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Abstract. In this supplementary material, we provide implementation
details of our SideInfNet in Section 1. We present ablation experiments
conducted to ascertain the effectiveness of our method in Section 2,
in which we compare against existing fusion methods by implementing
our model with the same baseline segmentation network. Computational
analysis of our method is performed in Section 3. We present additional
qualitative evaluations of our method and prior works in three case stud-
ies in Section 4.

1 Implementation Details

In this section, we detail the settings used to train our proposed SideInfNet in
various case studies. All models of our SideInfNet were implemented in PyTorch
v1.2 [6].

1.1 General Settings

The domain-dependent feature extractor of our proposed SideInfNet is built
based on the Deeplab-ResNet [2] model. In our implementation, we optimized
the Deeplab-ResNet using stochastic gradient descent (SGD) with a momentum
of 0.9. The Deeplab-ResNet receives input an image of size H × W pixels and
produces a conv2 3 layer output of approximately size H

4 × W
4 . Therefore, our

maxpool layer uses a kernel size of 6 and a stride of 4 to achieve the desired size.
For processing side information, we used a single fully-connected layer that

mapped input vectors to a 64-dimensional space. As shown in Section 2, this
setting (i.e., 64 dimensions for side information) balanced both the accuracy and
computational cost and worked well in all case studies. We also experimented
with deeper multi-layer perceptrons (MLP) and non-linear activation functions,
but found no improvement from these settings.
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For all tasks, transfer learning was applied. We initialized our SideInfNet
models with the weights of the Deeplab-ResNet trained for semantic segmenta-
tion on the Microsoft COCO (MS-COCO) dataset [5]. Due to concatenation of
data in our models, the weights of the layers at the concatenation point (i.e., the
conv2 3 layer in the Deeplab-ResNet architecture) cannot be directly restored.
Instead, we randomly initialized additional channels that are required for the
concatenation. Specifically, we restored the first 256 channels of the conv2 3
layer from the MS-COCO pretrained weights, and randomly initialized the ad-
ditional 64 channels.

1.2 Zone Segmentation

Training For training, we used 80 × 80 pixels crops of each city from the zone
segmentation dataset [3]. Patches containing more than 60% of masked data
were discarded. Each patch was saved along with its coordinate information for
retrieval of the geotagged photo data. We normalized images by performing mean
subtraction from the RGB channels using the training set mean.

To augment the training data, we performed random horizontal and vertical
flips of image patches. We also experimented with scaling the patches, but did
not observe any improvement in performance.

Training was performed with a mini-batch size of 16 and over 20 epochs. We
used a base learning rate of 0.00025 with a polynomial learning rate decay with
power of 0.9. In addition, we set the learning rate for the MLP to 0.025, and for
the data fusion conv2 3 to 0.0005 respectively. The reason for this setting is that
these layers are not restored through transfer learning, and benefit from higher
learning rates. To make the training stable, we used a learning rate warmup of
20 data epochs, in which the learning rate linearly increased from epoch 1 to
epoch 20.

In our models, each fractionally-strided convolution was multiplied by a learn-
able scalar. We initialized all the scalars to 1, which we found to be helpful in
diffusing geotagged photo data. Intuitively, this initialization could result in max-
imum diffusion by default, which we found essential to aid in learning meaningful
representations for sparse side information.

Evaluation We tested our model using 3-fold cross validation, in which two
cities were used for training, and the other city was used for testing. In each
validation, we scanned the test satellite image by a window of size 80×80 pixels
and a spatial stride of 21 × 21 pixels for NYC and BOS, and 23 × 23 pixels for
SFO (due to the different scales of the input data).

Inference was performed individually on the windows to retrieve the softmax
class probabilities. The resulting softmax patches were then merged, and over-
lapping regions were averaged. The final inference result was achieved by taking
an argmax over the averaged softmax result.
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1.3 BreAst Cancer Histology Segmentation

Training Due to the large size of whole-slide images in the BreAst Cancer
Histology (BACH) dataset [1], we downscaled the whole-slide images for com-
putational efficiency. We first resized the whole-slide images to 1

4 of their orig-
inal size. We then cropped patches of 299 × 299 pixels with a stride length of
99 × 99 pixels. We discarded all patches that contained less than 5% of non-
normal classes. Each patch was saved along with its coordinate information for
retrieval of the brush stroke annotations. Lastly, we normalized images through
mean subtraction where the mean was derived from training dataset. We also
performed random horizontal and vertical flips for data augmentation.

Training was performed using a mini-batch size of 4 with gradients accumu-
lated over 4 iterations. We used a base learning rate of 0.0001 with a polynomial
learning rate decay with power of 0.9. In addition, we set the learning rate for
the MLP to 0.01, and of the fusion layer conv2 3 to 0.0002 respectively. The
learning rate for the classification layer was set to 0.001.

The model was trained for 20 epochs, with early stopping imposed if accuracy
on the validation set did not increase for 3 epochs. We used a learning rate
warmup of 20 data epochs for stability in training; the learning rate linearly
increased from epoch 1 to epoch 20.

The learnable scalar for the first fractionally-strided convolution was set to
1, and all others were set to 0, resulting in no diffusion by default. We found
this essential to aid in learning good representations for dense side information,
such as brush stroke annotations.

Evaluation We performed inference using patches processed as in the training
procedure. We averaged the softmax probabilities of any overlapping regions.
Similarly to the zone segmentation case study, the final results were achieved by
taking an argmax over the averaged softmax result.

1.4 Urban Segmentation

For urban segmentation on the Zurich Summer Dataset [7], we cropped training
images to patches of size 80 × 80 pixels with a stride length of 20 × 20 pixels.
Images were saved with associated coordinate information for retrieval of brush
stroke annotations. We normalized images by performing mean subtraction from
the RGB channels using the training set mean. Data augmentation was also done
using random horizontal and vertical flips.

Hyperparameter setting was similar to that of the zone segmentation case
study. We initialized the learnable scalar for the first fractionally-strided convo-
lution to 1, and all others to 0, similarly to the BACH dataset.

In our experiments, we used the images zh5, zh7, zh8, zh11, and zh18 for
testing. All other images were used for training. This split ensures that all classes
are present in both training and testing.
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Table 1. Performance of variants of SideInfNet in zone segmentation [3]. Best perfor-
mances are highlighted.

Approach
Street
Photo

Fractionally
Strided Convolutions

Gate
Rate (t)

Pixel Accuracy

BOS NYC SFO Average

Deeplab-ResNet [2] - - - 60.79% 59.58% 72.21% 64.19%
Geotagged X - - 60.19% 58.87% 74.18% 64.41%
Diffused X X - 69.08% 71.95% 79.49% 73.51%

SideInfNet X X 0.8 70.10% 70.67% 79.38% 73.38%
SideInfNet X X 0.6 71.33% 71.08% 79.59% 74.00%
SideInfNet X X 0.4 70.45% 70.58% 79.51% 73.51%

2 Ablation Studies

2.1 Components of SideInfNet

In order to validate the benefits of our various technical novelties, we performed
several ablation experiments on the main components of our proposed Side-
InfNet. In this supplementary material we present experimental results from the
zone segmentation application, although similar trends are observed from the
other case studies as well.

The results are summarized in Table 1. It is shown that the inclusion of
side information in the form of street-level photos is essential in improving the
segmentation accuracy. In particular, our best performing model (SideInfNet),
fusing both domain-dependent features from satellite data and side information,
achieved a relative gain of 15.28% over the baseline Deeplab-ResNet [2] that
uses only satellite imagery. In addition, the results prove that side information
diffusion using fractionally-strided convolutions (Diffused model) was important
for performance improvements. This method of diffusion gained a relative im-
provement of 14.89% over the Geotagged model, which simply diffused the side
information upon spatial distance (via nearest neighbor interpolation).

The SideInfNet model with adaptive inference gates also slightly improved
over the Diffused model. An additional benefit of the adaptive inference gates is
reduced computational complexity and model parameters, as not all the layers
in the network architecture are executed for each run.

2.2 Varying Feature Dimension of Side Information

As presented in the implementation details of SideInfNet in Section 1, the
side information is fed through a single fully-connected layer to produce a 64-
dimensional feature vector. We experimented our SideInfNet with various out
sizes of the fully-connected layer including 64, 128, 256, and 512, and report the
results on the zoning [3], BACH [1], and Zurich Summer dataset [7] in Table 2.

Experimental results show that increasing the feature dimensionality of side
information (i.e., the output size of the fully-connected layer) on the zoning
dataset has a negligible effect on the performance, e.g., ¡2% of deviation in mIOU,
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Table 2. Performance of SideInfNet when varying the dimension of side information.
Note that “-” in the BACH dataset indicates that the model is unable to learn. Best
performances are highlighted.

(a) Zoning [3]

Dimension
mIOU Pixel Accuracy

BOS NYC SFO Average BOS NYC SFO Average

64 41.96% 39.59% 60.31% 47.29% 71.33% 71.08% 79.59% 74.00%
128 40.63% 40.71% 44.98% 42.11% 70.79% 72.00% 72.32% 71.70%
256 39.52% 39.10% 57.67% 45.43% 70.29% 70.10% 78.31% 72.90%
512 38.78% 40.10% 57.00% 45.30% 69.18% 71.15% 77.07% 72.74%

(b) BACH [1]

Dimension
mIOU Pixel Accuracy

A05 A10 Average A05 A10 Average

64 59.03% 35.45% 47.24% 89.68% 54.29% 71.99%
128/256/512 - - - - - -

(c) Zurich [7]

Dimension mIOU Pixel Accuracy

64 58.31% 78.97%
128 51.69% 74.71%
256 45.89% 73.09%
512 41.37% 69.94%

as the high dimensional side information vectors can be mapped meaningfully.
In contrast, on the BACH and Zurich Summer datasets, worse performance is
observed when increasing the feature dimensionality of side information. This
is likely due to the simplicity of the side information in these datasets, e.g.,
brush strokes can be represented simply by scalars corresponding to different
semantic classes. We also observe that, on the BACH dataset, when the size of
the side information exceeds 64, SideInfNet is unable to learn any meaningful
features, leading to either random or biased predictions. On the Zurich Summer
dataset, side information of brush strokes has dimensionality of 8 and increasing
the side information’s dimensionality leads to overfitting. Therefore, to make a
balance between the performance and computational complexity, we recommend
64-dimensional side information vectors for all the case studies and datasets.

2.3 Varying Levels of Side Information

In our main paper, we present an experiment on varying the availability of side
information (see Section 4.4 in the main paper). In this experiment, we used all
the side information available in training datasets to train the SideInfNet model
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and tested the model by varying the level of side information in test sets. Recall
that, to simulate various levels of side information while keeping the same spatial
distribution, we sample the side information, e.g., brush strokes, using k-means
algorithm applied on the centers of the brush strokes.

In this supplementary material, we provide more detailed results and in-depth
analysis on the results. Specifically, we varied the availability of side information
in both the training and test sets, e.g., x% of available side information is used
in training vs y% of available side information is used in testing, where x and y
vary in 20%, 40%, ..., 100%. We show the detailed performance of SideInfNet (in
both mIOU and pixel accuracy) on the zoning [3], BACH [1], and Zurich Summer
dataset [7] in Fig. 1, Fig. 2, and Fig. 3 respectively. From experimental results,
we observe that, to achieve the best overall performance, SideInfNet should
be trained with 100% side information available in the training data but can
work well at inference time even with fewer side information. This confirms the
practicality and applicability of our model in situations where a few annotations
from users can significantly improve the segmentation quality.

We present several qualitative results of varying the availability of side in-
formation on various datasets in Fig. 4, Fig. 5, Fig. 6, and Fig. 7. We observe
noticeable improvement of segmentation quality when side information is used.
For instance, on the zoning dataset shown in Fig. 4, many regions cannot be
identified from satellite imagery. Without using geotagged photos, the baseline
Deeplab-ResNet misclassifies the majority of commercial regions as industrial in
SFO. As the amount of side information available increases, the segmentation
quality is steadily improved. Similar trends are also found in NYC and BOS.

On the BACH dataset (see Fig. 5), an increased number of brush strokes
help to overcome under-segmentation in contiguous regions. Rarer classes such
as benign in A05 slide and in situ carcinoma in A10 slide are more consistently
identified with the inclusion of brush strokes.

On the Zurich Summer dataset, as illustrated in Fig. 6 and Fig. 7), the
improvement is not as visually obvious as compared with the zoning dataset. This
is likely due to the availability of high resolution imagery in the Zurich Summer
dataset, which allows the model to make better baseline predictions without side
information. However, the inclusion of side information via brush strokes also
helps to correct errors made from the initial segmentation. For instance, in zh5
(see Fig. 6), side information helps to correctly identify the tiny Bare Soil area.
Similarly, in zh8 (see Fig. 6), our method is able to segment the Railway class
more accurately when provided with side information. We note that these classes
are less presented in the dataset, which benefit the most when side information
is included.

2.4 SideInfNet with another CNN Backbone

In our main paper, we experimented SideInfNet with VGG, the backbone used
in the Unified model [8]. In this section, we show in detail the performance
of SideInfNet with VGG backbone on all the datasets. In addition, to prove
the robustness of our proposed method of multi-modal data fusion over the
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Table 3. Comparison of SideInfNet and Unified model [8] on Deeplab-ResNet and
VGG backbone.

(a) Zoning [3]

mIOU Pixel Accuracy

BOS NYC SFO Average BOS NYC SFO Average

SideInfNet/DRN∗ 41.96% 39.59% 60.31% 47.29% 71.33% 71.08% 79.59% 74.00%
SideInfNet/VGG 41.94% 39.68% 56.73% 46.12% 68.28% 68.06% 75.95% 70.06%
Unified [8]/DRN∗ 37.61% 36.71% 57.31% 47.46% 66.87% 68.77% 77.96% 72.42%
Unified [8]/VGG 40.51% 39.27% 55.36% 45.05% 67.91% 70.92% 75.92% 71.58%
∗ DRN: Deeplab-ResNet

(b) BACH [1]

mIOU Pixel Accuracy

A05 A10 Average A05 A10 Average

SideInfNet/Deeplab-ResNet 59.03% 35.45% 47.24% 89.68% 54.29% 71.99%
SideInfNet/VGG 66.34% 32.73% 49.53% 89.60% 46.50% 68.05%

Unified[8]/Deeplab-ResNet 47.94% 21.37% 34.66% 89.54% 40.42% 64.98%
Unified[8]/VGG 41.50% 17.23% 29.37% 91.38% 54.87% 73.12%

(c) Zurich [7]

mIOU Pixel Accuracy

SideInfNet/Deeplab-ResNet 58.31% 78.97%
SideInfNet/VGG 49.73% 77.74%

Unified[8]/Deeplab-ResNet 46.83% 74.26%
Unified[8]/VGG 42.09% 68.20%

Unified model [8], we provide results of SideInfNet and Unified model when
the same baseline network is used. In particular, Workman et al. [8] proposed a
modified VGG-16 network to extract features from the overhead satellite images,
in which feature maps were integrated at the seventh convolutional layer. We re-
implemented the same architecture by fusing our constructed feature map at the
same layer. In addition, we also re-implemented the Unified model with Deeplab-
ResNet, our recommended backbone. We show the comparison results in Table 3.
As shown in experimental results, in general SideInfNet outperforms the Unified
model [8] when the same baseline segmentation model is used, highlighting the
advantages of our proposed method for multi-modal data fusion.

3 Computational Analysis

An additional advantage of our method is its computational efficiency, which
comes into play with high density annotations. Specifically, the BACH dataset
consists of very high resolution whole slide images, which is common in many
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Table 4. Computational analysis performed on an NVIDIA Pascal Titan X GPU.

Approach Time (s) GPU Memory (MB)

Zoning BACH Zurich Summer Zoning BACH Zurich Summer

Deeplab-ResNet [2] 0.047 0.101 0.048 779 821 781
Unified model∗ [8] 0.034 2.003 0.062 739 1843 725

SideInfNet 0.105 0.121 0.139 783 857 785
∗ Our implementation.

medical datasets. Coupled with dense brush stroke annotations, this results in
significant bottlenecks for prior works, e.g., the Unified model [8].

In order to evaluate the computational complexity quantitatively, we bench-
mark the inference speeds of the Deeplab-ResNet [2], Unified model [8], and our
SideInfNet. As the HO-MRF model requires an additional post-processing step
in the form of global normalization, we do not compare against it in this ex-
periment. Evaluation results are averaged across the inference speeds over single
patches (i.e., batch size of 1). However, in practice the method can be sped up
with batch based processing. For instance, with a batch size of 64, SideInfNet
averages 0.057s per patch on the BACH dataset.

The results are summarized in Table 4. We observe that on datasets with
smaller resolution images and sparser side information (e.g., the Zurich Summer
dataset), the Unified model performs faster than SideInfNet. This is likely due
to the multi-scale architecture of the Deeplab-ResNet, which increases the com-
putational load as multiple images have to be processed. However, as we scale
up to larger resolution images and denser side information, our method is much
more efficient than the Unified model. In particular, on the BACH dataset which
contains high resolution imagery and dense brush stroke annotations, we obtain
approximately a 16 times speedup over the Unified model. This supports our
hypothesis that on top of improved accuracy, SideInfNet is able to scale more
efficiently to higher resolution images and denser side information.

4 Additional Qualitative Evaluations

4.1 Qualitative Results on BACH dataset

Several qualitative results of our method on the BACH dataset are as shown in
Fig. 8. From the results presented, we observe that, compared with other meth-
ods, SideInfNet generally provides the highest quality results. The segmentation
masks produced by SideInfNet are less noisy and sparse. In addition, compared
with prior works, SideInfNet significantly produces less false positives.

A common challenge for SideInfNet and Unified model is the spaces demar-
cated by brush strokes, leading to segmentation results that only contain shape
outlines, such as the circular object in the A05 slide. A possible solution to this
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issue could be to perform global post-processing, e.g., by applying CRFs [4] or
HO-MRFs [3]. However, these post-processing steps are computationally expen-
sive and thus may not be feasible for high-resolution imagery data, e.g., the
BACH images.

An alternative solution is applying manual post-processing. The refined re-
sults produced by SideInfNet allow these gaps to be easily filled in by users.
These results suggest the viability of SideInfNet as a semi-automatic semantic
segmentation tool.

4.2 Qualitative Results on Zurich Summer Dataset

Our qualitative results on the Zurich Summer dataset are presented in Fig. 9. As
shown in the results, SideInfNet is able to draw a balance between fully automatic
inference (e.g., Deeplab-ResNet), and completely manual segmentation (e.g., by a
human expert). Our method produces much more accurate segmentation results
as compared to the Unified model. For instance, as shown in the docks at the
bottom right area in the zh11 image, SideInfNet well distinguishes Background
(white) from Building (gray). Docks are a relatively rare environmental feature,
which make them difficult to be classified correctly. The Unified model, on the
other hand, misclassifies this as Buildings.

SideInfNet also produces higher quality results compared to other models.
The Unified model generates more dilated segmentation masks, while the base-
line Deeplab-ResNet produces sparser masks.

SideInfNet is also able to accurately classifying smaller regions such as the
Bare Soil region in the zh5 image (see Fig. 9), which challenge other models.
The segmentation results of SideInfNet on Railway class in the zh8 image are
also more coherent compared with other works.
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1. Aresta, G., Araújo, T., Kwok, S., Chennamsetty, S.S., Safwan, M., Alex, V., Marami,
B., Prastawa, M., Chan, M., Donovan, M., et al.: Bach: Grand challenge on breast
cancer histology images. Medical image analysis (2019)

2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected CRFs. IEEE transactions on pattern analysis and machine intelli-
gence 40(4), 834–848 (2018)

3. Feng, T., Truong, Q.T., Thanh Nguyen, D., Yu Koh, J., Yu, L.F., Binder, A., Yeung,
S.K.: Urban zoning using higher-order markov random fields on multi-view imagery
data. In: Proceedings of the European Conference on Computer Vision (ECCV).
pp. 614–630 (2018)
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Fig. 1. Performance of SideInfNet when varying the availability of side information in
both training and testing on zoning dataset [3].
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Fig. 2. Performance of SideInfNet when varying the availability of side information in
both training and testing on BACH dataset [1].
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Fig. 3. Performance of SideInfNet when varying the availability of side information in
both training and testing on Zurich Summer dataset [7].
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Fig. 4. Results on zone segmentation [3] with varying brush strokes. Best viewed in
color.
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Fig. 5. Results on BACH [1] with varying brush strokes. Best viewed in color.
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Fig. 6. Results on the Zurich Summer Dataset [7] with varying brush strokes. Best
viewed in color.
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Fig. 7. Results on the Zurich Summer Dataset [7] with varying brush strokes. Best
viewed in color.
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Fig. 8. Qualitative results on the BACH dataset [1]. Best viewed in color.
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Fig. 9. Qualitative results on the Zurich Summer dataset [7]. Best viewed in color.


