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Abstract. Deep learning has achieved remarkable success in many clas-
sification tasks because of its great power of representation learning for
complex data. However, it remains challenging when extending to clas-
sification tasks with millions of classes. Previous studies are focused on
solving this problem in a distributed fashion or using a sampling-based
approach to reduce the computational cost caused by the softmax layer.
However, these approaches still need high GPU memory in order to work
with large models and it is non-trivial to extend them to parallel settings.
To address these issues, we propose an e�cient training framework to
handle extreme classification tasks based on Random Projection. The
key idea is that we first train a slimmed model with a random projected
softmax classifier and then we recover it to the original version. We also
show a theoretical guarantee that this recovered classifier can approx-
imate the original classifier with a small error. Later, we extend our
framework to parallel scenarios by adopting a communication reduction
technique. In our experiment, we demonstrate that the proposed frame-
work is able to train deep learning models with millions of classes and
achieve above 10⇥ speedup compared to existing approaches.

Keywords: large-scale learning, deep learning, random projection, ac-
celeration in deep learning

1 Introduction

One of the biggest advantages of deep learning is to improve the capability of
modeling complex data over conventional approaches. In practice, deep learning
has achieved the state-of-the-art performance on various applications in com-
puter vision and natural language processing [12,8]. With the dramatic increase
of scale in data, extreme classification emerges as a challenging task. This leads
to some new challenges: (1) the extremely large model size, i.e., the model size
is dominated by softmax layer, which is proportional to the number of classes;
(2) the expensive cost to train such models. A widely used benchmark dataset,
ImageNet [19], contains only 1000 classes. However, for applications such as fa-
cial recognition and language modeling, the number of classes can easily reach
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Fig. 1. Illustrations of model size by varying the number of classes and the class distri-
bution of two facial datasets. Fig. 1 shows the size of model with full softmax increases
dramatically as the increase of number of classes compared to slimmed model with
projected softmax. Fig 2. reveals that facial datasets follow long-tailed distribution.

a million-scale, e.g., Megaface [18] and Google Billion Words [5]. To reduce the
cost of training, we utilize a well-known dimensionality reduction technique,
Random Projection, e.g., a high-dimensional feature x can be reduced to a low-
dimensional one through a random matrix R. To understand the idea behind
the random projection, the key result is built on Johnson-Lindenstrauss lemma
[2], which reveals that any high dimensional data can be mapped onto a lower-
dimensional space while the distance between data points is approximately per-
severed. Compared to other reduction methods. e.g., SVD, random projection
has a lower computational cost and thus it is being widely used in image and
text tasks [3]. We summarize the current progress of accelerating training for
extreme classification in the following section.

1.1 Naive Methods

Typically, a single machine is not enough to handle a large-scale task e�ciently
and therefore the most straightforward solution is to directly increase the number
of workers and distribute the task over these machines. As a result, it leads to an
immediate improvement of training e�ciency. For example, a distributed system
of 256 GPUs can train ResNet50 on ImageNet with batch size of 8192 in one
hour with a top1 validation accuracy of 75.7% [9]. Recently, it has been extended
to a larger system of 2176 Tesla V100 GPUs, which takes only 224 seconds for
training to achieve a similar performance [22]. Considering the trade-o↵ between
model precision and training e�ciency, mixed precision training [16] is another
solution to handle the large-scale tasks with a lower memory demand. The key
idea is to convert the model weights, activations and gradients to lower precision,
e.g., float16, during forward and backward pass, but a copy of weights in float32
are maintained during parameter updates. In addition, it is also possible to
distribute the computation process of softmax layer based on matrix partition
to multiple parallel workers in order to overcome the di�culty of training large
models on a large-scale dataset [7].
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1.2 Sampling-based Methods

In the applications of Natural Language Processing, there are two common ways
to tackle extreme classification: sampling-based and softmax-based approaches.
These works are generally inspired by an important fact, Zipf’s law, which tells
that there are a small number of vocabularies (classes) with high occurrence and
a very large number of vocabularies (classes) with low occurrence in the dataset.
This rule also applies to many facial datasets, e.g., Celeb and MegaFace as shown
in figure 1. For sampling-based methods, Zhang et al. [27] identified that only
1% ⇠ 2% classes are active during training on facial recognition task. Accord-
ingly, they proposed an algorithm dynamically selecting those active classes to
speed up the training. Their experiments show a significant reduction on GPU
memory cost and an improvement of training e�ciency. The key idea of softmax-
based approaches is to convert a multi-class task to a binary task by sampling a
small set of negative samples along with the positive sample according to Zipf’s
law, e.g., noise-contrastive estimation and sampled softmax [1,11]. In addition,
some works [10,18] indicate that pretraining on a small subset sampled from the
original dataset by class frequency is also a useful sampling-based strategy to
speed up model converge compared to training from scratch for large models.

1.3 Challenges

We summarize the existing challenges to tackle the extreme classification from
two perspectives as follows:

1. Memory limitations. As the increase of model size, the GPU memory de-
mand to train such model grows rapidly as illustrated in figure 1. Sampling-
based approaches can reduce this cost by computing sampled softmax scores,
but the model size remains unchanged. Although we can apply additional
compression techniques to reduce model size, it may also su↵er a performance
drop.

2. Communication limitations. To extend the training to parallel settings,
if we naively increase the number of workers in the system, the communi-
cation cost among these workers can be a new bottleneck for the training.
Unfortunately, the most existing approaches fail to consider this scenario
and are unlikely to be deployed in practice and obtain a linear speedup for
parallel training.

1.4 Our Contributions

The main contributions of our work to tackle the above issues are summarized
as follows:

1. We propose a two-stage algorithm to tackle extreme classification. We first
solve a slimmed problem with random projected softmax classifier to avoid
the heavy computational cost of original problem with full softmax and then
we recover the projected classifier to its original version.
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Fig. 2. The training framework of random projected softmax. In stage one, we reduce
full softmax to projected softmax to speed up the training. In the second stage, we
finetune the recovered softmax layer to further boost the performance.

2. We show a theoretical analysis that our recovered classifier can achieve a
relative small error compared to original classifier. In addition, we verify
that the embedding features extracted from the slimmed model are as good
as the features from the original model.

3. We present a feasible solution with communication reduction technique to
extend the proposed framework to parallel settings and we show a nearly
linear speed-up of our algorithm with respect to the number of workers as
well as much less communication cost.

4. We conduct a comprehensive empirical study to verify our algorithm on
di↵erent scales of datasets, and we also investigate the important factors
that may a↵ect the performance by various ablation studies.

2 Proposed Approach

In this section, we formally introduce our two-stage proposed framework as de-
scribed in Algorithm 1 and illustrated in Figure 2. At the first stage, we aim to
quickly solve the slimmed problem with random projected softmax layer to avoid
the heavy computational cost when the number of classes is large. At the second
stage, we propose a dual recovery approach to recover the projected softmax
classifier to its original version. In addition, we adopt a communication reduc-
tion technique to further accelerate the training in parallel settings. We present
the details of these approaches in the following sections.

2.1 Solving Problem with Projected Softmax Layer

Firstly, we formulate the slimmed problem as

min
z

L(z) =
nX

i=1

L(z;xi, yi), (1)

where L(z;xi, yi) is a loss function with a regularization term, (xi, yi) is a pair of
feature and label for a random sample i out of n samples, and z

⇤ is the solution
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Algorithm 1 A Two-stage framework for extreme classification
1: input: input X, Y , z0, and m

2: for s=1 to S do

3: zs =PSGD(zs�1, ⌘s, Ts, Is) {S is number of stages }
4: end for

5: Compute the dual solution b⇥ using zS by prop. 1,
6: b⇥ = (rLy1 (ô1) , . . . ,rLyn (ôn))

7: Compute recovered classifier fW 2 Rd⇥K by fW = � 1
n�X

b⇥
8: output: fW

of the problem (1), including the feature extractor f(x) and the corresponding

projected softmax classifier cW . Using a Gaussian random matrix Rd⇥m, where
d is the embedding size and m is the random projection size, we generate a
low-dimensional representation for each input feature f(xi) by

bf(xi) =
1p
m
R>f(xi) (2)

We specify cW = (ŵ1, . . . , ŵC) 2 Rm⇥C , where C is the number of classes. For
a feature extractor f(·) and random projection matrix R, to learn the projected
softmax classifier can be formulated as follows,

min
cW

�

2
kcWk2F +

nX

i=1

`yi (ôi) (3)

where ôi = (ôi,1, . . . , ôi,C) =
⇣
ŵ

>
1 f̂(xi), ŵ>

2 f̂(xi), . . . , ŵ>
C f̂(xi)

⌘
. Since the fea-

ture extractor and the projected classifier are trained together, we could suppose
that the learned projected classifier is optimal to the learned features.

Remarks: When C is su�ciently large, e.g., C = 106, solving the original model
can be computational expensive and time consuming. Instead, solving slimmed
model with projected softmax layer is more e�cient. In addition, we argue that
the learned embedding features from the slimmed model are as good as the
embedding features from original model and we verify this in the experiments.

2.2 Solving Recovery Problem

Denote W 2 Rd⇥C as the original softmax classifier without projection corre-
sponding to feature extractor f(x). Noting that the size of cW is much less than
the size of W , it is expected that the original classifier can produce better pre-
dictions than the projected classifier. Therefore, in the second stage, we recover
W from cW by fixing feature extractor f(x). In this setting, the problem can be
formulated as follow,

min
W

�

2
kWk2F +

nX

i=1

`yi (oi) , (4)
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Algorithm 2 PSGD: Proximal Stochastic Gradient Descent (z0, ⌘, T, I)
1: for t = 1 to T do

2: Each machine k updates its local solution in parallel:
3: z

k
t+1 = z

k
t � ⌘(r (zkt ; ⇠kt ) + 1

� (z
k
t � z0))

4: if t+ 1 mod I = 0 then

5: z
k
t+1 = 1

K

KP
k=1

z
k
t+1 {K is total number of workers}

6: end if

7: end for

where oi = (oi,1, . . . ,oi,C) =
�
w

>
1 f(xi), . . . ,w>

Cf(xi)
�
and � is a parameter for

the regularized term. Note that the problem (3) is a projected version of the
problem (4). Next, we show that we can recover the projected softmax classifier
to the original softmax classifier with a small error for any feature extractor f(·).

Recall that f(x) is the embedding features of the data xi generated by the
network. oi is the scores of xi over C classes, and oi = (oi,1, . . . ,oi,C) =�
w

>
1 f(xi), . . . ,w>

Cf(xi)
�T

= W
>f(xi). For any i, we write `yi(oi) in its conju-

gate form as

`yi(oi) = max
✓i

[oT
i ✓i � `⇤yi

(✓i)] (5)

Plugging (5) to (4), we get the dual optimization problem of (4)

max
⇥

�
nX

i=1

`⇤yi
(✓i)�

1

2�
kX⇥⇤T k2F , (6)

where ⇥ = (✓1, ...,✓n). We denote W ⇤ 2 Rd⇥C as the optimal primal solution to
(4), and denote ⇥⇤ 2 RC⇥n as the optimal dual solution to (6) and the following
proposition connects W ⇤ and ⇥⇤.

Proposition 1. Let W ⇤ 2 Rd⇥C
be the optimal primal solution to (4) and

⇥⇤ 2 Rn
be the optimal dual solution to (6). We have

W ⇤ = � 1

�
X⇥⇤T , and ⇥⇤ = (rLy1 (o

⇤
1) , . . . ,rLyn (o⇤

n)), (7)

where o
⇤
i = W ⇤T

xi, i = 1, ..., n.

Similarly, we have the following proposition for primal and dual solution of the
projected softmax classifier.

Proposition 2. Let cW ⇤ 2 Rm⇥C
be the optimal primal solution of the projected

problem and ⇥̂⇤ 2 Rn⇥C
be the optimal dual solution for the projected problem.

We have

cW ⇤ = � 1

�

1

m
RTX b⇥⇤T , and b⇥⇤ = (rLy1 (ô

⇤
1) , . . . ,rLyn (ô⇤

n)), (8)

where ô
⇤
i = 1

m (Rz
⇤
i )

T
xi, . . . ,

1
m (Rz

⇤
C)

T
xi, i = 1, ..., n.
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In the following theorem, we show that we can recover cW ⇤ to W ⇤ with a small
error.

Theorem 1. We recover the optimal solution from dual variables fW = � 1
�X

b⇥⇤T .
For any 0 < ✏  1/2, with a probability at least 1� �, we have

kfW �W ⇤kF  ✏

1� ✏
kW ⇤kF , (9)

provided

m � (r + 1) log(2r/�)

c0✏2
,

where constant c0 is at least 1/4, and r is the rank of f(X) = f(x1, ...,xn).

Remarks: The above theorem shows that the recovery error between recovered
softmax classifier and original softmax classifier is bounded with a relative small
error, which implies that we can use the recovered softmax classifier fW to ap-
proximate the original W . The proof is skipped and included in the supplement.

2.3 Parallel Training with Communication Reduction

For deep learning in practice, the scales of model and dataset can easily reach a
million or billion levels, which makes it very ine�cient to train on a single GPU.
To further accelerate the training, a parallel multi-worker system is a common
solution. In this setting, each worker performs an individual task concurrently
and updates the local solution by the average of all individuals (e.g., gradient or
weight averaging) at each iteration. For the moderate scale classification task,
the averaging cost is usually ignored compared to other costs. However, this is
not the case for extreme classification. The communication cost of averaging can
be a real bottleneck for overall training process. To address this issue, we adopt
a strategy inspired by Parallel Restarted SGD [23] to reduce the number of com-
munication rounds between local workers and the gradient algorithm with the
communication reduction is presented in Algorithm 2.

Here, we use the same formulation as in the first stage of our approach:

min
z

L(z) =
nX

i=1

L(z;xi, yi), (10)

where L(z;xi, yi) is a loss function. Next, we analyze the convergence rate of
L(z) for Algorithm 1 with Algorithm 2 and we show how distributed machines
can speed up the training and how can we reduce the communication cost.

We make the following assumptions for analysis:

Assumption 1

(1) Loss function L(z; ⇠) is L-smooth on z for any i. Thus it is also L-weakly
convex.

(2) krL(z)�rL(z; ⇠)k22  �2
for any i.

(3) L(z) satisfies µ-PL condition, i.e., µ(L(z)� L(z⇤L))  1
2krL(z)k2.
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The analysis of one call of Algorithm 2 is shown in the following lemma.

Lemma 1 (Analysis of Algorithm 2). Suppose Assumption 1 holds and

krL(z;xi, yi) +
1
� (z � z0)k2  B. Let  (z) =

nP
i=1

L(z;xi, yi) +
1
2� kz � z0k2.

By running Algorithm 2, taking � = 1
2L , and ⌘  1

3L , we have

E[L(z)� L(z⇤)] 
kz0 � z

⇤k2

2⌘T
+ 2L⌘2I2B2II>1 +

⌘�2

K
.

With this lemma, we have the following theorem to show the convergence of the
Algorithm 1.

Theorem 2. Suppose the same condition in Lemma 2 holds. Set � = 1
2L , ⌘0 

1
3LK and c1 = µ/L

5+µ/L . Take ⌘s = ⌘0K exp(�(s�1)c1) , Ts =
2

L⌘0K
exp ((s� 1)c1)

and Is = max(1, 1p
K⌘s

). To return z̄S such that E[L(z̄S)�L(z⇤)]  ✏, the num-

ber of iterations is at most eO
⇣
max( 1

µ✏⌘0K
, 1
µ2K✏ )

⌘
and the number of commu-

nications is at most eO
⇣
max

⇣
K
µ + 1

µ(⌘0✏)1/2
, K
µ + 1

µ3/2✏1/2

⌘⌘
, where eO suppresses

logarithmic factors and appropriate constants.

Remark. Take ⌘0 = 1
3LK . If K  O( 1µ ), then then number of iteration is

dominated by O( L
µ2K✏ ) since µ is very small in deep learning [24]. Then we can

see that there is a linear speedup over the convergence speed with respect to
the number of machines K. In addition, the number of communications is much
less than the number of total iterations. When I = 1, algorithm 2 reduces to
standard parallel SGD.

3 Experiments

3.1 Implementation Details

Tasks. We conduct a comprehensive study to verify the e↵ectiveness of our
proposed methods on two tasks. Representation Learning: we aim to justify
the quality of the feature extractor trained on slimmed model with projected
softmax classifier and the quality of the feature extractor from the same model
under di↵erent parallel settings. The validation process is evaluated on a facial
verification task using only embedding features and thus the recovery produc-
ers are ignored. We implement our algorithms on three facial datasets, Celeb
[10], Megaface [18] and Mugshot [6]. For validation, we test our models on three
benchmark sets, Labelled Faces in the Wild (LFW), AgeDatabase (AgeDB) and
Celebritiesin Frontal Profile (CFP). Classification: we aim to justify the qual-
ity of the recovered softmax classifier and the training and evaluation are both
done on classification datasets. Specifically, we use ImageNet [22], Penn Tree-
bank (PTB) [20] and Google Billion Words (GBW) [5] with a varying number of
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Table 1. Datasets Summary. “M” and “K” indicate millions and thousands.

datasets #samples/words #classes task

ImageNet 1.2 M 1 K classification
Penn Treebank 929 K 10 K classification

Google Billion Words 800 M 0.79 M classification
MS-Celeb-1M 5.3 M 93 K representation
MegaFace2 4.7 M 0.67 M representation
Mugshot-1M 3.5 M 1 M representation

classes from one thousand to one million. The detailed descriptions of the above
datasets are summarized in Table 1.

Experiment setup. For the preprocessing steps, we follow the similar pro-
ducers of their original works for all datasets. For ImageNet, we apply random
cropping and left-right flipping on raw images, resulting in 224 ⇥ 224 random
images at each iteration. For facial datasets, we augment the images by left-right
flipping and resize them to 112⇥112. For language modeling datasets, we reshape
the data by time steps in order to fit the time-series model (LSTM). The facial
and language datasets are sorted by the class occurrence in order to implement
sampling-based methods. We adopt the ResNet50 and two variants of LSTM as
backbones and we use multiple 11GB GTX2080-Ti or a 32 GB V100 for training.

Parameters. We employ the original version of ResNet50 [13] with the embed-
ding size of 2048 for all images classification tasks. The baselines are trained
using SGD and L2 regularization with a weight decay of 0.0001. The learning
rate is scheduled in a stage-wise fashion: starting with a initial learning rate
0.1, dividing it by 10 at {30, 60, 90} and {10, 16} epoch for ImageNet and
Facial datasets [7]. For language modeling tasks, we use the configurations of
LSTM [14] from [25,17]. For GBW, Adagrad with initial learning rate of 0.2 is
used for optimization. The size of word embedding and feature embedding are
{1500,1500} and {1024,1024} for PTB and GBW, respectively. The number of
time steps for LSTM model is set to 35 and 20 respectively. The initial random
seeds are fixed for all experiments.

Evaluation Metrics. We use GPU Hrs to measure the training speed for all
experiments. The speedup is defined as T2/T1 in order to measure the relative
improvement of the first algorithm with respect to the second algorithm, where
T1 is the runtime for the first algorithm and T2 is the runtime for the second
algorithm. For representation learning, we report verification accuracy for face
verification task, identifying whether two given face images are the same person.
For language modeling, we evaluate perplexity, i.e., 2�

P
x p(x) log2 p(x), where p(x)

is the output probability of a sample x.
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Table 2. Model performance varying the size of random projection m.

RP(m) Celeb Megaface Mugshot Imagenet RP(m) PTB GBW

10 0.934 0.815 0.631 0.696 10 137.59 122.16
100 0.965 0.845 0.671 0.740 100 86.15 52.28
1000 0.960 0.831 0.664 0.739 500 83.98 46.34

3.2 Ablation Study on the Choice of Random Projection Size

We first explore the e↵ect of the model performance by varying the random
projection size m. Considering both model performance and training e�ciency,
we set the upper bound of projection size m to be the half of embedding size
d. The embedding sizes of ResNet50/LSTM are {2048, 1500, 1024}, thus we set
m = {10, 100, 500/1000}. For facial datasets, we report the average score of three
validation sets. Table 2 shows the model behaviors of di↵erent choice of m for all
datasets. The results tell that the best choice of m is 100 for Celeb, MegaFace
and Mugshot. The best choice for language datasets is m = 500 with the lowest
test perplexity. We fix m = 100/500 for the following experiments.

3.3 Ablation Study on Multi-GPU Scaling E�ciency

We further explore the runtime by varying di↵erent number of classes in a 8-
GPU GTX2080-Ti workstation. We choose ResNet50 as our main network which
has around 23.5 million parameters. We compare the full softmax (Full) with
the random projected (RP) softmax, e.g., m = 100 under di↵erent number of
communication reduction rounds I = {4, 8, 32}. We fit the simulated images
(112⇥ 112⇥ 3) to GPU memory before training to avoid the penitential issues
caused by data I/O operations. We choose number of classes C to be {10K,
100K, 1000K, 3500K}, leading to model size: Full = {43.98M, 228.30M, 2071M,
7801M}, RP ={24.5M, 33.5M, 123.5M, 345M}. Figure 3 shows the scaling e�-
ciency over the number of GPUs used. We can see that the cost of communica-
tion (averaging operations) can be ignored when the number of classes C is small
and we can obtain a significant performance boost by increasing the number of
GPUs. However, when C reaches million level, vanilla Full and RP softmax have
terrible scaling performance and RP softmax with communication reduction I
has a clear advantage. By choosing a proper I, RP softmax can even achieve
nearly linear speedup when C = 3.5 millions.

3.4 Ablation Study on Communication Rounds

From the results in previous section, we realized that both Full softmax and RP
softmax (I = 1) have limits when C is large. Next, we investigate the proper
choice of communication round I in order to achieve a good balance in both
training speed and model performance. We first vary I by fixing K (#gpus).
We compare I = {1, 4, 8, 32} on K = {2, 4, 8}. We conduct the experiments on
MegaFace, which contains 0.67M classes and all models are trained with the
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Fig. 3. Multi-GPU scaling e�ciency on di↵erent settings. The RP softmax has a clear
advantage over Full softmax when number of classes is over 100K.

Fig. 4. Performance of di↵erent choice of I and K. For the first three figures, we fix
K and vary I. For the last figure, we fix I and vary K.

same number of epochs. In figure 4, I = 1 (K = 1) is the baseline trained on a
single GPU with batch size of 256. As the increase of number K, we also use the
increasing batch size K⇥256 with initial learning rate K⇥⌘0. From the results,
we found that the algorithms with I >= 1 generally coverage much faster than
baseline. In particular, I = 8 seems to be the best choice considering both speed
and performance. However, we noticed that there is a significant performance
drop when I = 32, which may indicate the upper limits of the choice of I. In the
last figure, we show a parallel result by varying K and fixing I.

4 Evaluation Results

We compare our proposed approach with several baselines. The full description
of all methods is listed below:

1. Full-D: full softmax with data parallel
2. Full-D-C: full softmax with data and center parallel
3. S-S: sampled softmax [15]
4. Pretrain: pretrained model on a random sampled subset of full dataset
5. RP: random projected softmax classifier
6. RP-A: an adaptive variant of random projected softmax classifier

4.1 Results on Speedup

We first examine the results of the training speed (GPU hour) of listed methods.
We set a fixed batch size for all experiments on the same dataset, leading to the
di↵erent number of utilized GPUs due to the varying model size. The detailed
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Table 3. Training e�ciency and speedup

Celeb-1M MegaFace Mugshot-1M ImageNet PTB GBW

Full-D 14.18 (1.00⇥) NA NA 2.38 (1.00⇥) 0.061(1.00⇥) 3.51 (1.00⇥)
Full-D-C 4.96 (2.86⇥) 27.36 (1.00⇥) 28.96 (1.00⇥) 2.36 (1.00⇥) NA NA

S-S 4.69 (3.02⇥) NA NA 2.36 (1.00⇥) 0.061(1.00⇥) 0.53 (6.62⇥)
Pretrain NA NA NA NA NA NA

RP 2.39 (5.93⇥) 2.53 (10.83⇥) 2.94 (11.84⇥) 2.36 (1.00⇥) 0.055(1.11⇥) 0.26 (12.5⇥)

RP-A 2.60 (5.46⇥) 2.72 (10.03⇥) 3.32 (10.48⇥) NA 0.055(1.11⇥) 1.32 (2.66⇥)

Table 4. Model performance on validation sets

Celeb-1M MegaFace Mugshot-1M ImageNet PTB GBW

LFW CFP AgeDB LFW CFP AgeDB LFW CFP AgeDB Val acc Perplexity Perplexity
Full-D 99.55 97.03 94.97 NA NA NA NA NA NA 75.69 78.26 59.07

Full-D-C 99.57 97.34 95.03 95.58 79.63 71.25 84.33 66.60 50.82 75.12 NA NA
S-S 99.03 94.10 88.05 NA NA NA NA NA NA 70.11 79.99 47.48

Pretrain 98.91 87.80 92.53 NA NA NA NA NA NA NA NA NA
RP 99.62 96.80 95.22 96.60 82.46 74.40 90.70 69.71 57.27 73.98 83.98 46.38

Recover NA NA NA NA NA NA NA NA NA 74.56 74.78 46.56
RP-A 99.48 97.14 95.42 96.95 83.99 74.85 90.83 68.97 59.23 NA 81.76 74.3

evaluations are presented in Table 3. For the pair of two numbers in the table,
the first number denotes GPU hour per epoch and the second number denotes
the speedup. We set the speedup for the baseline to 1.00 for the convenience.
NA denotes the method is not applicable due to memory issues or other reasons.
From the results, we can see that as the increase in the number of classes, RP
softmax approaches achieve significant improvement for training e�ciency on
facial recognition tasks. This is reasonable since we directly reduce the model
parameters on softmax layer. Unlike ResNet50, RP softmax on LSTM achieves a
lower speedup on a similar scale dataset, e.g., MegaFace v.s. GBW. This is due
to the di↵erence between two network architectures: ResNet has 23.5M while
LSTM has 450M parameters for the model excluding the softmax layer. Thus,
we combine the RP softmax with sampled softmax, which achieves a speedup of
12.5⇥ v.s. 2.97⇥ without sampled softmax.

4.2 Results on Model Performance

Representation Learning. Here, our focus is to verify the quality of the fea-
ture extractor by slimmed model with projected softmax classifier. We report the
verification accuracy based on embedding features on three sets in table 4. From
the table, we observe some counter-intuitive results that RP-based approaches
outperform full softmax baseline in general. Recall our observations in the figure
1 that there is a dramatic increase in the model size for full softmax model, this
potentially matches another fact that the extremely large models are more dif-
ficult to train than slimmed models under the limited choice of step size, batch
size, number of epochs. This explains why RP-based methods achieve better
performance. Meanwhile, the results also verify our previous argument that the
slimmed model can also generate high-quality embedding features as the original
model. In terms of training speed, RP-based methods spend much less time on
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training than original baselines in overall.

Classification. We compute the classification scores for evaluation on valida-
tion sets. From the results in table 4, there are several key observations: 1)
RP softmax achieves better score than S-S softmax in GBW while there is no
performance boost on PTB. 2) Training with RP softmax on ImageNet has no
improvement on both performance and speed. The first observation can be ex-
plained by a similar reason that the extremely large model is more di�cult to
train but we can actually improve this score by recovery approach. The sec-
ond observation on ImageNet is due to the parameters in softmax classifier only
takes a very small portion of entire model and thus projected softmax will not
lead to a significant parameter reduction and improvement on training speed. In
addition, ImageNet doesn’t follow the long-tailed distribution, and thus random
projected softmax may carry some negative e↵ect on the model performance.

4.3 Results on Recovered Softmax Classifier

From previous section, we noticed that training with random projected softmax
su↵ers a performance drop on the datasets with a small number of classes. Thus,
we investigate whether our recovery approach can recover the projected softmax
classifier Ŵ to full softmax classifier W. We use pretrained model from stage
1 to recover the full classifier W from m ⇥ C to d ⇥ C. In this case, Lyi(oi) =

� log
exp([oi]yi )PC
k=1 exp([oi]k)

, the recovery formula is shown as follow

fW = � 1

�
X(P (cW ⇤)�Y)T (11)

where P (cW ⇤) 2 Rn⇥C indicates the predicted probability by cW ⇤, i.e., [P (cW ⇤)]i,j =
expw⇤T

i xj
CP

c=1
expw⇤T

c xj

, and Y 2 {0, 1}C⇥n denotes the labels in one-hot encoding. Then,

we finetine the recovered softmax classifier for some epochs. In table 4, the recov-
ered classifier improves 1% accuracy after 4 epochs training on ImageNet, which
is slightly worse than baseline. For PTB, we achieve a test perplexity of 78.29
after training for 18 epochs and achieve a perplexity of 74.78 after training for 33
epochs. For GBW, we train 10 hours to recover the projected classifier to achieve
a competitive test perplexity of 46.56. The results indicate that the recovered
classifier has a similar or even better decision-making capability compared to
original classifier.

4.4 Results on Parallel Training with Communication Reduction

We explore the optimal choice of I and K to accelerate the parallel training on
Mugshot and Celeb datasets. We denote the proposed algorithm 2 as RP with
model averaging (RP-model) and compare it with three baselines, Full-D, Full-
D-C, RP with gradient averaging (RP-grad). We compare K = {2, 4, 8} and
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Table 5. Model Performance on Parallel Training.

Methods K I
Mugshot Train Time

K I
Celeb Train Time

LFW CFP AgeDB GPU Hrs LFW CFP AgeDB GPU Hrs

Full-D 8 NA NA NA NA NA NA 4 1 99.57 97.34 95.03 14.18 3.55
Full-D-C 8 1 84.33 66.60 50.82 28.96 3.62 4 1 99.55 97.03 94.97 4.96 1.24
RP-grad 2 1 90.70 69.71 57.27 2.94 1.47 2 1 99.62 96.68 95.22 2.39 1.20
RP-model 2 4 90.75 68.77 59.23 1.95 0.98 2 4 99.70 97.45 95.91 2.04 1.02
RP-model 2 8 91.03 70.57 61.05 1.90 0.95 2 8 99.60 97.07 95.46 2.08 1.04
RP-model 4 4 90.72 69.14 60.96 2.42 0.61 4 4 99.68 97.25 96.00 2.47 0.62
RP-model 4 8 89.80 67.21 59.93 2.09 0.52 4 8 99.65 97.34 95.78 2.35 0.59
RP-model 8 4 88.20 67.65 59.61 3.47 0.43 8 4 99.66 97.25 95.76 3.29 0.41
RP-model 8 8 85.45 67.20 56.23 2.83 0.35 8 8 99.60 97.11 95.05 3.12 0.39

I = {4, 8} and use the increasing batch size and learning rate of all experiments
for each dataset. The results are reported in table 5 in terms of verification
accuracy and training time. It shows that RP-model outperforms the baselines
when K = 2 on Mugshot and Celeb. Further, as we increase K to 8, training
time per epoch can be reduced by a large margin of 90%, e.g., from 3.62 to 0.35
hrs when I = 8 on Mugshot and from 3.55 to 0.39 hrs when I = 8 on Celeb. In
other words, we can train one million classification task in just few hours instead
of days for Full-D. However, we also observe some performance drops when I,K
are relatively large, but the results are still competitive to Full-D/Full-D-C.

4.5 An Adaptive Variant of Random Projected Softmax

Inspired by [1,27], we propose an adaptive variant of RP softmax, called adaptive
RP softmax (RP-A). The intuition is simple: we assign a larger projection size
to ”head” classes and a smaller projection size to ”tail” classes since ”head”
classes contain more information than ”tail” classes. To implement it, we group
all classes into clusters according to their occurrence, and assign each cluster
with a varying projection size m from large to small. For example, we group all
classes into four clusters with m = {100, 70, 40, 10} in our experiments. As the
results in table 4, RP-A outperforms the baselines in some settings.

5 Conclusion

In this paper, we proposed an e↵ective framework to tackle extreme classification
problem. Our framework is able to train deep learning models with millions of
classes on various tasks. In our numerical experiments, we have verified that
the slimmed model with projected softmax classifier can also generate high-
quality embedding features as good as embedding features trained from original
model and meanwhile our methods spend less time on training. In addition, we
also demonstrate that the recovered softmax classifier can achieve a competitive
or even better classification performance. Finally, we successfully extend our
framework to large-scale parallel settings and also obtain good results in terms
of both training e�ciency and model performance.
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