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Abstract. Aerial scene recognition is a fundamental task in remote
sensing and has recently received increased interest. While the visual
information from overhead images with powerful models and efficient
algorithms yields considerable performance on scene recognition, it still
suffers from the variation of ground objects, lighting conditions etc. In-
spired by the multi-channel perception theory in cognition science, in
this paper, for improving the performance on the aerial scene recogni-
tion, we explore a novel audiovisual aerial scene recognition task using
both images and sounds as input. Based on an observation that some
specific sound events are more likely to be heard at a given geographic
location, we propose to exploit the knowledge from the sound events to
improve the performance on the aerial scene recognition. For this pur-
pose, we have constructed a new dataset named AuDio Visual Aerial
sceNe reCognition datasEt (ADVANCE). With the help of this dataset,
we evaluate three proposed approaches for transferring the sound event
knowledge to the aerial scene recognition task in a multimodal learning
framework, and show the benefit of exploiting the audio information for
the aerial scene recognition. The source code is publicly available for
reproducibility purposes.5

Keywords: Cross-task transfer, aerial scene classification, geotagged
sound, multimodal learning, remote sensing

1 Introduction

Scene recognition is a longstanding, hallmark problem in the field of computer
vision, and it refers to assigning a scene-level label to an image based on its
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Fig. 1. Two examples showing aerial scenes’ soundscapes could be a helpful cue for
identifying their scene categories. More details of the audiovisual model please refer to
Section 4.3. Here, we use the class activation mapping (CAM) technique to visualize
what models are looking.

overall contents. Most scene recognition approaches in the community make use
of ground images and have achieved remarkable performance. By contrast, over-
head images usually cover larger geographical areas and are capable of offering
more comprehensive information from a bird’s eye view than ground images.
Hence aerial scene recognition has received increased interest. The success of
current state-of-the-art aerial scene understanding models can be attributed to
the development of novel convolutional neural networks (CNNs) that aim at
learning good visual representations from images.

Albeit successful, these models may not work well in some cases, particularly
when they are directly used in worldwide applications, suffering the pervasive fac-
tors, such as different remote imaging sensors, lighting conditions, orientations,
and seasonal variations. A study in neurobiology reveals that human perception
usually benefits from the integration of both visual and auditory knowledge.
Inspired by this investigation, we argue that aerial scenes’ soundscapes are par-
tially free of the aforementioned factors and can be a helpful cue for identifying
scene categories (Fig. 1). This is based on an observation that the visual appear-
ance of an aerial scene and its soundscape are closely connected. For instance,
sound events like broadcasting, people talking, and perhaps whistling are likely
to be heard in all train stations in the world, and cheering and shouting are
expected to hear in most sports lands. However, incorporating the sound knowl-
edge into a visual aerial scene recognition model and assessing its contributions
to this task still remain underexplored. In addition, it is worth mentioning that
with the now widespread availability of smartphones, wearable devices, and au-
dio sharing platforms, geotagged audio data have been easily accessible, which
enables us to explore the topic in this paper.

In this work, we are interested in the audiovisual aerial scene recognition
task that simultaneously uses both visual and audio messages to identify the
scene of a geographical region. To this end, we construct a new dataset, named
AuDio Visual Aerial sceNe reCognition datasEt (ADVANCE), providing 5075
paired images and sound clips categorized to 13 scenes, which will be intro-
duced in Section 3, for exploring the aerial scene recognition task. According
to our preliminary experiments, simply concatenating representations from the
two modalities is not helpful, slightly degrading the recognition performance
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compared to using a vision-based model. Knowing that sound events are related
to scenes, this preliminary result indicates that the model cannot directly learn
the underlying relation between the sound events and the scenes. So directly
transferring the sound event knowledge to scene recognition may be the key to
making progress. Following this direction, with the multimodal representations,
we propose three approaches that can effectively exploit the audio knowledge
to solve the aerial scene recognition task, which will be detailed in Section 4.
We compare our proposed approaches with baselines in Section 5, showing the
benefit of exploiting the sound event knowledge for the aerial scene recognition
task.

Thereby, this work’s contributions are threefold.

– The audiovisual perception of human beings gives us an incentive to inves-
tigate a novel audiovisual aerial scene recognition task. We are not aware of
any previous work exploring this topic.

– We create an annotated dataset consisting of 5075 geotagged aerial image-
sound pairs involving 13 scene classes. This dataset covers a large variety of
scenes from across the world.

– We propose three approaches to exploit the audio knowledge, i.e., preserving
the capacity of recognizing sound events, constructing a mutual representa-
tion in order to learn the underlying relation between sound events and
scenes, and directly learning this relation through the posterior probabilities
of sound events given a scene. In addition, we validate the effectiveness of
these approaches through extensive ablation studies and experiments.

2 Related work

In this section, we briefly review some related works in aerial scene recognition,
multimodal learning, and cross-task transfer.

Aerial Scene Recognition. Earlier studies on aerial scene recognition [32,23,24]
mainly focused on extracting low-level visual attributes and/or modeling mid-
level spatial features [15,16,28]. Recently, deep networks, especially CNNs, have
achieved a large development in aerial scene recognition [20,4,5]. Moreover, some
methods were proposed to solve the problem of the limited collection of aerial
images by employing more efficient networks [33,37,19]. Although these methods
have achieved great empirical success, they usually learn scene knowledge from
the same modality, i.e., image. Different from previous works, this paper mainly
focuses on exploiting multiple modalities (i.e. image and sound) to achieve robust
aerial scene recognition performance.

Multimodal Learning. Information in the real world usually comes as different
modalities, with each modality being characterized by very distinct statistical
properties, e.g., sound and image [3]. An expected way to improve relevant task
performance is by integrating the information from different modalities. In past
decades, amounts of works have developed promising methods on the related
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Fig. 2. The aerial images acquisition and labeling steps.

topics, such as reducing the audio noise by introducing visual lip information for
speech recognition [11,1], improving the performance of facial sentiment recog-
nition by resorting to the voice signal [35,35]. Recently, more attention is paid
to the task of learning to analyze real-world multimodal scenarios [34,21,12,13]
and events [26,31]. These works have confirmed the advantages of multimodal
learning. In this paper, we proposed to recognize the aerial scene by leveraging
the bridge between scene and sound to help better understand aerial scenes.

Cross-task Transfer. Transferring the learned knowledge from one task to an-
other related task has been approved as an effective way for better data modeling
and messages correlating [6,2,14]. Aytar et al. [2] proposed a teacher-student
framework that transfers the discriminative knowledge of visual recognition to
the representation learning task of sound modality via minimizing the differences
in the distribution of categories. Imoto et al. [14] proposed a method for sound
event detection by transferring the knowledge of scenes with soft labels. Gan et
al. [8] transferred the visual object location knowledge for auditory localization
learning. Salem et al. [25] proposed to transfer the sound clustering knowledge
to the image recognition task by predicting the distribution of sound clusters
from an overhead image, similarly work can be found in [22]. By contrast, this
paper strives to exploit effective sound event knowledge to facilitate the aerial
scene understanding task.

3 Dataset

To our knowledge, the audiovisual aerial scene recognition task has not been
explored before. Salem et al. [25] established a dataset to explore the correlation
between geotagged sound clips and overhead images. For further facilitating the
research in this field, we construct a new dataset, with high-quality images and
scene labels, named as ADVANCE6, which in summary contains 5075 pairs of
aerial images and sounds, classified into 13 classes.

6 The dataset webpage: https://akchen.github.io/ADVANCE-DATASET/
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Fig. 3. Number of data pairs per class.

The audio data are collected from Freesound7, where we remove the audio
recordings that are shorter than 2 seconds, and extend those that are between
2 and 10 seconds to longer than 10 seconds by replicating the audio content.
Each audio recording is attached to the geographic coordinates of the sound
being recorded. From the location information, we can download the updated
aerial images from Google Earth8. Then we pair the downloaded aerial image
with a randomly extracted 10-second sound clip from the entire audio recording
content. Finally, the paired data are labeled according to the annotations from
OpenStreetMap9, also using the attached geographic coordinates from the au-
dio recording. Those annotations have manually been corrected and verified by
participants in case that some of them are not up to date. The overview of the
establishment is shown in Fig. 2.

Due to the inherent uneven distribution of scene classes, the collected data
are strongly unbalanced, which makes difficult the training process. So, two extra
steps are designed to alleviate the unbalanced-distribution problem. Firstly we
filter out the scenes whose numbers of paired samples are less than 10, such as
desert and the site of wind turbines. Then for scenes that have less than 100
samples, we apply a small offset to the original geographic coordinates in four
directions. So, correspondingly, four new aerial images are generated from Google
Earth and paired with the same audio recording, while for each image, a new
10-second sound clip is randomly extracted from the recording. Fig. 3 reveals
the final number of paired samples per class. Moreover, as shown in Fig. 4, the
samples are distributed over the whole world, increasing the diversity of the
aerial images and sounds.

7 https://freesound.org/browse/geotags/
8 https://earthengine.google.com/
9 https://www.openstreetmap.org/

https://freesound.org/browse/geotags/
https://earthengine.google.com/
https://www.openstreetmap.org/
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Fig. 4. Coordinates distribution and sample pairs of images and sound. Different scenes
are represented by different color. Six sample pairs are displayed, which are composed
of aerial images, sound and semantic labels.

4 Methodology

In this paper, we focus on the audiovisual aerial scene recognition task, based on
two modalities, i.e., image and audio. We propose to exploit the audio knowledge
to better solve the aerial scene recognition task. In this section, we detail our
proposed approaches for creating the bridge of knowledge transfer from sound
event knowledge to the scene recognition in a multi-modality framework.

We take the notations from Table 1, note that the data x follows the empir-
ical distribution µ of our built dataset ADVANCE. For the multimodal learning
task with deep networks, we adopt the model architecture that concatenates rep-
resentations from two deep convolutional networks on images and sound clips.
So our main task, which is a supervised learning problem for aerial scene recog-
nition, can be written as10

Ls = − log [fs(x, Nv+a)]t , (1)

which is a cross-entropy loss with t-th class being the ground truth.
Furthermore, pre-training on related datasets helps accelerate the training

process and improving the performance on the new dataset, especially on a
relatively small dataset. For our task, the paired data samples are limited, and
our preliminary experiments show that the two networks Nv and Na benefit a
lot from pre-training on the AID dataset [30] for classifying scenes from aerial
images, and AudioSet [9] for recognizing 527 audio events from sound clips [29].

10 For all loss functions, we omit the softmax activation function in fs, the sigmoid
activation function in fe, and the expectation of (x, t) over µ for clarity.
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Table 1. Main notations.

a,v audio input, visual input

x,t paired image and sound clip, x = {v,a}, and the labeled ground truth
t for aerial scene classification

N∗ network, which can be one of the network for extracting visual represen-
tation, the network for extracting audio representation, the pretrained
(fixed) one for extracting audio representation, i.e., {Nv, Na, N

(0)
a }; also

the one that concatenates Nv and Na, i.e. Nv+a

f∗ classifier, which can be one of {fs, fe}, for aerial scene classification or
sound event recognition; f∗ takes the output of the network as input,
and predicts the probability of the corresponding recognition task

s,e probability distribution over aerial scene classes and sound event classes

sk,st k-th scene class’ probability, and the t-th class being the ground truth

ek k-th sound event class’ probability

C(p, q) binary KL divergence: log( p
q
) + (1− p) log( 1−p

1−q
)

In the rest of this section, we formulate our proposed model architecture
for addressing the multimodal scene recognition task, and present our idea of
exploiting the audio knowledge following three directions: (1) avoid forgetting
the audio knowledge during training by preserving the capacity of recognizing
sound events; (2) construct a mutual representation that solves the main task
and the sound event recognition task simultaneously, allowing the model to learn
the underlying relation between sound events and scenes; (3) directly learn the
relation between sound events and scenes. Our total objective function L is

L = Ls + αLΩ , (2)

where α controls the force of LΩ , and LΩ is one of the three approaches that
are respectively presented in Section 4.1, 4.2 and 4.3, as illustrated in Fig. 5.

4.1 Preservation of Audio Source Knowledge

For our task of aerial scene recognition, audio knowledge is expected to be help-
ful since the scene information is related to sound events. While initializing the
network by the pre-trained weights is an implicit way of transferring the knowl-
edge to the main task, the audio source knowledge may easily be forgotten during
fine-tuning. Without audio source knowledge, the model can hardly recognize the
sound events, leading to a random confusion between sound events and scenes.

For preserving the knowledge, we propose to record the soft responses of
target samples from the pre-trained model and retain them during fine-tuning.
This simple but efficient approach [10] is named as knowledge distillation, for
distilling the knowledge from an ensemble of models to a single model, and has
also been used in domain adaptation [27] and lifelong learning [17]. All of them
encourage to preserve the source knowledge by minimizing the KL divergence
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Fig. 5. Illustration of the main task and three cross-task transfer approaches (best
viewed in color). We recall the notations: Nv, with trainable parameters, extracts visual
representations, pretrained on the AID dataset; Na, also with trainable parameters,
extracts audio representations, pretrained on the AudioSet dataset; N

(0)
a , is the same as

Na except parameters being fixed; Nv+a simply applies both Nv and Na. The classifier
at the last layer of the network is presented by ftask(input data, network), where the
choice of task is {s : scene classification, e : sound event recognition}, input data is one

of {v,a,x}, and the set for network is {Nv, Na, N
(0)
a , Nv+a}. On the left of this figure,

our model takes a paired data sample x of an image v and a sound clip a as input, and
extracts representations from different combinations of modalities and models (shown
in different colors); On the right, the top-left block introduces our main task of aerial
scene recognition, and the rest three blocks present the three cross-transfer approaches.

between the responses from the pre-trained model and the training model. For
avoiding the saturated regions of the softmax, the pre-activations are divided by
a large scalar, called temperature [10], to provide smooth responses, with which
the knowledge can be easily transferred.

However, for the reason that the audio event task is a multi-label recogni-
tion, fe(x, N∗) is activated by the sigmoid function. The knowledge distillation
technique is thus implemented by a sum of binary Kullback-Leibler divergences:

LKL|Na
=
∑
i

C( [fe(a, N
(0)
a )]i || [fe(a, Na)]i ) , (3)

where [fe(a, N∗)]i indicates the probability of i-th sound event happening in

sound clip a, predicted by N
(0)
a or Na. This approach helps to preserve the

audio knowledge from the source pretrained network from the AID dataset.

4.2 Audiovisual Representation for Multi-Task

Different from the idea of preserving the knowledge within the audio modality,
we encourage our multimodal model, along with the visual modality, to learn a



Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition 9

mutual representation that recognizes scenes and sound events simultaneously.
Specifically, we optimize to solve the sound event recognition task using the
concatenated representation, with the knowledge distillation technique:

LKL|Nv+a
=
∑
i

C( [fe(a, N
(0)
a )]i || [fe(x, Nv+a)]i ) . (4)

This multi-task technique is very common within one single modality, such as
solving depth estimation, surface normal estimation and semantic segmentation
from one single image [7], or recognizing acoustic scenes and sound events from
audio [14]. We apply this idea to multi-modality, and implement with Equation
(4), encouraging the multimodal model to learn the underlying relationship be-
tween the sound events and the scenes for solving the two tasks simultaneously.

Knowledge distillation with high temperature is equivalent to minimizing
the squared Euclidean distance (SQ) between the pre-activations [10]. Instead
of minimizing the sum of binary KL divergences, we also propose to directly
compare the pre-activations from the networks. Thereby, we also evaluate LSQ
variant for Equation 3 and 4 respectively:

LSQ|Na
=
∥∥∥f̂e(a, N (0)

a )− f̂e(a, Na)
∥∥∥2
2
,

ĽSQ|Nv+a
=
∥∥∥f̂e(a, N (0)

a )− f̂e(x, Nv+a)
∥∥∥2
2
,

(5)

where f̂e is the pre-activations, recalling that fe is activated by sigmoid.

4.3 Sound Events in Different Scenes

The two previously proposed approaches are based on the multi-task learning
framework, either using different or the same representations, in order to preserve
the audio source knowledge or implicitly learn an underlying relation between
aerial scenes and sound events. Here, we propose an explicit way for directly
modeling the relation between scenes and sound events, and creating the bridge
of transferring the knowledge between two modalities.

We employ the paired image-audio data samples from our built dataset as
introduced in Section 3, analyze the happening sound events in each scene, and
obtain the posteriors given one scene. Then instead of predicting the probability
of sound events by the network, we estimate this probability distribution p(e)
with the help of posteriors p(e|sk) and the predicted probability of scenes p(s):

p(e) =
∑
k

p(sk) p(e|sk) =
∑
k

[fs(x, Nv+a)]k p(e|sk) , (6)

where p(sk) = [fs(x, Nv+a)]k is the predicted probability of the k-th scene, and

the posteriors p(e|sk) is obtained by averaging fe(a, N
(0)
a ) over all samples that

belong to the scene sk. This estimation p(e) is in fact the compound distribution
that marginalizes out the probability of scenes, while we search for the optimal
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scene probability distribution p(s) (ideally one-hot) through aligning p(e) with
soft responses:

LE1 =
∑
i

C( [fe(a, N
(0)
a )]i || p(ei) ) . (7)

Besides estimating the probability of each sound event happening in a specific
scene, we also investigate possible concomitant sound events. Some sound events
may largely overlap under a given scene, and this coincidence can be used as a
characteristic for recognizing scenes. We propose to extract this characteristic

from fe(a, N
(0)
a ) of all audio samples that belong to this specific scene.

We note P (e|sk) ∈ Rnk×c as the sound event probabilities of nk samples in
the scene sk, where each row is each sample’s probability of sound events in the
scene sk. Then with the Gram matrix P (e|sk)TP (e|sk), we extract the largest
eigenvalue and the corresponding eigenvector dk as the characteristic of P (e|sk).
This eigenvector dk indicates the correlated sound events and quantifies their
relevance in the scene sk by the direction of this vector. We thus propose to
align the direction of dt, the event relevance of the ground truth scene st, with
the estimated p(e) from Equation 6:

LE2
= cosine(dt, p(e)) . (8)

Equation (7) and (8) have provided a way of explicitly building the connection
between scenes and sound events. In the experiments, we use them together:

LE = LE1
+ βLE2

, (9)

where β is a hyper-parameter controlling the importance of LE2 .

5 Experiments

5.1 Implementation Details

Our built ADVANCE dataset is employed for evaluation, where 70% image-
sound pairs are for training, 10% for validation, and 20% for testing. Note that,
these three sub-sets do not share audiovisual pairs that are collected from the
same coordinate. Before feeding the recognition model, we sub-sample the sound
clips at 16 kHz. Then, following [29], the short-term Fourier transform is com-
puted using a window size of 1024 and a hop length of 400. The generated
spectrogram is then projected into the log-mel scale to obtain an audio matrix
in RT×F , where the time T = 400 and the frequency F = 64. Finally, we nor-
malize each feature dimension to have zero mean and unit variance. The image
data are all resized into 256×256, and horizontal flipping, color, and brightness
jittering are used as data augmentation means.

In the network setting part, the visual pathway employs the AID pre-trained
ResNet-101 for modeling the scene content [30] and the audio pathway adopts the
AudioSet pre-trained ResNet-50 for modeling the sound content [29]. The whole
network is optimized via an Adam optimizer with a weight decay rate 1e-4 and
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a relatively small learning rate 1e-5, as both backbones have been pre-trained
from external knowledge. By using grid search strategy, the hyper-parameters of
α and β are set as 0.1 and 0.001, respectively. We adopt the weighted-averaging
precision, recall and F-score metrics for evaluation, which are more convincing
when faced with uneven distribution of scene classes.

5.2 Aerial Scene Recognition

Fig. 6 shows the recognition results of different learning approaches under the
unimodal and multimodal scenario, from which we have four points should pay
attention to. Firstly, according to the unimodal results, the sound data can pro-
vide a certain reference for different scene categories, although it is significantly
worse than image-based results. Such phenomenon reminds us that we can take
advantage of the audio information to improve recognition results further. Sec-
ondly, we recognize that simply using the information from both modalities does
not bring benefits but slightly lowers the results (72.85 vs. 72.71 in F-score). This
could be because the pre-trained knowledge for audio modality may be forgotten
or the audio messages are not fully exploited just with the rough scene labels.
Thirdly, when the sound event knowledge is transferred for the scene model-
ing, we have considerable improvements for all of the proposed approaches. The
results of LSQ|Na

and LKL|Na
show that preserving audio event knowledge is

an effective means for better exploiting audio messages for scene recognition,
and the performance of LSQ|Nv+a

and LKL|Nv+a
demonstrates that transferring

the unimodal knowledge of sound events to the multimodal network can help to
learn better mutual representation of scene content across modalities. Fourthly,
among all the compared approaches, our proposed LE approach shows the best
results, as it better imposes the sound event knowledge by imposing the under-
lying relation between scenes and sound events.

We use the CAM technique [36] to highlight the parts of the input image that
make significant contributions to identifying the specific scene category. Fig. 7
shows the comparison of the visualization results and the predicted probabilities
of the ground-truth label among different approaches. By resorting to the sound
event knowledge, as well as its association with scene information, our proposed
model can better localize the salient area of the correct aerial scene and provide
a higher predicted probability for the ground-truth category, e.g, the harbour
and bridge class.

Apart from the multimodal setting, we have also conducted more experiments
under the unimodal settings, shown in Table 2, for presenting the contributions
from pre-trained models, and verifying the benefits from the sound event knowl-
edge on the aerial scene recognition. For these unimodal experiments, we keep
one modal data input and set the other to zeros. When only the audio data are
considered, the sound event knowledge is transferred within the audio modality
and thus LSQ|Na

is equivalent to LSQ|Nv+a
, similarly for the visual modality case.

Comparing the results of randomly initializing the weights i.e. L†s and initializing
with the pre-trained weights i.e. Ls, we find that initializing the network from
the pre-trained model can significantly prompt the performance, which confirms
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Fig. 6. Aerial scene recognition results on the ADVANCE dataset from 5 different runs,
where the first approaches perform only the main loss function Ls, and the approaches
with the symbol + mean they are respectively combined with Ls.

that pre-training from a large-scale dataset benefits the learning task on the
small datasets. Another remark from this table is that the results of the three
proposed approaches show that both unimodal networks can take advantage of
the sound event knowledge to achieve better scene recognition performance. It
further validates the generalization of the proposed approaches, either in the mul-
timodal or the unimodal input case. Compared with the multi-task framework
of LSQ|Nv+a

and LKL|Nv+a
, the LE approach can better utilize the correlation

between sound event and scene category via the statistical posteriors.

Table 2. Unimodal aerial scene recognition results on the ADVANCE dataset from
5 different runs, where † means random initialization and the approaches with the
symbol + mean they are weightedly combined with Ls.

Modality Approaches Ls
† Ls +LSQ|Nv+a

+LKL|Nv+a
+LE

Sound
Precision 21.15±0.68 30.46±0.66 31.64±0.65 30.00±0.86 31.14±0.30

Recall 24.54±0.67 32.99±1.20 34.68±0.49 34.29±0.35 33.80±1.03
F-score 21.32±0.42 28.99±0.51 29.31±0.71 28.51±0.99 29.66±0.13

Image
Precision 64.45±0.97 74.05±0.42 74.86±0.94 74.36±0.85 73.97±0.39

Recall 64.59±1.12 72.79±0.62 74.11±0.89 73.40±0.84 73.47±0.52
F-score 64.04±1.07 72.85±0.57 73.98±0.92 73.52±0.85 73.44±0.45
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Fig. 7. The class activation map generated by different approaches for different cat-
egories, as well as the corresponding predict probabilities of ground-truth category.
Ls(image) means the learning objective of Ls is just performed with image data.

5.3 Ablation Study

In this subsection, we directly validate the effectiveness of the scene-to-event
transfer term LE1

and the event relevance term LE2
, without the supervision

from the scene recognition objective of Ls. Table 3 shows the comparison results.
By resorting to the scene-to-event transfer term, performing sound event recog-
nition can reward the model the ability to distinguish different scenes. When
further equipped with the event relevance of the scenes, the model can have
higher performance. This demonstrates that cross-task transfer can indeed pro-
vide reasonable knowledge if the inherent correlation between these tasks are
well exploited and utilized. By contrast, as the multi-task learning approaches
do not well take advantage of this knowledge, the scene recognition performance
remains at the chance level.

To better illustrate the correlation between aerial scenes and sound events,
we further visualize the embedding results. Specifically, we use the well-trained
cross-task transfer model to predict the sound event distribution on the test-
ing set. Ideally, the sound event distribution can separate the scenes from each
other, since each scene takes a different sound event distribution. Hence, we use
t-SNE [18] to visualize the high-dimensional sound event distributions of differ-
ent scenes. Fig. 8 shows the visualization results, where the points in different
color mean different scene categories. As LSQ|Na

is performed within the audio
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(a) Ls + αLSQ|Na (b) Ls + αLSQ|Nv+a
(c) Ls + αLE

Fig. 8. The aerial scene data embeddings indicated by the corresponding sound event
distribution, where the points in different color mean in different scene categories.

Table 3. Aerial scene recognition results on the ADVANCE dataset, where only the
sound event knowledge is considered in the training stage.

Approaches LE1 LE1 + βLE2 LKL|Nv+a
LSQ|Nv+a

Precision 43.37±0.59 54.23±1.14 3.08±0.14 2.95±0.07
Recall 49.26±0.36 52.57±0.72 9.69±0.43 9.28±0.17
F-score 42.50±0.42 48.65±0.85 4.46±0.20 4.24±0.07

modality, the sound event knowledge cannot well transfer to the entire model,
leading to the mixed scene distribution. By contrast, as LSQ|Nv+a

transfers the
sound event knowledge into the multimodal network, the predicted sound event
distribution can separate different scenes to some extent. By introducing the
correlation between scenes and events, i.e., LE , different scenes can be further
disentangled, which confirms the feasibility and merits of cross task transfer.

6 Conclusions

In this paper, we explore a novel multimodal aerial scene recognition task that
considers both visual and audio data. We have constructed a dataset consists of
labeled paired audiovisual worldwide samples for facilitating the research on this
topic. We propose to transfer the sound event knowledge to the scene recognition
task for the reasons that the sound events are related to the scenes and that this
underlying relation is not well exploited. Amounts of experimental results show
the effectiveness of three proposed transfer approaches, confirming the benefit
of exploiting the audio knowledge for the aerial scene recognition.
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