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1 Additional details
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Fig. 1: Baselines. Super-pixel, Edge, Blur,
Noise, Masked sacrifice photo-realism for
anonymization.

Fig. 1 shows a qualitative example
of the baselines and their anonymiza-
tions/deanonymizations.

We use batch normalization and
our transformer T is based on the
9-block Resnet generator from [9].
We also replace the transformer T ’s
fractionally-strided convolution lay-
ers with the resize-convolution layers
in [5] to alleviate checkerboard arti-
facts.

For auxiliary network Q that pre-
dicts the embedded passwords, since
there are a total of 2N passwords, it
is not ideal to have a 2N -way classifier when N is large. Instead, we set up N/4
16-way classifiers, with each classifier responsible for classifying its corresponding
4 bits into 24 classes.

Let pi ∈ {0, ..., 15} denote a 4-bit chunk of p and p̂i denote the chunk pre-
dicted by Q. Q(I, TpI) = (f1, . . . , fN/4), where fi is a 16-dim vector (logit).
Prob(p̂i = j) = Softmax(fi)j .

Laux(T,Q) = −
N/4∑
i=1

log(Prob(p̂i = pi)). (1)

For Q’s architecture, we modify PatchGAN by switching the last convolu-
tional layer to an average pooling layer followed by N/4 parallel fully-connected
layers that predict the passwords.

The face recognition model F (SphereFace [4]) is trained on aligned and
cropped faces, so during training, we use the same manner of aligning face by
facial landmarks before inputting any faces to F as in [6]. The facial landmarks
are detected by MTCNN [8]. For the VGGFace2 [1] face recognition model,
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we follow the same setting as the original paper: We use MTCNN [8] for face
detection. The bounding boxes are then expanded by a factor 1.3x to include
the whole head, which are used as network inputs.

All networks in our architecture were trained from scratch with a learning
rate of 0.0001 for 15 epochs except the pre-trained face recognition model which
used a learning rate of 0.00001. We use Adam solver [3] and a total batch size
of 48 on 4 GPUs.

For the AMT photo-realism test, we do not include the synthesized images
in which a man’s face is with hair that obviously belongs to a woman; in such
cases, Turkers may attribute fakeness to prior experience (it is uncommon to
see a man with a woman’s hairstyle) rather than photo-realism. This could be
resolved by training separate face identity transformers for each gender.

2 Discussion on reverse engineering

Threat models to our model are either white-box (have complete knowledge of
T ) or black-box (get input-output pairs from T ).

Theoretically speaking, assuming all desiderata are achieved:

– Since every password leads to a unique photorealistic identity, without prior
knowledge, a brute-force adversary cannot decide which one is correct.

– Adversaries V in the form of V1(TpI) = p̂ or V2(TpI) = Î won’t work. We
can use any password p′ to anonymize and deanonymize TpI and still get
TpI, but in this case V1 should output −p′:

∀p′, p̂ = V1(TpI) = V1(T−p′(Tp′TpI)) = −p̂′, contradict! (2)

Similar argument applies to V2. Note that different from adversaries, our
auxiliary network Q also takes the original face as input.

In pracitce, due to existing artifacts in GANs, the desiderata are not perfectly
achieved. And thus our current model cannot achieve this theoretical robustness
against adversaries. We believe 1) Orthogonally plugging in better image syn-
thesizing techniques; 2) Explicitly introducing robustness against adversaries are
the future directions to pit against reverse engineering.

3 Discussion on wrong reconstruction better hides
identity

Both qualitative results and AMT studies show that Wrongly Recovered faces
(WRs) better hide identities. We believe this is happening because:

– WR has less constraints to satisfy compared to Anonymized faces (A) in
our loss formulation. Our training process could lead WR to become more
optimized for the face classification loss as it does not need to care about
the reconstruction loss, while A does need to be optimized to allow recon-
struction of Recovered faces (R).
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Fig. 2: Ablation study on CASIA-WebFace trained with non-adversarial face classifica-
tion loss Eq. 3 , which shows that this loss dominates the multi-task learning objective
quickly, so adversarial training on face classification is necessary.

– WR is a result of two transformations from the input face rather than one.
while A is a result of only a single transformation. More transformations
lead to more identity changes (though we also notice more artifacts in WR
than A).

Increasing the weight of the face classification loss Ladv applied to A may make
A hide identity better.

4 Why do we update the face classifier during training?

This is an adversarial learning setting that makes the transformer more robust.
During each generator’s stage, we train T to make TpI have a different identity
from I. During each discriminator’s stage, we train F to correctly classify I as
well as classify TpI as yI , i.e., see through the disguise of TpI. T and F compete
against each other so that our anonymization has certain robustness under the
attack of finetuning F . We don’t want to disturb the pretraining of F too much,
so we set a much lower learning rate for F , see Sec. 1.

We also did an ablation study where the face flassifier F is fixed during
training in a non-adversarial training manner, i.e., we replace Eq. 10 in the main
paper with:

Lnon adv(T ) =− E(I,p)LCE(F (TpI), yI)

− E(I,p′ 6=−p)LCE(F (Tp′TpI), yI), (3)

Fig. 2 shows the common failure pattern: the anonymizations are no longer
photorealistic but all have a common very fake face and reconstruction also
suffers. These results indicate that this setting does not work. As shown from
the loss curve, the misclassification loss quickly turns into large magnitude and
dominates the full objective. On the other hand, the adversarial training makes
the misclassification loss not easily satisfied and not dominating.
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Fig. 3: All pairs of inputs (top) & anonymizations (bottom) turkers reported as same
person. Our model still works to some extent.

5 Additional results

In Fig. 3, we show all 7 out of 150 pairs (4.7%) that turkers report as the input
and anonymized faces belonging to the same person. Even though the turkers
reported “yes”, our transformer still works to some extent – it changes color
of skin/eyes, shape of eyes/nose/mouth/facial muscles. The same background
and the same hair styles may have confused the turkers. In addition, they are
mostly hard cases: dim light, side faces, heavy paints, and grayscale images. For
these cases we do not have enough samples in the training set. If we collect more
samples of these cases, we expect the model to perform better.

The quantitative reconstruction results on FFHQ [2] is 0.0602/0.0471/0.0509/
0.0057 for LSIPS/SSIM/L1/L2, as a supplement for Table 2 in the main paper,
which indicates that our transformer generalizes well on the deanonymization
task on FFHQ, a dataset with plentiful variation in age, ethnicity and image
background.

We show more qualitative results on CASIA [7] in Fig. 4. For faces of different
hair styles, poses, and ages, our model produces high-quality results.

Fig. 5 shows qualitative face detection results when applying an off-the-shelf
face detector (MTCNN [8]) on the transformed images, see Table 3 in the main
paper for quantitative results. The good performance demonstrates that nor-
mal computer vision algorithms developed on real images can be directly ap-
plied on our transformed faces, which is a great advantage over traditional face
anonymization approaches.

6 Image in the wild

In Fig. 6, we show that with the help of an off-the-shelf face detector, MTCNN [8],
our system works well on images in the wild. The anonymized and deanonymized
face areas fit well into the original image. Please also check our uploaded video
at https://youtu.be/FrYmf-CL4yk, which demonstrates that our model can
be consistent in time.

7 Further exploration of the password scheme

We further investigate how our password scheme works and what the transformer
learns. Since the 16-bit password space has a total of 65,536 different passwords,
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Fig. 4: Additional qualitative results on CASIA. I: original image, A1,2: anonymized
faces conditioned on different passwords, R/WR1,2: recovered faces with correct/wrong
passwords.
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(a) I (b) A (d) WR(c) R

(a) CASIA

(a) I (b) A (d) WR(c) R

(b) FFHQ

(a) I (b) A (d) WR(c) R

(c) LFW

Fig. 5: Qualitative face detection results on transformed images. Photo-realism makes
existing computer vision algorithms work on our transformed images directly.

which is a very large space to explore, we trained an additional model with 8-bit
password scheme for experiments in this section.

We show the modifications associated with all the passwords for the exemplar
input images (Fig. 7) in Fig. 8, 9, 10 respectively, where Fig. 7(a) and Fig. 7(b)
are both children and Fig. 7(c) is more different in age and appearance.

From the qualitative results we observe that similar original faces lead to sim-
ilar modifications when given the same password. Interestingly, our transformer
achieves gender equality – half of the passwords transform to female identities
and the remaining half transform to males regardless of the inputs’ genders.
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(a) Original image (b) Anonymized image

(c) Deanonymized image with correct pass-
word

(d) Deanonymized image with wrong pass-
word

Fig. 6: Image in the wild example.
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(a) (b) (c)

Fig. 7: Original images. (a) and (b) are similar. (c) is more different from (a) and (b).

And all the transformed faces satisfy our anonymization goal. These qualitative
results also show that more diverse passwords lead to more diverse anonymized
faces.
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Fig. 8: Modifications associated with all the passwords whose original face image is
Fig. 7(a).
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Fig. 9: Modifications associated with all the passwords whose original face image is
Fig. 7(b).
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Fig. 10: Modifications associated with all the passwords whose original face image is
Fig. 7(c).
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