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In this supplementary material we present training details in Section 1. In
Section 2 we repeat generative task evaluation results, this time including the
standard deviations for all the metrics. We provide additional samples for qual-
itative comparison of our DPF-Nets with l-GANs, AtlasNet, and PointFlow in
the sparse and dense autoencoding setups in Section 3. In Section 4 we show
multiple instances of generation for DPF-Nets and PointFlow. Further we show
additional latent shape space interpolation examples, and visualize point cloud
evolution across the flow for generative class specific models in sections 5 and 6.

1 Training Details

All the models were trained with AMSGrad optimizer [3] with decoupled weight
decay regularization [2] with step-like schedule for the learning rate. All the
hyperparameters for all the experiments can be found on the paper webpage
https://github.com/Regenerator/dpf-nets.

2 Detailed Generative Modeling Performance

In Table 1 we present the same evaluation as in Table 2 of the main paper, but
include the standard deviations across the ten sets of point clouds sampled from
each model.

3 Qualitative Results for Autoencoding

In Figure 1 and Figure 2 we show reconstruction results for l-GANs, AtlasNet,
PointFlow, and ours DPF-Net from sparse and dense input point clouds. All
the models used 512 and 32,768 points as a sparse or dense input accordingly.
Note, that AtlasNet, PointFlow and DPF-Net are able to reconstruct arbitrary
densely (32,768 points here), for l-GANs output size is fixed to 2,048.
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4 Qualitative Results for Generation

In figures 3—5 we provide additional samples from the models trained for the
Airplane, Car, and Chair classes. For each point cloud we sample 32, 768 points.

5 Additional interpolations

In figures 6—8 we provide latent space interpolations from the models trained
for the Airplane, Car, and Chair classes. We sample two shapes from the test
data (left- and right-most in the figures), and interpolate between corresponding
latent variable samples to obtain a path in the shape space. For each latent shape
on the path we then sample a point cloud of size 32, 768.

6 Additional flow illustrations

In figures 9—11 we provide examples of the generating flow for sampled point
clouds from the classes Airplane, Car, and Chair. We sample a shape from data,
obtain initial Gaussian from the corresponding latent variable, sample 32, 768
points by the flow, and then visualize the evolution of the point cloud across the
initial Gaussian and layers 32, 48, 56, 60, 62, 63 of the generative flow network.
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Table 1: Generative modeling evaluation. JSD and MMD-EMD are multiplied
by 102, MMD-CD by 104. Cases where the oracle does not obtain best results
are underlined.

J
S

D
↓

M
M

D
↓

C
O

V
↑
,

%
1
-N

N
A
↓
,

%
C

a
teg

o
ry

M
o
d

el
C

D
E

M
D

C
D

E
M

D
C

D
E

M
D

l-G
A

N
-C

D
[1

]
2
.7

6
±

0
.1

6
5
.6
9
±

0
.0

4
5
.1

6
±

0
.0

2
3
9
.5
±

0
.8

1
7
.1
±

0
.6

7
2
.9
±

0
.8

9
2
.1
±

0
.6

l-G
A

N
-E

M
D

[1
]

1
.7

7
±

0
.1

3
6
.0

5
±

0
.0

4
4
.1
5
±

0
.0

2
3
9
.7
±

1
.4

4
0
.4
±

1
.2

7
5
.7
±

0
.6

7
3
.0
±

1
.2

A
irp

la
n

e
P

o
in

tF
low

[4
]

1
.4

2
±

0
.1

2
6
.0

5
±

0
.0

5
4
.3

2
±

0
.0

1
4
4
.7
±

1
.2

4
8
.4
±

1
.0

7
0
.9
±

1
.0

6
8
.4
±

1
.0

D
P

F
-N

ets
(O

u
rs)

0
.9
4
±

0
.1

1
6
.0

7
±

0
.0

4
4
.2

6
±

0
.0

2
4
6
.8
±

1
.2

4
8
.4
±

0
.9

7
0
.6
±

1
.0

6
7
.0
±

1
.2

O
ra

cle
0
.5

0
±

0
.0

4
5
.9

7
±

0
.0

9
3
.9

8
±

0
.0

1
5
1
.4
±

1
.0

5
2
.7
±

1
.3

4
9
.8
±

1
.3

4
8
.2
±

1
.1

l-G
A

N
-C

D
[1

]
2
.6

5
±

0
.0

7
8
.8
3
±

0
.0

6
5
.3

6
±

0
.0

1
4
1
.3
±

0
.8

1
5
.9
±

1
.3

6
2
.6
±

0
.6

9
2
.7
±

0
.4

l-G
A

N
-E

M
D

[1
]

1
.3

1
±

0
.1

0
9
.0
0
±

0
.0

8
4
.4
0
±

0
.0

1
3
8
.3
±

1
.2

3
2
.9
±

0
.7

6
5
.2
±

0
.4

6
3
.2
±

1
.0

C
a
r

P
o
in

tF
low

[4
]

0
.5

9
±

0
.0

2
9
.5

3
±

0
.0

6
4
.7

1
±

0
.0

1
4
2
.3
±

1
.0

3
5
.8
±

1
.3

7
0
.1
±

0
.9

7
4
.2
±

0
.6

D
P

F
-N

ets
(O

u
rs)

0
.4
5
±

0
.0

2
9
.5

9
±

0
.0

4
4
.6

1
±

0
.0

1
4
3
.4
±

0
.9

4
5
.8
±

1
.0

7
0
.3
±

0
.6

6
4
.3
±

1
.5

O
ra

cle
0
.3

7
±

0
.0

3
9
.2

4
±

0
.0

6
4
.5

6
±

0
.0

1
5
2
.8
±

1
.1

5
2
.7
±

0
.9

5
0
.9
±

1
.1

5
0
.5
±

1
.2

l-G
A

N
-C

D
[1

]
3
.6

5
±

0
.0

9
1
6
.6
6
±

0
.0

8
7
.9

1
±

0
.0

2
4
2
.3
±

0
.5

1
7
.1
±

0
.5

6
8
.5
±

0
.5

9
6
.5
±

0
.1

l-G
A

N
-E

M
D

[1
]

1
.2

7
±

0
.0

6
1
6
.7
8
±

0
.0

7
5
.7
5
±

0
.0

1
4
4
.3
±

0
.9

4
3
.8
±

1
.0

6
6
.6
±

0
.6

6
7
.8
±

0
.7

C
h

a
ir

P
o
in

tF
low

[4
]

1
.5

1
±

0
.1

1
1
7
.1

5
±

0
.1

0
6
.2

0
±

0
.0

1
4
3
.3
±

0
.8

4
6
.5
±

1
.0

6
7
.0
±

0
.3

7
0
.4
±

0
.6

D
P

F
-N

ets
(O

u
rs)

1
.0
1
±

0
.0

6
1
7
.0

8
±

0
.1

1
6
.1

4
±

0
.0

1
4
6
.9
±

0
.8

4
8
.5
±

1
.1

6
3
.5
±

1
.3

6
4
.8
±

0
.7

O
ra

cle
0
.4

9
±

0
.0

1
1
6
.3

9
±

0
.0

7
5
.7

1
±

0
.0

1
5
2
.8
±

0
.8

5
3
.4
±

1
.1

4
9
.7
±

0
.7

4
9
.6
±

0
.9



4 R. Klokov et al.

Fig. 1: Qualitative comparison in the autoencoding task with sparse inputs. Left
to right: reconstructions from l-GAN-CD, l-GAN-EMD, AtlasNet, PointFlow,
DPF-Nets (orig.), DPF-Nets (norm.), and ground-truth.
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Fig. 2: Qualitative comparison in the autoencoding task with dense inputs. Left
to right: reconstructions from l-GAN-CD, l-GAN-EMD, AtlasNet, PointFlow,
DPF-Nets (orig.), DPF-Nets (norm.), and ground-truth.
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Fig. 3: Random samples from models trained on the Airplane class. Columns
1—3 samples from PointFlow, columns 4—6 samples from DPF-Net.
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Fig. 4: Random samples from models trained on the Car class. Columns 1—3
samples from PointFlow, columns 4—6 samples from DPF-Net.
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Fig. 5: Random samples from models trained on the Chair class. Columns 1—3
samples from PointFlow, columns 4—6 samples from DPF-Net.
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Fig. 6: Interpolations between Airplane data samples.
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Fig. 7: Interpolations between Car data samples.
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Fig. 8: Interpolations between Chairs data samples.
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Fig. 9: Generating flow for sampled point clouds from the Airplane model.
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Fig. 10: Generating flow for sampled point clouds from the Car model.
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Fig. 11: Generating flow for sampled point clouds from the Chair model.
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