
tions, the diversity metric (minSFDE) reaches its optimum. This sheds light
on the inherent tradeoff between the diversity and precision aspect of sample
quality measure, particularly when we only have access to a single ground truth
realization of the multiple plausible futures.

Fig. 7: Tradeoff between minSFDE and meanSFDE as model training progresses.
Note that the minSFDE curve follows the y-axis on the left, and the meanSFDE
curve follows the y-axis on the right.

Ablation – KL Term We include an analysis of how the beta weight on the
KL term trades off diversity and precision in Fig. 1.

β SCR5s (%) min SFDE
(m)

min SADE
(m)

mean SFDE
(m)

mean SADE
(m)

0.01 1.41 1.70 0.84 2.58 1.17
0.03 0.89 1.59 0.79 2.37 1.06
0.05 0.70 1.53 0.76 2.27 1.02
0.5 0.64 1.85 0.85 1.90 0.86
1 0.64 1.87 0.87 1.95 0.88

Table 1: [ATG4D] KL loss ablation study

We observe that:

1. High beta: model loses multimodality and predicts a single future without
variance. Low recall (minSADE) and high precision (meanSADE, collision).
High KL loss constrains the posterior to be close to the prior, thus limiting
the flexibility to encode useful information.
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2. Low beta: model produces very high entropy distributions that try to cover
all possible futures at the expense of producing unrealistic samples. High
recall (minSADE) and low precision (meanSADE, collision). Low KL loss
allows the posterior to diverge from the prior, which creates a gap between
training and inference. Then at inference, the decoder struggles to interpret
latent samples from the prior distribution, which it’s not trained on.

E Additional Visualizations

Scene Consistency: In Figure 8, 9, 10, 11 we showcase the scene consistency
of the samples generated from our model. For these visualizations, each row
corresponds to a model, and we show 2 scene-level samples for each model to
characterize the joint distribution.

More concretely, we show the two most distinct samples by averaging the
pairwise Euclidean distance between all samples. We empirically find that this
selection methodology yields representative samples and insight into how well
the models learn scene-level social interaction between agents.

Latent Space Interpolation: In Figs. 12 and 13, we take the 2 most distinct
samples as in the previous scene sample visualizations, and show the resulting
futures when performing linear interpolation in the latent space. We show that
the interpolated latent points still produce semantically meaningful trajectories
for all the actors in the scene, and capture scene level variations including multi-
agent interactions. More precisely, Z1 and Z2 are the latent samples that map
into the most distinct futures out of 50. The rows in between correspond to
the linear interpolation of the latent space, and different columns to different
scenarios.

Overall Sample Quality: In Figs. 14, 15, 16, we show additional qualitative
results for motion forecasting, comparing our method to the baselines in a wide
range of urban scenarios, one per column. We blend 50 scene sample trajectories
with transparency. Time is encoded in the rainbow color map ranging from
red (0s) to pink (5s). This can be seen as a sample-based characterization of the
per-actor marginal distributions. We can see that our method generally produces
more accurate and less entropic distributions that better understand the map
topology and multi-agent interactions.

Ego-motion Planning: In Figs. 18, 17, 19, we show qualitative comparison
between ego-motion planning open-loop results when using motion forecast from
some of the strongest baselines and our model. Open-loop means that the SDV
acts as if it does not receive new sensor information for the future horizon of 5
seconds, and thus needs to rely completely on the motion forecasts at the start of
these scenarios. Thus, many of the collisions on these results could be potentially



Implicit Latent Variable Model for Scene-Consistent Motion Forecasting 15

avoided by obtaining more accurate information in subsequent time steps and
re-planning, but closed-loop experiments are out of scope of this paper.

The predicted bounding box samples into the future for other traffic par-
ticipants are shown in yellow. The ground-truth future trajectories are shown
in white if not in collision with the ground-truth SDV trajectory (shown as an
empty black box) and in red if colliding with the SDV plan. Overall, we can see
how ego-vehicle harmful events are avoided with more precise motion forecasts
from our model. In particular, we observe that the main reason the baseline
motion forecasting models tend to cause more collisions than our predictions is
because the entropy of their distributions is too high, leaving the motion planner
no space to plan a safe trajectory.
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Fig. 8: Scene-level samples. Our latent variable model captures complex in-
teractions at intersections. In this example, the car facing south will yield/go if
the car facing west goes straight/turns right, respectively. The baselines do not
capture this complex interaction, and most show inconsistent (colliding) samples
for the 2 highlighted actors.
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Fig. 9: Scene-level samples. Our latent variable model captures the different
scene outcomes for possible states of a given traffic light intersection (vertical
vs. horizontal traffic).
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Fig. 10: Scene-level samples. Our latent variable model captures whether the
bus will proceed with the right turn, or the left-turning vehicle will.
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Fig. 11: Scene-level samples. Our latent variable model captures multiple re-
alistic futures (including lane changes) that respect the map geometries and are
dynamically feasible.
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Scenario 1 Scenario 2 Scenario 3

Z1

Z2

Fig. 12: Latent space interpolation: Scenario 1 showcases a complex inter-
action between 3 vehicles: when the 2 vehicles in the road predict turning or
slow moving trajectories, the third vehicle pulls out of the driveway, and when
the 2 vehicles in the road keep constant velocity to go straight, the vehicle in
the driveway yields. Scenario 2 turning vs. going straight behavior with smooth
transitions. Scenario 3 we can see how the speed of 2 cars that follow each other
vary consistently.
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Scenario 4 Scenario 5 Scenario 6

Z1

Z2

Fig. 13: Latent space interpolation: Scenario 4 and Scenario 5 showcase
smooth transitions between different speed profiles when turning and going
straight at an intersection. Scenario 6 we can see all the range of possibilities
from a left-turn to a u-turn, which is a pretty rare event.
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Fig. 14: Overall Sample Quality: Scenario 1 showcases a T-intersection with
fast-moving turns. Scenario 2 is interesting because there is a vehicle coming out
of a parking spot, which is not very frequent in driving logs. Scenario 3 captures
a vehicle maneuvering into a parking spot, also an unusual event.
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Scenario 4 Scenario 5 Scenario 6
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Fig. 15: Overall Sample Quality: Scenario 4 showcases a complex interac-
tion between 3 vehicles at a 4-way intersection, where our model identifies sharp
”modes”. However, like all other baselines, it misses (or predicts with very low
probability) the true mode of the vehicle facing south and left-turning. Scenario
5 showcases fast moving traffic, where our model can predict an accurate distri-
bution with very low entropy even at 5 seconds into the future. Scenario 6 Our
model captures a vehicle performing a U-turn.
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Scenario 7 Scenario 8 Scenario 9
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Fig. 16: Overall Sample Quality: We highlighted the accuracy and sharpness
of our predictions in Scenarios 7, 8 and 9.
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Fig. 17: In this scenario, both MultiPath and ESP generate motion forecasts that
get into the SDV lane, forcing it to lane change to its right, where it collides
with an actual vehicle that is lane changing from behind the SDV and is not
well captured by the prediction models, including ours.
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Fig. 18: In this scenario, the 3 models generate pulling out trajectories for a big
vehicle, forcing the SDV to maneuver to an unoccupied region. However, ILVM
captures well the distribution of the rest of the actors and the SDV performs
a safe left lane change. However, in ESP and MultiPath the trajectory of the
vehicle to the left is not well captured and the SDV proceeds too aggressively,
resulting in a collision.
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Fig. 19: ESP predicts that the vehicle that starts at the right of the SDV is going
to cut-off the SDV by lane changing left, causing the SDV to hard break and
causing a collision with the vehicle behind. MultiPath and ILVM successfully
drive through the scenario, even though we can see how MultiPath’s prediction
go even into opposite traffic, but luckily do not interfere the SDV.
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