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In the following, we provide additional details and analysis that was not
included in the main paper due to limited space. We first provide more imple-
mentation details, followed by a novel evaluation protocol that reveals insightful
statistics about the data and the state of the art performance. We finally provide
more qualitative examples to showcase what our commonsense model learns.

1 Implementation Details

We have three training stages: perception, commonsense, and joint fine-tuning.
We train the perception model by closely following the implementation details
of each method we adopt [2, 3, 1], with the exception that for IMP [2], we use
the implementation by Zellers et al. [3], because it performs much better. We
separately train the commonsense model (GLAT) once, independent of the per-
ception model, as we described in the main paper. Then we stack GLAT on top
of each perception model and perform fine-tuning, without the fusion module.
Finally, we add the fusion model for inference.

Our GLAT implementation has 6 layers each with 8 attention heads, each
with 300-D representations. We train it with a 30% masking rate on Visual
Genome (VG) training scene graphs, using an Adam optimizer with a learning
rate of 0.0001, for 100 epochs. To stack the trained GLAT model on top of a
perception model, we take the scene graph output of the perception model for
a given image, keep the top 100 most confident triplets and remove the rest,
and represent each remaining entity and predicate with a one-hot vector that
specifies the top-1 predicted class. We intentionally discard the class distribution
predicted by the perception model, to let the commonsense model reason inde-
pendently in an abstract, symbolic space. Perception confidence is later taken
into account by our fusion module.

The resulting one-hot graph is represented in the same way as a VG graph,
that we have pretrained GLAT on, and is fed into GLAT without masking any
node. The GLAT decoder predicts new classes for each node, and new edges,
but we ignore the new edges and keep the structure fixed. Hence, the output
of GLAT looks like the output of the perception model with the exception that
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Table 1. Performance comparison in various levels of triplet frequency, in terms of
R@100 (%) for SGCls. # and % stand for absolute and relative frequency respectively.

Statistic/Method Frequency Bins Average

# instances in train data 1-3 4-9 10-27 28-81 82-243 243-369 -
# unique triplets in bin 86247 21994 4937 766 89 4 -
% unique triplets in bin 75.6 19.3 4.3 0.7 0.1 0.00004 -
Total % of test data 14.7 21.0 28.0 22.5 10.6 3.1 -

IMP [2] 13.2 23.0 34.8 45.7 58.2 78.2 36.1
IMP + GLAT 13.2 23.0 34.8 45.9 58.5 78.7 37.0
IMP + GLAT + Fusion 13.3 23.1 35.0 46.2 58.7 79.2 37.4

SNM [3] 15.0 24.8 36.6 48.4 58.4 74.9 37.8
SNM + GLAT 15.1 24.8 36.6 49.0 58.4 75.2 37.9
SNM + GLAT + Fusion 15.1 24.8 36.7 49.5 58.5 75.3 38.0

KERN [1] 16.7 26.2 37.5 48.4 59.6 77.1 38.8
KERN + GLAT 16.7 26.6 37.5 48.4 59.6 77.6 38.8
KERN + GLAT + Fusion 16.7 26.8 37.5 48.5 59.7 78.1 38.8

the classification logits of each node are changed. We perform 25 epochs of fine-
tuning with 0.00001 learning rate and Adam, using the same entity and predicate
loss that is typically used to train SGG models [1].

2 Quantitative Evaluation

Here we revisit the conventional evaluation process in the SGG literature, an-
alyze its limitations, and provide an alternative to use in future work. Xu et
al. [2] originally used overall recall (R@50 and R@100), which means for each
image, they get the top 50 (or 100) triplets predicted by their model, compare
to the ground truth triplets of that image, compute recall (number of matched
triplets divided by the number of ground truth triplets), and average over all
images. Later Chen et al. [1] revealed that since ground truth triplets in Visual
Genome (both in train and test splits) have highly disproportional statistics,
overall recall does not necessarily measure the usefulness of the model. In fact,
a simple heuristic that always predicts the most frequent relationship for each
pair of object classes, based on a fixed lookup table computed over training data
(frequency baseline in [3]), performs not much worse than the state of the art of
that time, MotifNet [3].

Chen et al. [1] proposed an alternative metric, mean recall (mR@50 and
mR@100), in which ground truth triplets are divided into 50 bins, based on
their predicate type, the recall is computed for each bin separately, averaged
over images, and then averaged over the 50 bins. This way, frequent predicates
do not dominate the performance, and simplistic models are not praised for
merely picking up bias.

Nevertheless, mean recall does not completely solve the imbalance problem,
since even within each bin (predicate type), some compositions are much more
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common than others. For instance, since VG has a focus on sports, the triplet
person holding racket dominates the bin holding, while person holding

cellphone has much lower frequency, although intuitively more common in real
world. Instead of dividing triplets based on their predicate type, we propose to
divide them based on the frequency of each triplet in training data, which highly
correlates with the frequency in test data as well. This way, each bin consists
of triplets with roughly the same frequency, and no triplet can dominate others.
After computing recall for each bin, we also report the average over bins, which
can be seen as a triplet-balanced version of mean recall. Using trial and error,
we found the best strategy is to divide bins in logarithmic scale, using powers of
3. This way we will not have too few or not too many bins.

Table 1 shows the statistics of each bin in our proposed evaluation setting.
Despite the logarithmic scale, we still observe a significant imbalance in the
dataset. Specifically, our first bin consists of the rarest triplets, which only appear
between 1 and 3 times in training data, and comprise 14.7% of all triplets in the
test set of VG, 75.6% if we count each unique triplet only once. The state of
the art [1] only achieves 16.7% recall on that significant portion of data, while
achieves 77.1% recall on the last bin (4 most frequent triplets, 3.1% of the test
set and 0.00004% of unique triplets). This strong disproportion suggests how
conventional methods over-invest on few unimportant triplets, at the expense
of a large portion of (rare but plausible) real-world situations. Accordingly, we
believe our new evaluation metric would encourage further research aiming to
close the gap.

3 Qualitative Results

To provide more diverse cases of commonsense learned by our model, Figure 1
shows additional examples of corrections made by our GLAT model to perceived
scene graphs. In example (a), the perception model mistakes the giraffe’s head
for a dog, but our commonsense model corrects that since head of giraffe

makes more sense than dog of giraffe. The fusion module correctly prefers
the output of the commonsense model, due to its higher confidence. In (b),
the perception model mistakes the train for an engine, possibly due to the
abnormal color palette. Our commonsense model corrects that since wheel more
likely belongs to a train. In (c), the vase has an unusual shape, and is mistaken
for a glass by the perception model, also because it is made of glass, but the
commonsense model takes into account the fact that the “glass” is holding a
flower, which is what vases do. Moreover, in (d), the pizza is visually on the
cardboard, but technically in the box. We, humans, know the latter based on
our past experience, and so does the proposed commonsense model.

In example (e), the man is holding the laptop and using it at the same
time. The perception model predicts holding because it is a more visual con-
cept, while the commonsense model predicts using which is more a abstract
concept, and in fact a more salient and important verb here. In (f), the im-
age is not very clear, and there is no visual distinction between the boy’s body
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Fig. 1. Example scene graphs generated by the perception, commonsense, and fusion
modules, merged into one graph. Entities are shown as rectangular nodes and predicates
are shown as directed edges from subject to object. For entities and predicates that are
identically classified by the perception and commonsense model, we simply show the
predicted label. But in cases where the perception and commonsense models disagree,
we show both of their predictions as well as the final output chosen by the fusion
module. We show mistakes in red, with the ground truth in parentheses.

parts and clothing. This makes it hard for the perception model to tell the boy

is wearing the pants but has the leg. The commonsense model is robust in
such scenarios because it does not rely on the image, but instead considers past
experience. Similarly, (g) makes it hard to distinguish man has arm from man

wearing shirt, since the bounding box of arm is highly overlapping with shirt,
and there is little visual distinction between their content. Hence, commonsense
has a crucial role in distinguishing their interactions by abstracting them into
symbolic concepts and ignoring their visual features. Finally, (h) is a rare case,
where the prediction of the commonsense model is wrong, while perception’s out-
put was already correct. More specifically, we miscorrect leg of bench to leg

on bench, because usually things are on benches in real world. This is while for
perception, it is obvious that the legs are not positioned on the bench. Inter-
estingly, Our fusion module prefers the perceived output this time, and rejects
the change made by the commonsense model.
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