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1 Regularized OSD (rOSD)

We have presented in the paper a new version of the OSD formulation [7] with
added constraints based on the structure of our region proposals. Concretely, we
propose to solve the optimization problem:

max
x,e

S(x, e) =

n∑
i=1

∑
j∈N(i)

eijx
T
i Sijxj , s.t.∀i



p∑
k=1

xki ≤ ν,∑
k∈Gig

xki ≤ 1, for all groups g∑
j 6=i

eij ≤ τ.

(1)

We solve this problem with an iterative block-coordinate ascent algorithm
similar to OSD. Its iterations are illustrated in Algorithm 1.

Note that the output of Algorithm 1 depends on the order in which the
variables xi are processed in its first for loop. In our implementation, we use
a different random permutation of (1, ..., n) in each iteration of the optimiza-
tion. For each experiment, we run rOSD several times and report the average
performance of all runs as the final performance.

2 Large-Scale Object Discovery Algorithm

We summarize in Algorithm 2 our proposed large-scale algorithm for object
discovery.

3 Experimental Results

3.1 Results with the Ensemble Method from [7]

Vo et al. [7] use an ensemble method (EM) to combine several solutions before
post processing to stabilize and improve the final performance of OSD. We in-
vestigate the influence of this procedure on the performance of OSD and rOSD
with our proposals, and present the result in Tables 1 and 2. We use VGG16
features in these experiments. It can be seen that the effect of EM is mixed for
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Algorithm 1: Block coordinate ascent algorithm for rOSD.

Result: A solution to rOSD.
Input: Gi, ν, τ , Sij , number n of images.
Initialization: xi = 1p ∀i, eij = 1 ∀i 6= j.
for i = 1 to n do

Compute the vector R containing the scores of regions in image i.
R←−

∑n
j 6=i(eijSij + ejiS

T
ji)xj .

I ←− ∅.
for g = 1; g ≤ Li do

Find the region g∗ with highest score R(g∗) in the group Gig.
I ←− I ∪ {g∗}.

end
Choose ν regions in I with highest scores in R, assign their corresponding
variables to 1. Assign the variables of other regions to 0.

end
for i = 1 to n do

Compute the indices j1 to jτ of the τ largest scalars xTi Sijxj (1 ≤ j ≤ n).
ei ←− 0.
for t = 1; t ≤ τ do

eijt ←− 1.
end

end

the tested datasets. It generally harms the performance on VOC all and VOC12
and improves the performance on VOC 6x2 while its effect on OD is unclear.
We have therefore chosen to omit EM in the experiments of the main body of
the paper.

3.2 Full Results with both VGG16 and VGG19 Features

We present in Tables 3, 4 and 5 our full results in colocalization and object
discovery with features from both VGG16 and VGG19. It can be seen that, with
VGG16 features, rOSD still significantly outperforms OSD on the two large
datasets and fares comparably to OSD on the smaller two. It is also noticeable
that rOSD significantly outperforms Wei et al. in both colocalization and single-
object discovery on all datasets when VGG16 features are used.

3.3 Multi-Object Experiments

For a fair comparison to OSD and Wei et al. [8] in multi-object discovery, we
have fixed the number of objects retained in each image by all methods to 5 in
the paper. We have also modified the method of Wei et al. such that 5 bounding
boxes around the 5 largest clusters of positive pixels in their indicator matrix are
returned as objects. For OSD and rOSD, we run the corresponding optimization
then apply the following post processing on each image: all ν retained regions
are ranked in descending order using the score proposed in [7] (Eq. 12 in Sec. 2.6
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Algorithm 2: Large-scale object discovery algorithm.

Input: Dataset D of n images, memory limit M , number of partition k, image
neighborhood size N , ν∗, τ .

Partition D into random k parts D1, ..., Dk, each has roughly bn/kc images.
Compute the maximum number of positive entries in the score matrices in
each parts: K1 ←−M/(N ∗ bn/kc).

Compute the maximum number of positive entries in the score matrices in the
whole dataset: K2 ←−M/(n ∗N).

for i = 1 to k do
Compute score matrices for image pairs in Di with K1 positive entries.
Run proxy OSD on Di with ν = K2.
Each image in Di has a new set of region proposals which are those
retained by OSD.

end
Compute score matrices between pairs of images in D with K2 positive entries.
Run OSD on the whole dataset D with ν = ν∗.

Table 1: Influence of the ensemble method of Vo et al. on the colocalization
performance of OSD and rOSD with our proposals

Method OD VOC 6x2 VOC all VOC12

Ours (OSD) w/o EM 89.0 ± 0.6 73.6 ± 0.6 44.7 ± 0.3 49.0 ± 0.2
Ours (OSD) w/ EM 88.2 ± 0.2 75.3 ± 0.2 44.7 ± 0.1 48.7 ± 0.1

Ours (rOSD) w/o EM 89.0 ± 0.5 73.3 ± 0.5 45.8 ± 0.3 49.7 ± 0.1
Ours (rOSD) w/ EM 89.2 ± 0.3 74.5 ± 0.2 45.5 ± 0.1 49.7 ± 0.2

therein), which is solely based on their similarity to the retained regions in
the image’s neighbors; We then iteratively discard all proposals having an IoU
score greater than some threshold with higher-ranked regions; Among remaining
regions, we return the 5 highest ranked as retrieved objects. Since this procedure
can eliminate all but a few regions if the regions highly overlap, we choose a
large value of ν (50) and a large value of IoU threshold (0.7) in our experiments
to guarantee that we have exactly 5 objects. This is, however, just a design
choice and one can choose to retain fewer or more regions. We have conducted
experiments with the number of retrieved objects varied in the interval [2, 10]

Table 2: Influence of the ensemble method of Vo et al. on the single-object
discovery performance of OSD and rOSD with our proposals

Method OD VOC 6x2 VOC all VOC12

Ours (OSD) w/o EM 87.8 ± 0.4 69.2 ± 0.5 48.7 ± 0.3 51.3 ± 0.2
Ours (OSD) w/ EM 87.5 ± 0.3 70.9 ± 0.3 48.6 ± 0.1 50.7 ± 0.1

Ours (rOSD) w/o EM 87.6 ± 0.3 71.1 ± 0.8 49.2 ± 0.2 52.1 ± 0.1
Ours (rOSD) w/ EM 88.7 ± 0.3 71.9 ± 0.4 48.7 ± 0.1 52.0 ± 0.1
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Table 3: Single-object colocalization performance of our approach compared to the
state of the art. Note that Wei et al. [8] outperform our method on VOC all and VOC12
with VGG19 features in this case, but the situation is clearly reversed in the much more
difficult single-object discovery setting, as demonstrated in Table 4

Method Features OD VOc 6x2 VOC all VOC12

Cho et al. [2] WHO 84.2 67.6 37.6 -
Vo et al. [7] WHO 87.1 ± 0.5 71.2 ± 0.6 39.5 ± 0.1 -

Li et al. [5] VGG16 - - 40.0 41.9
Wei et al. [8] VGG16 86.9 66.2 44.7 47.6
Ours (OSD) VGG16 89.0 ± 0.6 73.6 ± 0.6 44.7 ± 0.3 49.0 ± 0.2
Ours (rOSD) VGG16 89.0 ± 0.5 73.3 ± 0.5 45.8 ± 0.3 49.7 ± 0.1

Li et al. [5] VGG19 - - 41.9 45.6
Wei et al. [8] VGG19 87.9 67.7 48.7 51.1
Ours (OSD) VGG19 90.3 ± 0.3 75.3 ± 0.7 45.6 ± 0.3 47.8 ± 0.2
Ours (rOSD) VGG19 90.2 ± 0.3 76.1 ± 0.7 46.7 ± 0.2 49.2 ± 0.1

Table 4: Single-object discovery performance in the mixed setting on the datasets with
our proposals compared to the state of the art

Method Features OD VOC 6x2 VOC all VOC12

Cho et al. [2] WHO 82.2 55.9 37.6 -
Vo et al. [7] WHO 82.3 ± 0.3 62.5 ± 0.6 40.7 ± 0.2 -

Wei et al. [8] VGG16 73.5 66.2 41.9 45.0
Ours (OSD) VGG16 87.8 ± 0.4 69.2 ± 0.5 48.7 ± 0.3 51.3 ± 0.2
Ours (rOSD) VGG16 87.6 ± 0.3 71.1 ± 0.8 49.2 ± 0.2 52.1 ± 0.1

Wei et al. [8] VGG19 75.0 54.0 43.4 46.3
Ours (OSD) VGG19 89.1 ± 0.4 71.9 ± 0.7 47.9 ± 0.3 49.2 ± 0.2
Ours (rOSD) VGG19 89.2 ± 0.4 72.5 ± 0.5 49.3 ± 0.2 51.2 ± 0.2

and observed that rOSD always yields better performance than OSD and [8]
regardless of the number of objects retrieved (Fig. 1).

Images may of course contain fewer than 5 objects. In such cases, OSD and
rOSD usually return overlapping boxes around the actual objects (Fig. 3 in the
paper). We can eliminate these overlapping boxes and obtain better qualitative
results by using smaller ν and IoU threshold. We have conducted preliminary
experiments with ν = 25 in the optimization of OSD and rOSD and IoU = 0.3
for suppression threshold in the post processing and show qualitative results in
Fig. 2. It can be seen that rOSD is now able to return bounding boxes around
objects without many overlapping regions. It is also observed that rOSD fares
much better than OSD in localizing multiple objects. We also compare the quan-
titative performance of rOSD, OSD and [8] in Table 6. For [8], we take as before
the bounding boxes around the largest clusters of pixels in the indicator matrix
of each image. The number of clusters in this case is chosen to be the number of
objects returned by rOSD in the same image. The results show that rOSD again
yields by far the best performance. It is also noticeable that while using smaller
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Table 5: Multi-object colocalization and discovery performance of rOSD compared to
competitors on VOC all and VOC12 datasets

Method Features
Colocalization Discovery

VOC all VOC12 VOC all VOC12

Vo et al. [7] WHO 40.7 ± 0.1 - 30.7 ± 0.1 -

Wei et al. [8] VGG16 38.3 40.4 25.8 28.2
Ours (OSD) VGG16 45.9 ± 0.1 48.1 ± 0.0 34.9 ± 0.1 37.6 ± 0.0
Ours (rOSD) VGG16 48.5 ± 0.1 50.7 ± 0.1 37.2 ± 0.1 40.8 ± 0.1

Wei et al. [8] VGG19 43.3 45.5 28.1 30.3
Ours (OSD) VGG19 46.8 ± 0.1 47.9 ± 0.0 34.8 ± 0.0 36.9 ± 0.0
Ours (rOSD) VGG19 49.4 ± 0.1 51.5 ± 0.1 37.6 ± 0.1 40.4 ± 0.1

(a) VOC all (b) VOC12

Fig. 1: Multi-object discovery performance of rOSD compared to OSD and [8] when
varying the maximum number of returned objects.

values of ν and the IoU threshold slightly deteriorates the performance of rOSD,
it makes the performance of OSD drop significantly (compare Tables 5 and 6).
This is due to the fact that OSD returns many highly overlapping regions and
most of them are eliminated by our procedure. On the other hand, rOSD returns
more diverse regions and consequently more regions are retained. In practice, we
observe that OSD returns on average 1.47 (respectively 1.52) regions while rOSD
returns 3.62 (respectively 3.63) on VOC all (respectively VOC12). Note, how-
ever, that rOSD still outperforms OSD and [8] even when the latter are allowed
to retain exactly 5 regions.

3.4 Evaluating the Graph Computed by OSD

Following [2], we evaluate the local graph structure obtained by rOSD using the
CorRet measure, defined as the average percentage of returned image neighbors
that belong to the same (ground-truth) class as the image itself. As a baseline, we
consider the local graph induced by the sets of nearest neighbors N(i) computed
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Fig. 2: Multi-object discovery results. In each column, from top to bottom: original
image, image with predictions of OSD, image with predictions of rOSD. White boxes are
ground truth objects and red ones are our predictions. There are at most 5 predictions
per image.

Table 6: Multi-object colocalization and discovery performance of rOSD compared to
competitors on VOC all and VOC12 datasets when using smaller values of ν (25) and
IoU (0.3) threshold

Method Features
Colocalization Discovery

VOC all VOC12 VOC all VOC12

Wei et al. [8] VGG19 43.1 45.3 27.8 30.0
Ours (OSD) VGG19 39.6 ± 0.1 41.6 ± 0.1 29.0 ± 0.1 31.3 ± 0.1
Ours (rOSD) VGG19 47.3 ± 0.1 49.3 ± 0.1 36.7 ± 0.1 39.2 ± 0.1

from the fully connected layer fc6 of the CNN that are used in the same exper-
iment. Table 7 shows the CorRet of local graphs obtained when running rOSD
(OSD) on VOC all and VOC12 and large-scale rOSD (OSD) on COCO 20k in
the mixed setting. It can be seen that the local image graphs returned by our
methods have higher CorRet than the baseline.

3.5 Results on Images of ImageNet Classes not in the Training Set
of the Feature Extractors

Though trained for classifying 1000 object classes of ImageNet, features from
convolutional layers of VGGs have shown to be generic: They have been used

Table 7: Quality of the returned local image graph as measured by CorRet

Dataset VOC all VOC12 COCO 20k

Baseline 50.7 56.4 36.8
Ours (OSD) 60.1 ± 0.1 63.2 ± 0.0 39.8 ± 0.0
Ours (rOSD) 59.8 ± 0.1 63.0 ± 0.0 39.4 ± 0.0
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Table 8: Colocalization and single-object discovery performance of rOSD compared to
OSD, Li et al. [5] and Wei et al. [8] on 6 held-out ImageNet classes

Method Features Colocalization Discovery

Li et al.4 [5] VGG16 48.3 -
Wei et al. [8] VGG16 74.3 61.2
Ours (OSD) VGG16 61.5 ± 0.3 60.3 ± 0.3
Ours (rOSD) VGG16 63.0 ± 0.7 61.6 ± 0.4

Li et al. [5] VGG19 51.6 -
Wei et al. [8] VGG19 74.8 63.2
Ours (OSD) VGG19 61.3 ± 0.5 59.2 ± 0.7
Ours (rOSD) VGG19 63.7 ± 0.3 59.4 ± 0.5

for various tasks, including unsupervised object discovery. Li et al. [5] and Wei
et al. [8] have shown that CNN features generalize well beyond the classes in
ILSVRC2012 by testing on 6 held-out classes on ImageNet (chipmunk, racoon,
rhinoceros, rake, stoat and wheelchair). We have also tested our method on these
classes. Since ImageNet has been under maintenance, we could not download all
the official images in the six classes. For preliminary experiments, we have instead
downloaded the images using their public URLs (provided on the ImageNet web-
site), eliminated corrupted images, randomly chosen up to 200 images per class
and run our experiments on these images. We have compared rOSD, OSD, [5]
and [8] in this setting (Table 8). Although rOSD performs significantly better
than [5] in colocalization tasks, it is as before significantly outperformed by [8]
there. In object discovery, rOSD performs slightly better than [8] for VGG16
features, but significantly worse for VGG19 features. Understanding this dis-
crepancy observed in preliminary experiments is part of our plans for future
work.

4 More Visualizations

4.1 Overlapping Regions Returned by OSD and rOSD

The most important advantage of rOSD over OSD is that the former returns
more diverse regions than the former does. We visualize the regions returned by
OSD and rOSD in colocalization experiments with ν = 5 in Fig. 3.

4.2 Persistence

We use persistence [1,3,4,6,9] to find robust local maxima of the global saliency
map sg in our work. Considering sg as a 2D image and each location in it as
a pixel, we associate with each pixel a cluster (the 4-neighborhood connected
component of pixels that contains it), together with both a “birth” (its own
saliency) and “death time” (the highest value for which one of the pixels in its

4 Numbers for [5] are taken from [8].
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Fig. 3: Regions returned by OSD and rOSD. In each column, from top to bottom:
original image, image with regions returned by OSD, image with regions returned by
rOSD.

cluster also belongs to the cluster of a pixel with higher saliency, or, if no such
location exists, the lowest saliency value in the map). The persistence of a pixel
is defined as the difference between its birth and death times. Figure 4 illustrates
persistence for the 1D case.

Fig. 4: An illustration of persistence in the 1D case. Left: A 1D function. Right: Its
persistence diagram. Points above the diagonal correspond to its local maxima and the
vertical distance from these points to the diagonal is their persistence. Local maxima
with higher persistence are more robust: B is more robust than A although f(A) >
f(B). Given a chosen persistence threshold (shown by dash lines in blue), points with
persistence higher than some threshold are selected as robust local maxima. The black
horizontal dotted lines show birth and death time of the local maxima of f .
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