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Abstract. We propose a new deep neural network which takes a col-
ored 3D point cloud of a scene as input, and synthesizes a photo-realistic
image from a novel viewpoint. Key contributions of this work include a
deep point feature extraction module, an image synthesis module, and
a refinement module. Our PointEncoder network extracts discriminative
features from the point cloud that contain both local and global con-
textual information about the scene. Next, the multi-level point features
are aggregated to form multi-layer feature maps, which are subsequently
fed into an ImageDecoder network to generate a synthetic RGB image.
Finally, the output of the ImageDecoder network is refined using a Re-
fineNet module, providing finer details and suppressing unwanted visual
artifacts. W rotate and translate the 3D point cloud in order to synthe-
size new images from a novel perspective. We conduct numerous exper-
iments on public datasets to validate the method in terms of quality of
the synthesized views.
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1 Introduction

This paper addresses the problem of how to render a dense photo-realistic RGB
image of a static 3D scene from a novel viewpoint, only based on a set of sparse
colored point clouds depicting the scene. The rendering pipeline is illustrated in
Figure 1. Traditional methods are often based on fitting point clouds to a piece-
wise smooth mesh surface; they however suffer from the need of a strong scene
prior and large amount of computation, despite which they can fail when the
point clouds are too sparse or contain gross outliers, as is typical for real-world
3D range scans.

Practical uses of novel view synthesis include generating photo-realistic views
from a real physical scene for immersive Augmented Reality applications. Struc-
ture from Motion (SfM) techniques have been applied to reconstruct 3D models
depicting the real scene. This way, the 3D models are represented as sparse set
of 3D point clouds which are both computation and memory efficient, but falls
short in visual appearance due to the very low density in discrete point sam-
plings. This has motivated this paper to develop an efficient new method of dense
novel view synthesis directly from sparse set of colored 3D point clouds.
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Fig. 1. Synthesizing novel views from colored 3D point clouds. The colored
point cloud is generated from key frames of a video sequence using DSO [7]. Given
two specific viewpoints C1 and C2 in the point cloud, our method synthesizes RGB
images ‘Output C1’ and ‘Output C2’. The corresponding ground-truth RGB images
are labeled ‘GT C1’ and ‘GT C2’.

The most related recent work to this paper is invsfm [28], where the authors
proposed a cascade of three U-Nets [17] to reveal scenes from SfM models. The
input to their network is a sparse depth image with optional color and SIFT de-
scriptors, that is, a projection of the SfM point cloud from a specific viewpoint.
Their synthesized images are fairly convincing, but their pipeline does not take
full advantage of the available 3D information. Projected point clouds lose ad-
jacency information, with convolutions only sharing information between points
that project nearby on the image. In contrast, the original point clouds retain
this structural information, and convolutions share information between points
that are nearby in 3D space. Moreover, a network trained on point cloud data is
able to reason more intelligently about occlusion than one that takes a lossy z-
buffering approach. Recently, point cloud processing has advanced considerably,
with the development of PointNet [29] and PointNet++ [30] stimulating the field
and leading to solid improvements in point cloud classification and segmentation.
Additionally, generative adversarial networks (GAN) [10] have demonstrated the
power of generating realistic images. Synthesizing both developments, pc2px [2]
trained an image generator conditioned on the feature code of a object-level
point cloud to render novel view images of the object. So far, directly generating
images from scene-level point clouds remains an under-explored research area.

Inspired by these works, we develop a new type of U-Net, which encodes
point clouds directly and decodes to 2D image space. We refer to the encoder
as PointEncoder and the decoder as ImageDecoder. The main motivation for
the design of this network is that we intend to make full use of all structural
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information in the point clouds, especially in the local regions of each point.
Ideally, the 3D point features should help to recover better shapes and sharper
edges in images. Meanwhile, we also use the associated RGB values for each point
to enrich the 3D features with textural information. Consequently, our network
is trained to generate RGB images from sparse colored point clouds. We further
propose a network to refine the generated images and remove artifacts, called
RefineNet. In summary, our contributions are:

1. a new image synthesis pipeline that generates images from novel viewpoints,
given a sparse colored point cloud as input;

2. an encoder–decoder architecture that encodes 3D point clouds and decodes
2D images; and

3. a refinement network that improves the visual quality of the synthesized
images.

Our approach generalizes effectively to a range of different real-world datasets,
with good color consistency and shape recovery. We outperform the state-of-the-
art method invsfm in two ways. Firstly, our network achieves better quantitative
results, even with fewer points as input, for the scene revealing and novel view
synthesis tasks. Secondly, our network has better qualitative visual results, with
sharper edges and more complete shapes.

2 Related Work

There are two types of approaches for generating images from sparse point
clouds: rendering after building a dense 3D model by point cloud upsampling or
surface reconstruction; or directly recovering images using deep learning. In this
section, we first review existing works on dense 3D model reconstruction and
learning based image recovery. Then broader related topics are discussed such
as novel view synthesis and image-to-image translation.

Dense 3D Model Reconstruction. Existing methods for building a dense
3D model from a point cloud can be grouped into two categories: point cloud
upsampling, and surface reconstruction. PU-Net [38] and PU-GAN [20] are two
deep learning based point cloud upsampling techniques. In these works, multi-
level features for each point are learnt via deep neural networks. These features
are further expanded in feature space and then split into a multitude of features
to reconstruct a richer point cloud. Nevertheless, the upsampled point cloud
is still not dense enough to enable image rendering. For mesh reconstruction,
traditional algorithms often need strong priors including volumetric smoothing,
structural repetition, part composition, and polygonal surface fitting [3]. Re-
cently, some deep learning methods have been developed to address this prob-
lem. A 3D convolutional network called PointGrid, proposed by Le et al. [19],
learns local approximation functions that help to reconstruct local shapes with
better detail. However, reconstruction and storage of dense 3D models are not
computationally efficient for practical applications.
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Learning-Based Image Recovery. Instead of reconstructing the entire
dense 3D model, some works synthesize images directly from sparse point clouds.
A conditional GAN developed by Atienza [2] generates images from a deep point
cloud code along with angles of camera viewpoints. Although the result does not
outperform the state of the art, it shows more robustness towards downsampling
and noise. Similarly, Milz et al. [11] adopt a GAN that conditions on an image
projection. However, these two methods only work on object-level point clouds.
In contrast, Pittaluga et al. [28] proposed a three stage neural network which
recovers the source images of a SfM point cloud scene. The input to their network
is a sparse depth image, that is, the projection of the point cloud onto the image
plane with depth, color and a SIFT descriptor associated with each sparse 2D
point. In contrast to these approaches, we focus on extracting the structural
features of point clouds in 3D space and use them to generate better images.

Warping based Novel View Synthesis. Novel view synthesis from single
or multiple images often requires a warping process to obtain a candidate image.
Depth prediction is a typical strategy for warping. Liu et al. [21] regress pixel-
wise depth and surface normal, then obtain the candidate image by warping with
multiple surface homographies. Niklaus et al. [27] introduce a framework that
inpaints the RGB image and depth map from a warped image so as to maintain
space consistency. To achieve better depth estimation, multi-view images are
applied in many methods, such as the use of multi-plane images (MPI) by Zhou et
al. [39], and estimated depth volumes by Choi et al. [5] that leverage estimates of
depth uncertainty from multiple views. The warped images using predicted depth
maps often have only a few holes and missing pixels, which can be estimated
using image completion networks. In comparison, our problem has much sparser
inputs with significantly more missing data.

Image-to-Image Translation. Various methods [13, 40, 22] have succeeded
in generating images from structural edges, changing the appearance style of
existing images and synthesizing images from sketches. In our work, similar
elements to these methods are used, such as an encoder–decoder architecture
and adversarial training, for the task of pointset-to-image translation.

3 Method

Given a colored point cloud P ∈ RN×6, where N is the number of points and each
point has x, y, z coordinates and r, g, b color intensities, our goal is to generate an
RGB image I ∈ RH×W×3 captured by a virtual camera from a specific viewpoint.
The viewpoint is defined by the camera extrinsic parameters T ∈ SE(3) and the
intrinsic parameters of typical pinhole camera model K ∈ R3×3. As shown in
Figure 2, our proposed view synthesis network has three main components: a
PointEncoder, an ImageDecoder and a RefineNet. The first two networks to-
gether are the coarse image generator Gc and the RefineNet is the refined image
generator Gr. We train a cascade of these two generators for pointset-to-image
reconstruction and refinement, with an adversarial training strategy [10] using
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Fig. 2. Network architecture. The network has three modules with learnable pa-
rameters: a PointEncoder, an ImageDecoder, and a RefineNet. The PointEncoder has
a PointNet++ structure [30] with set abstraction layers and feature propagation layers
with skip connections. The ImageDecoder has a U-Net structure [17] but directly uses
the projection maps from the PointEncoder. The RefineNet is a standard U-Net with
an encoder–decoder structure which takes the coarse output from the ImageDecoder as
input, alongside an additional RGB-D map. Visualizations of the different intermediate
outputs are included at the bottom left.

the discriminators Dc and Dr respectively. These discriminators use the Patch-
GAN [14] architecture and instance normalization [35] across all layers.

For the forward pass, the point cloud P is first rigidly transformed to P′

by applying T. The PointEncoder takes P′ as an input to extract a set of point
features in 3D space. These features are then associated onto feature map planes
by projecting corresponding 3D points with the camera intrinsics K. The Im-
ageDecoder translates these feature maps into the image domain and produces
a coarse RGB image of the final output size. Finally, the RefineNet produces a
refined image using an encoder-decoder scheme, given the coarse image and an
additional sparse RGB-D map.

3.1 Architecture

PointEncoder. Since point clouds are often sparse and the geometry and topol-
ogy of the complete scene is unknown, it is difficult to generate photo-realistic
images by rendering such point clouds. Thus to synthesize high-quality images,
as much implicit structural information should be extracted from the point cloud
as possible, such as surface normals, local connectivity, and color distribution.
Intending to capture these structures and context, we use the PointNet++ [30]
architecture to learn features for each point in 3D space. Consequently, our Poi-
ntEncoder is composed of four set abstraction levels and four feature propagation
levels to learn both local and global point features. Set abstraction layers gener-
ate local features by progressively downsampling and grouping the point cloud.
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Then feature propagation layers apply a distance-based feature interpolation and
skip connection strategy to obtain point features for all original points.

The input to the PointEncoder is an N × (3 + 3) dimensional tensor consist-
ing of 3D coordinates and RGB color intensities. After passing through the Poi-
ntEncoder, each point has a C-dimensional feature vector. In order to use more
point features, we save the features after each propagation level to construct a
set of sub-pointsets with associated multi-scale point features. Specifically, af-
ter the i-th propagation level, we extract the point features Fi ∈ RNi×(3+Ci) of
Ni subsampled points with 3D coordinates and Ci-dimensional feature chan-
nels. The final point feature set we adopt is denoted as F = {F0, ...,Fk}, where
Nk = N and Ck = C, (Ni, Ni+1) and (Ci, Ci+1) follow the rules of Ni <= Ni+1

and Ci >= Ci+1 respectively. Afterwards, F is projected and associated onto
feature maps for the next step.

ImageDecoder. To decode the point features into an image, a bridge must
be built between features in 3D space and features in image space. Considering
the extraction process of point feature set F, we observe that each 3D point in a
sub-pointset represents a larger region in the original point cloud as the number
of points in the subset gets smaller. As a result, feature vectors from smaller
subsets contain richer contextual information than features from larger subsets.
This is similar to how feature maps with less resolution but more channels in a
convolutional neural network (CNN) encode information from a larger number
of pixels. For the purpose of maintaining the scale consistency between the 3D
space and image space, we project the point features to feature map planes
with different resolutions according to their sub-pointset size. The ImageDecoder
employs these feature maps and performs an upsampling and skip connection
scheme like U-Net [31] until getting an image of the final output size.

More concretely, we project the point feature set F onto feature map planes
M = {M0, ...,Mk}, where Mi ∈ RHi×Wi×Ci corresponds to Fi and Mk has size
H ×W × C. Here, the generated feature maps M are regarded as a feature
pyramid with the spatial dimension of its feature maps increasing by a scale of
2, as Hi+1 = 2Hi and Wi+1 = 2Wi. In order to get the feature map Mi, pixel
coordinates in a map with size H ×W are first calculated for all 3D points in
Fi by perspective projection with camera intrinsics K. After that, these pixel
coordinates are rescaled in line with the size of Mi to associate the point features
with it. If multiple points project to the same pixel, we retain the point closest
to the camera. The ImageDecoder takes the feature pyramid M and decodes it
into an RGB image.

RefineNet. By this stage in the network, we have generated an image from
point features. However this is a coarse result and some problems remain un-
solved. One issue is that many 3D points are occluded by foreground surfaces
in reality but still project onto the image plane even with z-buffering due to
the sparsity of the point cloud. This brings deleterious features from non-visible
regions of the point cloud onto the image plane. In addition, the PointEncoder
predominately learns to reason about local shapes and structures, and so the
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color information is weakened. Accordingly, we propose the RefineNet module
to estimate visibility implicitly and re-introduce the sparse color information.

As a standard U-Net architecture, the RefineNet receives a feature map of
size H ×W × 7, a concatenation of the coarse decoded image, the sparse RGB
map, and the sparse depth map. The latter is used to analyse visibility in many
geometric methods [4, 1]. The sparse RGB-D image is obtained by associat-
ing the RGB values and z-value of the original point cloud onto a map of size
H ×W × 4 using the same projecting rules in the ImageDecoder. The output of
the RefineNet is an RGB image with higher quality than the coarse image.

3.2 Training Loss

We employ Xavier initialization and then separately train the network in two in-
dependent adversarial steps. Firstly, the coarse generator Gc (the PointEncoder
and ImageDecoder) is trained to generate coarse RGB images using ground-truth
image supervision. After that, the parameters of Gc are fixed and the refined
generator Gr (the RefineNet) is trained to refine the coarse images. Since the
same loss function and ground truth supervision are utilized for both steps, we
represent Gc and Gr together as G and discriminators Dc and Dr as D to sim-
plify notation in next paragraphs. We notate the input for each step as x, which
is a colored point cloud of size N × 6 for Gc and a feature map of size H ×W × 7
for Gr. The generator and discriminator G and D represent the functions that
for G map from RN×6 → RH×W×3 (or RH×W×7 → RH×W×3), and for D map
from RH×W×3 → R.

For each step, the network is trained over a joint objective comprised of an
`1 loss, an adversarial loss and a perceptual loss. Given the ground-truth image
Igt ∈ RH×W×3, the `1 loss and the adversarial loss are defined as

L`1 = ||Igt −G(x)||1 (1)

Ladv = log[D(Igt)] + log[1−D(G(x))]. (2)

A perceptual loss [8, 15] is also used, which measures high-level perceptual
and semantic distances between images. In our experiments, we use a feature
reconstruction loss Lfeat and a style loss Lstyle computed over different activation
maps of the VGG-19 network [34] pre-trained on the ImageNet dataset [6]. The
VGG-19 model is denoted as φ and the perceptual loss is computed using

Lfeat =

5∑
i=1

||φi(Igt)− φi(G(x))||1 (3)

Lstyle =

4∑
j=1

||Gφj (Igt)−Gφj (G(x))||1 (4)

where φi generates the feature map after layers relu1_1, relu2_1, relu3_1,
relu4_1, relu5_1; Gφj is a Gram matrix constructed from the feature map that
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is generated by φj , and φj corresponds to layers relu2_2, relu3_4, relu4_4,
relu5_2. The Gram matrix treats each grid location of a feature map indepen-
dently and captures information about relations between features themselves.
While Lfeat helps to preserve image content and overall spatial structure, Lstyle

preserves stylistic features from the target image.
We manually set four hyperparameters as the coefficients of each loss term,

and thus our overall loss function is given as follows

LG = λ`1L`1 + λadvLadv + λfeatLfeat + λstyleLstyle. (5)

During training, the generator and discriminator are optimized together by ap-
plying alternating gradient updates.

4 Experiments

We evaluate our approach on several different datasets, including indoor and
outdoor scenes, and on several different sources of 3D data. Specifically, we
train our model on the SUN3D [37] dataset and then test it on two other indoor
datasets, NYU-V2 [25] and ICL-NUIM [12], as well as the outdoor KITTI odom-
etry dataset [9]. We also explore point clouds generated from different sources:
depth measurements, COLMAP [32] and DSO [7]. We first compare the cascaded
outputs of our proposed network, from the coarse and fine generators. Then we
compare our approach with the state-of-the-art inverse SfM method [28], de-
noted invsfm, in terms of the synthesized image quality. We refer to the task
of recovering views that were used to generate the input point clouds as scene
revealing, and the task of recovering new views as novel view synthesis. Further-
more, to demonstrate the generalizability of our method, results on the KITTI
dataset are reported, using point clouds generated by LiDAR sensors.

Training Data Preprocessing. SUN3D is a dataset of reconstructed spaces
and provides RGB-D images and the ground-truth pose of each frame. By sam-
pling from an RGB-D image, we can obtain a colored point cloud, which can
be transformed to a novel view. Accordingly, we prepare the training data as a
pair of RGB-D images and their relative pose, and then train our network with
both current view inputs and novel view inputs. We use re-organized pairs of
SUN3D data [36] to form a current-pointset–current-image pair and a current-
pointset–novel-image pair for augmentation. In order to sample a sparse point
cloud, we first sample 4096 pixels on each RGB image including feature points
(ORB [24] or SIFT [23]), image edges and randomly sampled points. Then these
pixels are inversely projected as a 3D point cloud, using the depth map and
camera intrinsics, resulting in a colored point cloud.

Testing Data Preprocessing. We prepare two different types of point clouds
for the evaluation of the scene revealing and novel view synthesis tasks. These
two tasks have a significant difference: the scene revealing task intends to recover
source images that participated in the generation of input pointsets, while the
novel view synthesis task requires input pointsets generated from new views. As
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invsfm is the closest work to ours, for the scene revealing task we test our trained
model on the SfM dataset they provide, which is processed from the NYU-V2
dataset[33] using COLMAP. As is typical for visual odometry or SLAM systems,
3D points are only triangulated from key frames. Therefore, we can evaluate
the quality of novel view synthesis by using the remaining frames and the SfM
pointset. In our experiment, we utilized DSO on the ICL-NUIM dataset to obtain
pointsets and estimate the results for novel view synthesis. For unifying the size
of input pointsets to n× 6, we apply a sampling technique: randomly sampling
when more than n points are in the field of view; and using nearest neighbor
upsampling when there are fewer than n points.

Implementation Details. Our network is implemented using PyTorch and is
trained with point clouds of size 4096× 6 and images of size 256× 256 using the
Adam optimizer [16]. Since RefineNet is designed to perform image inpainting
given a coarse input, we use the same empirical hyperparameter settings as
EdgeConnect [26]: λ`1 = 1, λadv = λfeat = 0.1, and λstyle = 250. The learning
rate of each generator starts at 10−4 and decreases to 10−6 during training until
the objective converges. Discriminators are trained with a learning rate one tenth
of the generators’ rate.

Metrics. We measure the quality of the synthesized images using the following
metrics: mean absolute error (MAE); structural similarity index (SSIM) with a
window size of 11; and peak signal-to-noise ratio (PSNR). Here, a lower MAE
and a higher SSIM or PSNR value indicates better results.

Runtime. The runtime for training on a single GTX 1080Ti GPU is 3d 21h
50min for 30K training examples and 50 epochs. For inference on a single TITAN
XP GPU, the inference time is 0.038s to synthesize a 256 × 256 image from an
N = 4096 point cloud. In comparison, invsfm takes 0.068s, almost double our
inference time. For the PointEncoder/ImageDecoder/RefineNet, the inference
time is divided up as 0.015/0.018/0.005s.

4.1 Cascaded Outputs Comparison

In Figure 3 we qualitatively compare the coarse and refined outputs of our two
step generators where the size of input point clouds are all sampled to 4096.
While the coarse results have good shape and patch reconstruction fidelity, the
refined results recover colors and edges better. In addition, numerical compar-
ison (Ours-coarse and Ours-refined) in Table 1 indicates that the RefineNet
improves the results significantly. However, the performance of our coarse and
refined outputs do not improve as the number of sampled points increases. The
main reason is that there may not be that number of points in the field of view
for many scenes and our upsampling strategy just replicates the points. Another
reason is that we trained our model using 4096 points, thus the best performance
is achieved when sampling the same number of points during testing. This re-
flects the capacity of our model for generating realistic images from very sparse
pointsets. In our case, a 256× 256 image is synthesized from only 4096 points,
which is less than 6.25% of the pixels.
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Fig. 3. Comparison of coarse and refined outputs. (Left to right) Input pointset,
coarse output, refined output and ground-truth image. The input point clouds are sam-
pled to a size of 4096. The coarse outputs reconstruct region shapes and patches while
the refined outputs improve the color consistency and repair regions with artifacts.

4.2 Scene Revealing Evaluation

To evaluate scene revealing performance, we utilize pointsets obtained from SFM
on the NYU-V2 dataset. We make qualitative comparison of our approach with
invsfm in Figure 4 (first four columns), and additional results (last four columns)
are reported using pointsets generated from RGB-D images. The results demon-
strate that our work recovers sharper image edges and maintains better color
consistency. With the 3D point features learnt by the PointEncoder, the network
is able to generate more complete shapes, including small objects. In Table 1,
quantitative results are given for comparison where our refined outputs achieve
a notable improvement over invsfm. Even when using fewer input points, our
approach has higher SSIM and PSNR scores as well as a lower MAE. It is also
remarkable that our coarse results correspond closely to the results of invsfm,
which reflects the effectiveness of our combination of the PointEncoder and Im-
ageDecoder. Finally, the performance of our refined outputs remains stable with
respect to the size of input pointsets, which indicates that our approach is robust
to pointset density.
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Fig. 4. Qualitative results for the scene revealing task on NYU-V2. (Top
to bottom) Input pointset, invsfm results, our results, ground-truth images. Here our
method uses 4096 sampled points while invsfm uses all points. The scenes are diverse
and the point cloud sources differ: the first four are captured using SfM while the
last four are sampled from RGB-D images. The first three columns show that our
method generates sharper edges and better colors. Moreover, our results give better
shape completion (red boxes) and finer small object reconstruction (green boxes).

Table 1. Quantitative results for the scene revealing task on NYU-V2. The
second column ‘Max Points’ refers to the size of the input point clouds, where 4096,
8192 and 12288 mean that the point clouds were sampled to this size using the sampling
strategy outlined in Section 4, and >20000 means that all points in the field of view
were used. ↑ means that higher is better and ↓ means that lower is better.

Max Points MAE ↓ PSNR ↑ SSIM ↑

invsfm [28]

4096 0.156 14.178 0.513

8192 0.151 14.459 0.538

>20000 0.150 14.507 0.544

Ours-coarse

4096 0.154 14.275 0.414

8192 0.155 14.211 0.435

12288 0.164 13.670 0.408

Ours-refined

4096 0.117 16.439 0.566

8192 0.119 16.266 0.577

12288 0.125 16.011 0.567

4.3 Novel View Synthesis Evaluation

Since the input of the network is a 3D pointset, synthesizing novel views of
scenes can easily be achieved. As mentioned, we tested our proposed method on
the non-keyframes of the DSO output. Note that non-keyframes are all aligned
to specific poses in the pointsets, which thus can be seen as novel viewpoints
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Fig. 5. Qualitative results for the novel view synthesis task on ICL-NUIM.
(Top to bottom) Input pointset, invsfm results, our results, ground truth images. Here
4096 points are sampled for our method while invsfm takes all points. Our method
constructs images with better color consistency (first two columns), sharper edges (red
box), and finer-detail for small objects (green box).

with respect to the keyframes. We report the results of our model along with
invsfm. Neither model is trained or fine-tuned on this dataset to ensure fair
comparison. Qualitative results are displayed in Figure 5 which shows that our
model has advantages over invsfm. While the color effects of invsfm may partially
fail in some cases, our approach recovers images with color consistency. The main
characteristic of our model’s ability to maintain shapes is also prominent here.
Moreover, from the quantitative results in Table 2, we observe that our model
outperforms invsfm, despite having fewer 3D points in the input pointset, by a
greater margin than for the scene revealing task.
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Table 2. Quantitative results for the novel view synthesis task on ICL-
NUIM. Our method samples 4096 or 8192 3D points as input while invsfm takes all
points in the view field. Our model achieves better results despite having many fewer
input points.

Max Points MAE ↓ PSNR ↑ SSIM ↑
invsfm [28] >20000 0.146 14.737 0.458

Ours-Coarse
4096 0.134 15.6 0.381

8192 0.138 15.4 0.374

Ours-Refined
4096 0.097 18.07 0.579

8192 0.101 17.75 0.587

Table 3. Quantitative results on KITTI. We compare the output for scene re-
vealing and view synthesis tasks on KITTI. Note that we did not train on any outdoor
datasets, but our model is still able to generalize reasonably well to this data.

Type MAE ↓ PSNR ↑ SSIM ↑
Scene revealing 0.154 13.8 0.514

Novel view synthesis 0.165 12.8 0.340

4.4 Results on the KITTI dataset

The LiDAR sensor and camera on the KITTI car are synchronized and calibrated
with each other. While LiDAR provides accurate measurements of the 3D space,
the camera captures the color and texture of a scene. By projecting the 3D
pointset onto image planes, we can obtain the RGB values of each 3D point. Since
the KITTI dataset also gives relative poses between frames in a sequence, novel
view synthesis evaluation may be done on such a dataset. Figure 6 illustrates
qualitative results for the scene revealing and view synthesis tasks. Although our
model was not trained or fine-tuned on this dataset (or any outdoor dataset), it
presents plausible results in that image colors, edges and basic shapes of objects
are reconstructed effectively.

5 Conclusion

From the reported results above, it is clear that our pipeline has improved the
performance over invsfm. This suggested it is possible to bypass a depthmap
inpainting stage as used in invsfm. One possible explanation is that convolutions
performed on the projected depthmap only share information between points
that project nearby on the image, whereas processing directly on the point clouds
removes this bias, sharing information between points that are nearby in 3D
space. This difference in what is considered “nearby” is critical when reasoning
about the geometric structure of a scene. It also means that the network is
able to reason more intelligently about occlusion, beyond just z-buffering points
that share a pixel. Indeed, the projection approach destroys information when
multiple points project to the same pixel.
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Fig. 6. Qualitative results on KITTI. (Top to bottom) Input pointset, scene re-
vealing task results, novel view synthesis task results, ground truth images. The input
pointsets are sampled to size 4096. Our model was not trained on any outdoor dataset,
but still generates plausible images and recovers the shape of objects.

In this paper, we have demonstrated a deep learning solution to the view
synthesis problem given a sparse colored 3D pointset as input. Our network is
shown to perform satisfactorily in completing object shapes and reconstructing
small objects, as well as maintaining color consistency. One limitation of the work
is its sensitivity to outliers in the input pointset. Since outliers are common
in many datasets, methods for filtering them from the point cloud could be
investigated in future work, to improve the quality of the generated images. Our
method assumes a static scene. A possible future extension is to synthesize novel
views in a non-rigid dynamic scene [18].
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