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Abstract. Time-of-Flight (ToF) sensors have been increasingly used on
mobile devices for depth sensing. However, the existence of noise, such as
Multi-Path Interference (MPI) and shot noise, degrades the ToF imaging
quality. Previous CNN-based methods remove ToF depth noise without
considering the spatial hierarchical structure of the scene, which leads to
failures in obtaining high quality depth images from a complex scene. In
this paper, we propose a Spatial Hierarchy Aware Residual Pyramid Net-
work, called SHARP-Net, to remove the depth noise by fully exploiting
the geometry information of the scene in different scales. SHARP-Net
first introduces a Residual Regression Module, which utilizes the depth
images and amplitude images as the input, to calculate the depth resid-
ual progressively. Then, a Residual Fusion Module, summing over depth
residuals from all scales, is imported to refine the depth residual by fus-
ing multi-scale geometry information. Finally, shot noise is further elimi-
nated by a Kernel Prediction Network. Experimental results demonstrate
that our method significantly outperforms state-of-the-art ToF depth de-
noising methods on both synthetic and realistic datasets. The source code
is available at https://github.com/ashesknight/tof-mpi-remove.

Keywords: Time-of-Flight, Multi-Path Interference, Spatial Hierarchy,
Residual Pyramid, Depth Denoising

1 Introduction

Depth plays an important role in current research, especially in the field of
computer vision. In the past decades, researchers have proposed various meth-
ods to obtain depth [30, 29, 22], among which Time-of-Flight (ToF) technology
is becoming increasingly popular for depth sensing. Many successful consumer
products, such as Kinect One [21], are equipped with ToF sensors, providing
high quality depth image. These devices further promote many applications in
computer vision areas, for example scene understanding, action recognition and
human-computer interaction. However, ToF depth images suffer from various
noises, such as Multi-Path Interference (MPI) and shot noise, which limit the
applicability of ToF imaging technologies.

ToF depth images are vulnerable to MPI noise, which originates in the fact
that numerous multi-bounce lights are collected by one pixel during the exposure
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Fig. 1. (a) ToF amplitude image. (b) ToF ground truth depth. (c) Depth error map
caused by shot noise. (d) Depth error map caused by MPI. The example comes from a
synthetic dataset.

time. The existence of MPI breaks the key assumption that the receiving light
is only reflected once in the scene and results in serious ToF depth error. Shot
noise, a common and inevitable noise caused by sensor electronics, is another
source of ToF depth noise. Fig. 1 shows the depth error maps caused by shot
noise and MPI noise respectively. It can be seen that both shot noise and MPI
noise are widespread in ToF depth images but MPI noise is significantly intense
in several regions such as corner and edge areas.

Recently, many Convolutional Neural Networks (CNN) based methods have
been proposed for MPI removal in ToF sensors [17, 23, 26]. The fundamental
theory of these CNN based methods is that the MPI noise of a pixel can be
estimated as a linear combination of information from surrounding pixels. In
the image space, CNN is a proper way to model this linear combination process
with spatial convolution and achieves encouraging results. To fit the unknown
parameters of convolution kernel, supervised learning is often utilized and the
ground-truth labels without MPI of scenes are required. Since it is difficult to
get the ground truth depth of realistic scenes, many synthetic ToF datasets are
introduced for the training and testing of neural networks. Usually, these datasets
consist of ToF depth images as well as corresponding amplitude images. Some
datasets even contain the raw measurements of ToF sensors and color images,
both of which are usually captured by the calibrated RGBD camera.

The large-scale datasets make it possible to learn the linear combination
process of light transport through CNN based methods. However, the existing
CNN based methods still have some limitations. Especially, the elimination of
MPI noise for a complex scene is not satisfying. Specifically, in a complex scene,
many objects with different shapes and sizes are located close to each other.
In this case, each pixel of the ToF sensor may collect many light signals which
are from various indirect light paths, which easily leads to intense MPI noise.
Eliminating MPI noise in a complex scene still remains a challenging problem
and needs more investigation.

A key observation is that in a scene, the objects usually have spatial hierar-
chical structures. For example, a showcase, a dog toy and the head of the dog toy
can formulate a hierarchical relationship. In this case, the depth value of a point
located at the surface of any object is usually affected by these three interre-
lated objects. In a complex scene with large-size shapes and detailed structures,
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there should be more diverse hierarchical relationships. And previous works have
demonstrated that utilizing the hierarchical representations of the scene can lead
to improvement in computer vision filed such as scene understanding [24, 27],
image embedding [4], image denoising [20], object detection [19], depth and 3D
shape estimation [6, 18]. Aforementioned works inspire us to explicitly utilize the
spatial hierarchical relationships to improve the result of the MPI removal for
ToF depth.

In this paper, we propose a Spatial Hierarchy Aware Residual Pyramid Net-
work (SHARP-Net) to fully exploit scene structures in multiple scales for ToF
depth denoising. The spatial hierarchical structure of the scene, in the forms
of a feature pyramid with multiple scales, can provide a proper receptive field
and more ample geometric relationships between the objects of the scene for the
network, which improves the performance of noise removal.

Within SHARP-Net, a Residual Regression Module is first introduced, which
consists of a feature extractor to build a feature pyramid and residual regression
blocks to establish a depth residual pyramid in a coarse-to-fine manner. At up-
per levels of the residual pyramid, the depth residual maps represent MPI noise
regressed by utilizing global geometry information. At lower levels, the depth
residual maps describe subtle MPI effects by considering local scene structures.
The Residual Regression Module pushes every level to utilize the available hi-
erarchical relationships of the current level and deeply extracts the geometric
information lying in the corresponding hierarchy of the scene. The geometric
information obtained in different scales give excellent hints for estimating the
MPI noise. Our proposed Residual Regression Module generates a depth residual
map for each level, which is much different from the widely used U-Net structure.
After going through Residual Regression Module, a depth residual pyramid is
obtained to represent MPI estimation corresponding to the hierarchical struc-
ture of the scene. In order to further optimize the performance of SHARP-Net
on both large-size shapes and detailed structures, we propose a Residual Fu-
sion Module to explicitly choose predominant components by summing over the
depth residuals from all scales. Finally, we employ a Depth Refinement Module,
which is based on a Kernel Prediction Network, to remove shot noise and refine
depth images.

Combining the Residual Regression Module, Residual Fusion Module and
Depth Refinement Module, our SHARP-Net accurately removes noise for ToF
depth images, especially MPI noise and shot noise. In short, we make the fol-
lowing contributions:

– We propose a Residual Regression Module to explicitly exploit the spatial
hierarchical structure of the scene to accurately remove MPI noise and shot
noise in large-size shapes and detailed structures simultaneously.

– We propose a Residual Fusion Module to selectively integrate the geometric
information in different scales to further correct MPI noise, and introduce a
Depth Refinement Module to effectively eliminate the shot noise.
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– The proposed SHARP-Net significantly outperforms the state-of-the-art meth-
ods in the quantitative and qualitative comparison for ToF depth denoising
on both the synthetic and realistic datasets.

2 Related Work

ToF imaging is affected by noise from different sources, such as shot noise and
MPI noise [15, 28]. Shot noise is caused by sensor electronics, which appears in
all sensors. Shot noise removal for ToF sensors is well investigated. Traditional
filtering algorithms, such as bilateral filtering, are able to eliminate shot noise
effectively [2, 16]. In contrast, MPI removal is a more difficult problem in ToF
depth denoising. Many physics-based and learning-based MPI removal methods
have been proposed.

For physics-based methods, Fuchs et al. conduct a series of studies to estimate
MPI noise in the scene, from using single modulation frequency [9] to considering
multiple albedos and reflections [10, 14]. Feigin et al. propose a multi-frequency
method to correct MPI through comparing the pixel-level changes of the raw
measurements at different frequencies [5]. Gupta et al. study the impact of mod-
ulation frequencies on MPI and propose a phasor imaging method by emitting
two signals with frequencies of great differences [12]. Freedman et al. propose
a model based on a compressible backscattering representation to tackle the
multi-path with more than two paths and achieve real-time processing speed [8].

For learning-based methods, Marco et al. exploit the transient imaging tech-
nology [13] to simulate the generation of MPI noise in ToF imaging process and
produce a large dataset for ToF depth denoising. They also propose a two-stage
deep neural network to refine ToF depth images [17]. Su et al. propose a deep
end-to-end network for ToF depth denoising with raw correlation measurements
as the input [26]. Guo et al. produce a large-scale ToF dataset FLAT, and intro-
duce a kernel prediction network to remove MPI and shot noise [11]. To overcome
the domain shift between the unlabelled realistic scene and the synthetic train-
ing dataset, Agresti et al. exploit an adversarial learning strategy, based on the
generative adversarial network, to perform an unsupervised domain adaptation
from the synthetic dataset to realistic scenes [2]. Qiu et al. take into account the
corresponding RGB images provided by the RGB-D camera and propose a deep
end-to-end network for camera alignment and ToF depth refinement [23].

Recently, residual pyramid methods have been adopted for a variety of com-
puter vision tasks. For stereo matching, Song et al. build a residual pyramid to
solve the degradation of depth images in tough areas, such as non-texture ar-
eas, boundary areas and tiny details [25]. For the monocular depth estimation,
Chen et al. propose a structure-aware residual pyramid to recover the depth
image with high visual quality in a coarse-to-fine manner [6]. For image segmen-
tation, Chen et al. propose a residual pyramid network to learn the main and
residual segmentation in different scales [7]. For image super-resolution, Zheng
et al. employ a joint residual pyramid network to effectively enlarge the recep-
tive fields [31]. Our SHARP-Net refers to residual pyramid methods as well and
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achieve success in ToF depth denoising, which will be explained in detail of the
following sections. To the best of our knowledge, SHARP-Net is the first work to
apply residual pyramid to ToF depth denoising, which greatly surpasses existing
methods by integrating spatial hierarchy.

3 ToF Imaging Model

In this section, we briefly introduce the mathematical models of ToF imaging
and MPI.

With a single modulation frequency fω and four-step phase-shifted measure-
ments ri (i = 1, 2, 3, 4), the depth d at each pixel is computed as

d =
c

4πfω
arctan

(
r4 − r2
r1 − r3

)
, (1)

where c is the speed of light in the vacuum. Under the ideal condition, it is
assumed that a single light pulse is reflected only once in the scene and captured
by a pixel (x, y) on the sensor. So the raw correlation measurement ri can be
modeled as

ri(x, y) =

∫ T

0

s(t)b cos(ωt− ψi)dt, (2)

where s(t) is the received signal, b cos(ωt− ψi) is the referenced periodic signal,
ψi is the phase offset and T is the exposure temporal range.

In real world, MPI noise always exists. In this case, the received signal is
changed to ŝ(t), which can be described as

ŝ(t) = s(t) +
∑
p∈P

sp(t), (3)

where P is the set of all the light paths p followed by indirectly received signals.
Here indirectly received signals sp(t) represent the captured signals which are
reflected multiple bounces after being emitted to the scene. The difference be-
tween s(t) and ŝ(t) further leads to a deviation to the depth d. In our proposed
network, we call this deviation the depth residual. To better regress the depth
residual, we bring in a residual pyramid to estimate MPI noise in multiple scales.
At different levels of the pyramid, the deviation induced by the set P is regressed
and further optimized by our network.

4 Spatial Hierarchy Aware Residual Pyramid Network

Our proposed Spatial Hierarchy Aware Residual Pyramid Network (SHARP-
Net) consists of three parts: a Residual Regression Module as the backbone
for multi-scale feature extraction, a Residual Fusion Module and a Depth Re-
finement Module to optimize the performance. The flowchart of SHARP-Net is
shown in Fig. 2. The following subsections explain these three parts respectively.
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Fig. 2. Flowchart of Spatial Hierarchy Aware Residual Pyramid Network (SHARP-
Net). Here

⊙
means the dot product operation, © is the concatenate operation,

and
⊕

represents the addition operation. The ‘Patch2Vec’ represents the operation to
reshape the neighbourhoods of each pixel to a vector.

4.1 Residual Regression Module

As the backbone of SHARP-Net, Residual Regression Module first introduces
a feature encoder to extract a multi-scale feature pyramid {Fi}Li=1 from the
combination of depth image Din and amplitude image A, where Fi indicates
the feature map extracted at the ith level, and L is the number of layers in the
pyramid. When the size of the input image is W ×H, the size of feature maps
at the ith level is W

2i−1 × H
2i−1 × Ci, where Ci is the number of output channels.

In our network, we set L = 6 to keep the amount of parameters similar to that
of state-of-the-art methods. The corresponding Ci are 16, 32, 64, 128, 192, 256
respectively. From bottom to top, the feature pyramid gradually encodes the
geometric information of the more detailed structure in the scene.

At each level, a Residual Regression Block, as shown in Fig. 3, is proposed
to predict the depth residual map. The depth residual map from the lower level
Ri+1 is upsampled by the factor of 2 via bi-cubic interpolation, and then concate-
nated with the feature map at the current level. The new concatenated volume is
the input of five sequential convolutional layers, which output the residual map
Ri for the current level. Specifically, for the bottom level, the input of Residual
Regression Block is only the feature map with size W

32 ×
H
32 ×256 because there is
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Fig. 3. Flowchart of Residual Regression Block at the ith level

no depth residual map from the lower level. Different from the previous method
[23] that directly regresses a residual map by sequentially up-sampling feature
maps, our Residual Regression Module progressively regresses multi-scale resid-
ual maps in a coarse-to-fine manner by considering the hierarchical structures of
the scene. The residual maps in lower resolutions depict depth noise existing in
large-size shapes, while the residual map in higher resolutions focuses on depth
noise existing in detailed structures. Finally, we get a residual pyramid {Ri}Li=1

consisting of the depth residual map at each level.

4.2 Residual Fusion Module

The uppermost level of the residual pyramid provides a depth residual map with
the original resolution, which can be treated as an estimation of the depth er-
ror. However, depth residual map from a single level cannot fully utilize the
geometry information of the scene. Although the uppermost level of the residual
pyramid contains the information from all the levels below, after the convolu-
tional operation, information from lower resolution levels may get lost. Thus,
we propose a Residual Fusion Module to explicitly combine the depth residual
maps in all scales. The depth residual map at each level is first upsampled to
the original resolution via bi-cubic interpolation. Then all the upsampled depth
residual maps are concatenated together. The new residual volume is the input
of a 1×1 convolutional layer. After the convolutional operation, we get the final
depth residual map Rout. The depth residual map is added to the original input
depth image, by which the depth image is recovered as Dinter. The details of
Residual Fusion Module are shown in Fig. 2.

4.3 Depth Refinement Module

After previous two modules, MPI noise is removed to a great extent. In the
meantime, shot noise also gets alleviated, but not as much as MPI removal. The
existence of shot noise still hinders the application of ToF depth sensing. To
address this problem, we propose a Depth Refinement Module, which utilizes
Kernel Prediction Network [3] to further remove shot noise.



8 G. Dong, Y. Zhang and Z. Xiong

Depth Refinement Module takes the intermediate depth image Dinter as the
input, and employs a U-Net model with skip connection to generate a weight
matrix. The weight matrix consists of a vectorized filter kernel for each pixel in
the depth image. In our experiment, we set the kernel size k as 3 and the size of
the weight matrix is W ×H × 9. Next, we generate a patch matrix by vectoring
a neighbourhood for each pixel in the depth image. We call the above operation
‘Patch2Vec’. When the neighbourhood is a 3 × 3 area, it is easy to calculate
that the size of the patch matrix is also W ×H × 9. Then the weight matrix is
multiplied element-wisely with the patch matrix, generating a 3D volume with
the same size. By summing over the 3D volume, we finally get the refined depth
image Dout. Fig. 2 shows details of Depth Refinement Module as well.

4.4 Loss Function

To train the parameters in our proposed SHARP-Net, we need to compute
the differences between the predicted depth image Dout and the correspond-
ing ground truth depth image Dgt. The loss function should guide our network
to accurately remove depth noise while preserving geometry details. Following
[23], our loss function has two components, which are L1 loss and its gradients
on the refined depth image. The formulation of the loss function is depicted as

L =
1

N

∑
‖Dout −Dgt‖1 + λ ‖∇Dout −∇Dgt‖1 , (4)

where ‖·‖1 represents the L1 norm, and N is the number of pixels. Here discrete
Sobel operator is utilized to compute the gradients. In our experiments, we set
λ = 10.

5 Experiments

5.1 Datasets

Our SHARP-Net is a supervised neural network to remove the noise for ToF
depth images. To train all the parameters, we need ToF datasets with ground
truth depth. To produce a suitable dataset, the mainstream method is applying
the transient rendering technology to simulate the ToF imaging process while
introducing MPI and shot noise [13]. Previous CNN based methods on ToF de-
noising have provided several synthetic datasets with thousands of scenes. In our
experiments, we select two large-scale synthetic datasets ToF-FlyingThings3D
(TFT3D) [23] and FLAT [11] for training and evaluation. The TFT3D dataset
contains 6250 different scenes such as living room and bathroom. We only uti-
lize the ToF amplitude images and ToF depth images with resolution 640× 480
as input for our proposed method. The FLAT dataset provides a total of 1929
scenes, which include the raw measurements and the corresponding ground truth
depth. By using the pipeline released by the FLAT dataset, we convert the raw
measurements to ToF depth images and ToF amplitude images with resolution
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424× 512. Furthermore, to evaluate the performance of SHARP-Net on realistic
scenes, we also adopt the True Box dataset which is constructed by Agresti et
al. in [2]. The ground truth depth of the True Box dataset is acquired by an
active stereo system jointly calibrated with a ToF sensor. In total, there are 48
different scenes with resolution 239× 320 on the dataset.

5.2 Data Pre-processing

We normalize the input depth images according to the range of depth value
provided by the dataset, and filter out the pixels whose depth value are not
within the range (0, 1]. For the convenience of experiments, we crop the images
on the TFT3D dataset and FLAT dataset to size 384 × 512. For the True Box
dataset, we crop the images to size 224×320. In addition, for the FLAT dataset,
we exclude scenes without background following the experiment setting in [23].
For all the three datasets, we randomly select 20% scenes as the test set while
the rest for training.

5.3 Training Settings

For the TFT3D dataset, the learning rate is set to be 4×10−4, which is reduced
30% after every 2 epochs. We trained SHARP-Net for 40 epochs with a batch size
of 2. For the FLAT dataset, we set the learning rate as 1×10−4 with conducting
the rate decay. We train the SHARP-Net for 100 epochs with a batch size of
8. For the True Box dataset, the training settings are consistent with that of
the TFT3D dataset. The network is implemented using TensorFlow framework
[1] and trained using Adam optimizer. With four NVIDIA TITAN Xp graphics
cards, the training process takes about 20 hours for both TFT3D and FLAT
datasets, less than half an hour for the True Box dataset.

5.4 Ablation Studies

SHARP-Net is a CNN based method with a 6-level Residual Regression Mod-
ule as the backbone and two extra fusion and refinement modules. In order to
validate the effectiveness of our proposed modules, we design experiments to
compare SHARP-Net against its variants.

– WOFusRef: A variant of SHARP-Net without the Depth Refinement Module
and the Residual Fusion Module.

– WORefine: A variant of SHARP-Net without the Depth Refinement Module.
– WOFusion: A variant of SHARP-Net without the Residual Fusion Module.
– FourLevel: A variant of SHARP-Net whose backbone has 4 levels.
– FiveLevel: A variant of SHARP-Net whose backbone has 5 levels.

For a fair comparison with FourLevel and FiveLevel, we need to ensure that
the amount of parameters of these two variants are nearly the same with SHARP-
Net. Therefore, we adjust the number of convolution kernel channels of the
variants.
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Table 1. Quantitative comparison with the variants of SHARP-Net on the TFT3D
dataset.

Model
TFT3D Dataset:MAE(cm)/Relative Error

1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

WOFusRef 0.12/7.7% 0.49/8.3% 1.08/9.4% 4.90/16.3% 1.69/13.8%
WORefine 0.12/7.7% 0.44/7.5% 0.97/8.4% 4.69/15.6% 1.55/12.7%
WOFusion 0.11/7.1% 0.42/7.2% 0.94/8.2% 5.01/16.7% 1.62/13.2%
FourLevel 0.15/9.6% 0.57/9.7% 1.24/10.7% 5.15/17.2% 1.78/14.5%
FiveLevel 0.12/7.7% 0.46/7.8% 1.00/8.8% 4.55/15.2% 1.53/12.5%

SHARP-Net 0.09/5.8% 0.30/5.1% 0.67/5.8% 3.40/11.3% 1.19/9.7%

For the quantitative comparison, we use two metrics, Mean Absolute Error
(MAE) and relative error, to evaluate the performance. The MAE between the
original noisy depth image and the ground truth depth image is depicted as the
original MAE. Then, we define the relative error as the ratio of the MAE of
each method to the MAE of the corresponding input. The overall and partial
MAE/Relative Error at each error level are also calculated. Different denoising
methods may have varying performances at different error levels. In our exper-
iment, we adopt an evaluation method that is similar to the method in [23]
to comprehensively evaluate our proposed SHARP-Net at different error levels.
First, we calculate the per-pixel absolute error value between the input depth
image and the ground truth. Then we sort all the per-pixel absolute errors in an
ascending order. Next all the pixels in the test set are split into four quantiles
(four error level sets). The difference between our evaluation method and the
method in [23] is that we sort all the pixels in the test set instead of in a single
image. This change makes our evaluation more reasonable because sorting in
the whole test set eliminates the depth distinction over images. The pixels in
the range of 0%-25% are classified into the 1st error level. In the same way, the
pixels in the range of 25%-50% and 50%-75% and 75%-100% are classified into
the 2nd, 3rd, and 4th error level. Pixels with depth value beyond the maximum
depth for each dataset are considered as outlier here and excluded from any error
level sets. Finally, we calculate the partial MAE and overall MAE for different
error levels respectively.

For ablation studies, we just utilize the TFT3D dataset to compare our
SHARP-Net against its variants. The overall MAE and partial MAE at each error
level are reported in Table 1. From Table 1, it can be observed that SHARP-Net
achieves the lowest MAE and relative error at all error levels. In addition, ‘4th
Quan.’ contributes the greatest share on the value of overall MAE compared
with the remanent three quantiles. Comparing SHARP-Net with FourLevel and
FiveLevel variants, we can see that at all error levels, MAE decreases as the
total number of pyramid levels increases. This is because the network explicitly
divides the scene into a more detailed hierarchical structure if the pyramid has
more levels, which results in a more accurate estimation of MPI noise.
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Table 2. Quantitative comparison with competitive ToF depth denoising methods on
TFT3D, FLAT and True Box datasets.

Model
TFT3D Dataset: MAE(cm)/Relative Error

1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

DeepToF 0.47/30.1% 1.56/26.6% 3.11/27.0% 9.01/30.0% 3.54/28.9%
ToF-KPN 0.19/12.2% 0.82/13.9% 1.87/16.2% 6.64/21.3% 2.38/19.4%

SHARP-Net 0.09/5.8% 0.30/5.1% 0.67/5.8% 3.40/11.3% 1.19/9.7%

Model
FLAT Dataset: MAE(cm)/Relative Error

1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

DeepToF 0.09/27.3% 0.44/33.6% 1.13/43.5% 2.74/37.8% 1.10/43.3%
ToF-KPN 0.08/24.2% 0.30/22.9% 0.66/25.4% 2.12/29.3% 0.79/31.1%

SHARP-Net 0.04/12.1% 0.14/10.7% 0.32/12.3% 1.33/18.4% 0.46/18.1%

Model
True Box Dataset: MAE(cm)/Relative Error

1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

DeepToF 0.31/42.5% 1.06/49.5% 2.15/52.9% 5.75/53.9% 2.32/52.7%
ToF-KPN 0.28/38.4% 0.87/40.6% 1.64/40.4% 4.51/42.3% 1.82/41.4%

SHARP-Net 0.15/20.5% 0.47/21.9% 0.91/22.4% 3.02/28.3% 1.14/25.9%

Fig. 4. The per-pixel error distribution curves of different methods on the TFT3D,
FLAT and True Box datasets. The distribution curves of these three methods show that
our proposed SHARP-Net obtains the optimal error distribution on all the datasets.

Comparing SHARP-Net with WORefine and WOFusion, it can be observed
that the employment of Residual Fusion Module and Depth Refinement Mod-
ule reduce the overall MAE by 26% and 23% respectively, which indicates the
necessity of those two modules. Linking the comparison between WORefine and
WOFusion at all error levels, it can be seen that either of the two modules fa-
cilitates the decline of MAE but the extent is limited. However, considering the
difference between WOFusRef and SHARP-Net on the MAE and relative error,
we conclude that utilizing these two modules together can greatly improve the
performance of the noise removal at all error levels.
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5.5 Results on Synthetic Datasets

To evaluate the performance of our proposed SHARP-Net, we compare it with
two state-of-the-art ToF depth denoising methods DeepToF [17] and ToF-KPN
[23]. The inputs of all selected methods are the concatenation of depth im-
ages and corresponding amplitude images. It should be noted that the original
DeepToF is smaller than SHARP-Net in term of model size. For a fair compar-
ison, we take the same strategy as [23] to replace the original DeepToF model
with the U-Net backbone of ToF-KPN. The quantitative experimental results
on the TFT3D and FLAT datasets are reported in Table 2. It can be seen that
SHARP-Net achieves the lowest MAE and relative error at all error levels of the
two synthetic datasets. The MAE between the input depth and ground truth
depth is 12.24 cm and 2.54 cm for both TFT3D and FLAT datasets. After
training on these datasets, SHARP-Net reduces the MAE to 1.19 cm and 0.46
cm in the test sets respectively.

The relative error is also a good indicator to measure the performance for
different methods. From Table 2, it can be seen that the DeepToF method gives
similar relative errors for all the four error levels, especially on the TFT3D
dataset. Compared with two other methods, DeepToF’s performance in terms of
the relative error indicator is low. For ToF-KPN, the relative error increase as the
error level increasing, which means ToF-KPN has better denoising performance
for higher error level sets. For SHARP-Net, it can be seen that relative error is
much smaller than the other two methods on the TFT3D dataset. on the FLAT
dataset, SHARP-Net is much better than DeepToF in term of relative error.
Compared with ToF-KPN, SHARP-Net performs the same as ToF-KPN at the
preceding three error levels, and outperform ToF-KPN at the highest error level.

For an intuitive comparison, in Fig. 4, we illustrate the per-pixel error distri-
bution curves for all the methods on the TFT3D and FLAT datasets. It can be
seen that after denoising by our SHARP-Net, the depth errors are mainly con-
centrated in the lower error region. In Fig. 5, we give several qualitative com-
parison results for SHARP-Net, ToF-KPN and DeepToF. It can be seen that
the depth image corrected by our proposed method is more accurate, preserv-
ing more geometry structures in the scene. We observe that ToF-KPN performs
better than DeepToF in removing the noise existing in detailed structures. How-
ever, the noise removal of ToF-KPN on large-size shapes is not adequate. In
contrast, SHARP-Net demonstrates better results for large-size shapes and de-
tailed structures simultaneously. In fact, our SHARP-Net also has some failure
cases in depth denoising, for example low reflection areas and extremely complex
geometry structures, which are the limitations of our method.

In Fig. 6, we compare the performance of all the methods along a scan line on
a depth image selected from the TFT3D dataset. From the ToF amplitude image,
we can observe that the scene is located in a living room. Many different objects
appear in the living room and demonstrate complex hierarchical structures. The
distinct depth variation along this scan line makes it suitable for this comparison.
It can be seen that after depth denoising, the depth data corrected by SHARP-
Net draw the closest line to the ground truth.
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Fig. 5. Qualitative comparison on the TFT3D dataset, the FLAT dataset and the
True Box dataset for ToF depth denoising. For each dataset, two scenes are selected
for comparison. The colorbars in the right show the color scale for error maps with the
unit in cm.

5.6 Results on the Realistic Dataset

Furthermore, we test our proposed SHARP-Net along with previous methods on
a realistic dataset. All the tested models are retrained on the True Box training
set. The experimental results for all the methods on the True Box dataset are also
shown in Table 2. It can be seen that SHARP-Net surpasses other methods at all
error levels. We also find that the relative errors at all error levels on the True Box
dataset are significantly larger than those on the synthetic datasets. One reason
may be that the noise generation mechanism for realistic ToF depth noise is more
complex, which are not accurately modeled on the synthetic datasets. From Fig.
4, it can be observed that the error distribution curve of SHARP-Net on the True
Box dataset is similar to those on the two synthetic datasets. Compared with
other methods, after denoising by SHARP-Net, the remaining depth error on
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Fig. 6. Quantitative comparison with previous works along a green scan line in a depth
image from the TFT3D dataset. ‘GT’ means the ground truth depth. Our proposed
SHARP-Net demonstrates the best performance on depth denoising.

the dataset is concentrated in the small value area. On the bottom of Fig. 5, we
demonstrate the qualitative comparison results on two scenes selected from the
True Box test set. We can observe that for this dataset, SHARP-Net presents the
best visual effects. Compared with other methods, SHARP-Net performs better
in large-size shapes, especially in the background areas.

6 Conclusion

The Multi-Path Interference (MPI) seriously degrades the depth image captured
by ToF sensors. In this work, we propose SHARP-Net, a Spatial Hierarchy Aware
Residual Pyramid Network for ToF depth denoising. Our SHARP-Net progres-
sively utilizes the spatial hierarchical structure of the scene to regress depth
residual maps in different scales, obtaining a residual pyramid. A Residual Fu-
sion Module is introduced to selectively fuse the residual pyramid by summing
over the depth residual maps at all levels in the pyramid, and a Kernel Prediction
Network based Depth Refinement Module is employed to further eliminate shot
noise. Ablation studies validate the effectiveness of these modules. Experimental
results demonstrate that our SHARP-Net greatly surpasses the state-of-the-art
methods in both quantitative and qualitative comparison on synthetic and real-
istic datasets.
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