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Abstract. Multiple rotation averaging is an essential task for structure
from motion, mapping, and robot navigation. The conventional methods
for this task seek parameters of the absolute orientations that agree best
with the observed noisy measurements according to a robust cost func-
tion. These robust cost functions are highly nonlinear and are designed
based on certain assumptions about the noise and outlier distributions.
In this work, we aim to build a neural network that learns the noise
patterns from the data and predict/regress the model parameters from
the noisy relative orientations. The proposed network is a combination
of two networks: (1) a view-graph cleaning network, which detects out-
lier edges in the view-graph and rectifies noisy measurements; and (2)
a fine-tuning network, which fine-tunes an initialization of absolute ori-
entations bootstrapped from the cleaned graph, in a single step. The
proposed combined network is very fast, moreover, being trained on a
large number of synthetic graphs, it is more accurate than the conven-
tional iterative optimization methods.

Keywords: Robust rotation averaging, Message passing neural networks

1 Introduction

Recently, we have witnessed a surge of interest in applying neural networks in
various computer vision and robotics problems, such as, single-view depth esti-
mation [16], absolute pose regression [28] and 3D point-cloud classification [35].
However, we still rely on robust optimizations at different steps of geometric
problems, for example, robot navigation and mapping. The reason is that neural
networks have not yet proven to be effective in solving constrained optimization
problems. Some classic examples of the test-time geometric optimization include
rotation averaging [8,14,15,23,26,45] (a.k.a. rotation synchronization [5,38,44]),
pose-graph optimization [30,42], local bundle adjustment [33] and global struc-
ture from motion [46]. These optimization methods estimate the model param-
eters that agree best with the observed noisy measurements by minimizing a
robust (typically non-convex) cost function. Often, these loss functions are de-
signed based on certain assumptions about the sensor noise and outlier distribu-
tions. However, the observed noise distribution in a real-world application could
be far from those assumptions. A few such examples of noise patterns in real
datasets are displayed in Figure 2. Furthermore the nature and the structure
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of the objective loss function is the same for different problem instances of a
specific task. Nonetheless, existing methods optimize the loss function for each
instance. Moreover, an optimization during test-time could be slow for a target
task involving a large number of parameters, and often forestalls a real-time
solution to the problem.
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Fig. 1. The proposed method NeuRoRA is a two-step approach: in the first step a
graph-based network (CleanNet) is utilized to clean the view-graph by removing out-
liers and rectifying noisy measurements. An initialization from the cleaned view-graph,
instantiated from a shortest path tree (SPT), is then further fine-tuned using a separate
graph-based network (FineNet). The notations are outlined in Table 1.

In this work, with the advancement of machine learning, we address the fol-
lowing question: “can we learn the noise patterns in data, given thousands of
different problem instances of a specific task, and regress the target parameters
instead of optimizing them during test-time?” The answer is affirmative for some
specific applications, and we propose a learning framework that exceeds base-
line optimization methods for a geometric problem. We choose multiple rotation
averaging (MRA) as a target application to validate our claim.

In MRA, the task is to estimate the absolute orientations of cameras given
some of their pairwise noisy relative orientations defined on a view-graph. There
are a different number of cameras for each problem instance of MRA, and usually
sparsely connected to each other. Further, the observed relative orientations are
often corrupted by outliers. The conventional methods for this task [5,8,14,23,44]
optimize the parameters of the absolute orientations of the cameras that are most
compatible (up to a robust cost) with the observed noisy relative orientations.

We propose a neural network for robust MRA. Our network is a combination
of two simple four-layered message-passing neural networks defined on the view-
graphs, summarized in Figure 1. We name our method Neural Robust Rotation
Averaging, which is abbreviated as NeuRoRA in the rest of the manuscript.
Contribution and findings
– A graph-based neural network NeuRoRA is proposed as an alternative to

conventional optimizations for MRA.
– NeuRoRA requires no explicit optimization at test-time and hence it is much

faster (10− 50× on CPUs and 500− 2000× on GPUs) than the baselines.
– The proposed NeuRoRA is more accurate than the conventional optimiza-

tion methods of MRA. The mean/median orientation error of the predicted
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absolute orientations by the proposed method is 1.45◦/0.74◦, compared to
2.17◦/1.25◦ by an optimization method [8].

– Being a small size network, NeuRoRA is fast and can easily be deployed to
real-world applications (network size < 0.5Mb).
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(a) Real dataset: Alamo (b) Real dataset: Ellis Island (c) Real dataset: San Francisco (d) Optimization methods

Fig. 2. Here we qualitatively illustrate that the noise distribution in real data diverges
considerably from the noise assumptions baked into most optimization methods. We
plot the angle and axes of observed relative orientations (first row) and the same of
noise (second row) in real datasets (for clarity only 103 random samples) are displayed.
The noise orientation is calculated from the ground-truth absolute and the observed
relative orientations. The view-graphs of (a)-(b) are shared by [46] and (c) is shared
by [12]. We plotted histograms of the magnitudes of the angles (in degrees) and the
axes of the orientations. Notice that the axes of the sampled relative and noise ori-
entations for the real data in (a)-(c) are not uniformly distributed on the unit ball.
The sampled noise orientations (somewhat vertical axes) are far from the typical dis-
tribution assumptions regarded by optimization algorithms. Samples from such noise
distributions (`1 [44] and `1/2 [8]) are shown in (d).

2 Related works

We separate the related methods into two separate sections—(i) learning based
methods as an alternative to optimizations, (ii) relevant optimizations specific
to MRA, and (iii) other related optimization methods.
(i) Learning to optimize A neural network is proposed as an alternative
to non-linear least square optimizations in [11] for camera tracking and map-
ping. It exploits the least square structure of the problem and uses a recurrent
network to compute updated steps of the optimization variables. In a similar di-
rection, [31] relaxes the assumptions made by inverse compositional algorithms
for dense image alignment by incorporating data-driven priors. [40] proposes a
bundle adjustment layer that learns to predict the dampening parameter of the
Levenberg-Marquardt algorithm to optimize depth and camera parameters. In
contrast to the direct optimization-based methods that explicitly use regularizers
to solve an ill-posed problem, [1] implicitly learn the prior through a data-driven
method. Aoki et al. [3] proposed an iterative algorithm based on PointNet [35]
for point-cloud registration as an alternative to direct optimization. Learning
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to predict an approximate solution to combinatorial optimization problem over
graphs, e.g. minimum vertex cover, traveling salesman problem, etc., is proposed
in [29]. Learning methods to optimize general black-box functions [10] have also
received a lot of attention recently. These conventional learning-based methods
are tailored to some specific problems, where in this work, we are interested in
an alternative learning-based solution for geometric problems, e.g. SFM.
(ii) Robust optimization for rotation averaging MRA was first introduced
in [18] where a linear solution was proposed using quaternion averaging and later
in [19] using Lie group based averaging. The solutions were non-robust in both
the cases. Recently, there has been progress in designing robust algorithms [9,22]
for rotation averaging. Most of the algorithms are based on iterative methods
for optimizing a robust loss function. MRA is also exploited using sparse matrix
decomposition, for example [5,44]. The state of the art methods are listed below:
– Chatterjee and Govindu [8] fine-tune an initialization by first performing

an iterative `1 minimization, followed by another iterative reweighted least
squares with a more robust loss function ` 1

2
.

– Hartley et al. [22] propose a straight-forward method. It fine-tunes an ini-
tialization by the Weiszfeld algorithm of `1 averaging [7]. At every iteration,
the absolute orientations of each camera are updated by the median of those
computed from its neighbors.

– Arrigoni et al. [5] formulate the problem as a low-rank and sparse matrix
decomposition and utilizes existing decomposition algorithms that caters for
missing data, outliers and noise in the pairwise observations.

– Wang et al. [44] employ the alternating direction method to minimize a robust
cost function involving the sum of unsquared deviations.

Rotation averaging is surveyed recently in a vast amount of literature [4,6,34,43].
(iii) Other related optimization methods DISCO [12] employs a two-step
approach. In the first step, a loopy belief propagation is used for an initial estima-
tion of the absolute orientations which are fine-tuned by Levenberg-Marquardt
method in the second step. The problem of detecting outliers in the view-
graph has been extensively studied in the literature [13,20,27,32,36,47]. Opti-
mizing/cleaning the view-graph for sfm also proposed in [21,37,39].

Huang et al. [25] proposed a neural network solving the pairwise matching
problem (c.f. page 2, 2nd col) accurately. The key component of [25] is a network
that takes two 3D scans and a relative transformation between them as input
and outputs a score indicating the goodness of the scan alignment which is
iteratively employed to fine-tune the absolute pose. Therefore, [25] is only valid
(and tailored) for alignments of multiple scans.

3 Multiple rotation averaging

Consider N cameras with M pairwise relative orientation measurements forming
a directed view-graph G = (V, E). A vertex Vv ∈ V corresponds to the absolute

orientation R̂v (to be estimated) of the vth camera and an edge Euv ∈ E corre-

sponds to the observed relative orientation R̃uv from uth camera to vth camera.



Neural robust rotation averaging 5

Conventionally, the task is to estimate the absolute orientations {R̂v}, with re-
spect to a global reference of orientations, such that the estimated orientations
are most consistent with the observed noisy relative orientation measurements,
i.e. R̃uv ≈ R̂vR̂−1

u ,∀Euv ∈ E . Further, the observed measurements are corrupted

by outliers, i.e. some of the orientations R̃uv are far from R̂vR̂
−1
u . Convention-

ally, the solution is obtained by minimizing a robust cost function that penalizes
the discrepancy between observed noisy relative orientations {R̃uv} and the es-
timated relative orientations {R∗uv} := {R∗vR∗u

−1}. The corresponding optimiza-
tion problem can then be expressed as

arg min
{R∗v}

∑
Euv∈E

ρ
(
d
(
R∗uv, R̃uv

))
(1)

where ρ(.) is a robust cost and d(., .) is a distance measure between the orienta-
tions. The nature of the above optimization is a typical complex multi-variable
nonlinear optimization problem with thousands of variables (for thousands of
cameras) and there seems to be no direct method (closed-form solution) mini-
mizing the above cost even without outliers [23].

The choice of distance measure d(R̃, R) There are three commonly used dis-
tance measurements in the rotation group SO(3): (i) the geodesic or angle metric

dθ = ∠(R̃, R), (ii) the chordal metric dC = ‖R̃ − R‖F and (iii) the quaternion
metric dQ = min {‖qR̃ − qR‖, ‖qR̃ + qR‖} where qR and qR̃ are quaternion repre-

sentations of R and R̃ respectively, and ‖.‖F is the Frobenius norm. The metrics
dC and dQ are proven to be 2

√
2 sin(dθ/2) and 2 sin(dθ/4) respectively [23], thus,

all the metrics are the same to the first order. In our implementation, we employ
the quaternion representations (with non-negative scalars).
The choice of robust cost ρ(.) In practical applications, e.g. robot navigation,
the agent usually ends up with some corrupt measurements (outliers), due to
symmetric and repetitive man-made structures, in addition to the sensor noise.
To estimate the absolute orientations of the cameras that are immune to those
outliers, the conventional methods optimize a robust cost ρ(.) as discussed above.
An exhaustive list of such robust functions can be found in [8].

The noise and outliers in the observed relative orientations is assumed to
follow some distributions subject to the cost function with mean identity orien-
tation [23,44]. However, in real data, we observe very different noise distributions
and a few such examples are shown in Figure 2. Further, optical axis of most of
the cameras are horizontal and hence the axes of the relative orientations are ver-
tical. By training a neural network to perform the task, our aim is for the neural
network to capture these patterns while predicting the absolute orientations.

4 Learning to predict absolute orientations

Let D := {G} be a dataset of ground-truth view-graphs. Each view-graph

G := (V, E) contains a noisy relative orientation measurement R̃uv for each

edge Euv ∈ E and a ground-truth absolute orientation R̂v for each camera
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Vv ∈ V. The desired neural network learns a mapping Φ that takes noisy
relative measurements {R̃uv} as input and predicts the absolute orientations

{RΦv } := Φ
(
{R̃uv}; Θ

)
as output, where Θ is the set of network parameters.

To train the parameters of such network, one could minimize the discrepancy

between the ground-truth R̂uv := R̂vR̂
−1
u and the estimated RΦuv := RΦvR

Φ
u
−1

relative orientations (cf. equation (1)), i.e.

arg min
Θ

∑
G∈D

∑
Euv∈E

d
(
RΦuv, R̂uv

)
(2)

In contrast to (1), where conventional methods optimize the orientation pa-
rameters for each instance of the view-graph G ∈ D, here in (2), the network
parameters are optimized during training that learn the mapping Φ effectively
from observed relative orientations {R̃uv} to the target absolute orientations

{R̂v}, i.e. {R̂v} ≈ Φ
(
{R̃uv}; Θ

)
over the entire dataset of view-graphs D.

Direct training of Φ and gauge freedom For an arbitrary orientation R,

R∗uv := R∗vR
∗
u
−1 = (R∗vR)(R∗uR)

−1
, ∀Euv ∈ E (3)

Therefore, {R∗v} and {R∗vR} essentially represent the same solution to the MRA
problem (1) and there is a gauge freedom of degree 3. The mapping Φ is thus
one-to-many as {RΦv } and {RΦvR} correspond to the same cost (2). This gauge
freedom makes it difficult to train such a network. Further, one could choose a
direct cost (no associated gauge freedom) to learn an one-to-one mapping Φ, e.g.

arg min
Θ

∑
G∈D

∑
Vv∈V

d
(
RΦv , R̂v

)
(4)

where the reference orientation is fixed according to the ground-truth. Again,
{R̂v} and {R̂vR} represent the same ground-truth where the reference orien-
tations are fixed at different directions. One could fix the issue by fixing the
reference orientation to the orientation of the first camera in all the view-graphs
in D. However, in a graph (set representation), the nodes are permutation invari-
ant. Thus the choice of the first camera, and hence the reference orientation, is
arbitrary. Therefore, one needs to pass the reference orientation or the index of
the first camera (possibly via a binary encoding) to the network as an additional
input to be able to train such a network. However, we employ an alternative
strategy adopted from the conventional optimization methods [8,23], i.e. initial-
ize a solution of the absolute orientations under a fixed reference and pass the
initialization to the network to fine-tune the solution. The network gets the ref-
erence orientation as an additional input via initialization (see Figure 1(d)) and

regress the parameters, i.e. {R̂v} ≈ Φ
(
{R̃uv}, {R̃v}; Θ

)
. Further, we train the

network by minimizing a combined cost where the 1st term (2) enforces the con-
sistency over the entire graph and the 2nd term (4) enforces a unique solution,
i.e.

arg min
Θ

∑
G∈D

( ∑
Euv∈E

d
(
RΦuv, R̂uv

)
+ β

∑
Vv∈V

d
(
RΦv , R̂v

))
(5)
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where β is a weight parameter. Note that the reference orientation are now fixed
at the orientation of a certain camera c in the initialization {R̃v} as well as in

the ground-truth absolute orientations {R̂v}. Although, the choice of c is not
critical, in practice, the camera c with most neighboring cameras is chosen as
the reference, i.e. R̃c = R̂c = I3×3.

The above mapping Φ is now one-to-one. However, it requires an initialization
{R̃v} as an additional input. Conventional methods initialize the absolute orien-
tations using a spanning tree of the view graph. However even a single outlier in
that spanning tree can lead to a very poor initialization, so it is very important
to identify these outliers beforehand. Further, noise in the relative orientation
along each edge of the spanning tree will also propagate at the subsequent nodes
while computing the initial absolute orientations. Thus, we first clean the view-
graph by removing the outliers and rectifying the noisy measurements, and then
bootstrap an initialization from the cleaned view-graph.
Cleaning the view-graph Given the local structure in the view-graph, i.e. mea-
surements of all the edges that the pair of adjacent nodes {Vu,Vv} are connected
to (and possibly subsequent edges), an outlier edge Euv can be detected. To be
specific, chaining the relative orientations along a cycle in the local structure of
the view-graph forms an orientation close to the identity orientation and an indi-
cation of an outlier in the cycle otherwise. The presence of an outliers in multiple
such cycles through the current edge indicates that the edge to be an outlier.
Instead of designing such explicit algorithms, we use another neural network to
clean the graph. The proposed method can be summarized as follows:
– A graph-based network is employed to clean the view-graph by removing

outlier measurements and rectifying noisy measurements (see Section 4.2).
– The cleaned view-graph is then utilized to initialize the absolute orientations

(see Section 4.3).
– The initialization is fine-tuned using a separate network (see Section 4.4).
For clarity of the rest of the paper, the notations are outlined in Table 1.

4.1 The network design choice

Generalizing convolution operators to irregular domains, such as graphs, is typ-
ically expressed as neighborhood aggregation or a message-passing scheme. The
proposed network is built using such Message-Passing Neural Networks (MPNN) [17],
directly operating on view-graphs G. A MPNN is defined in terms of message

functions m
(t)
v and update functions γ(t) that run for T time-steps (layers). At

each time-step, the hidden state h
(t)
v at each node (feature) in the graph is up-

dated according to

h(t)
v = γ(t)

(
h(t−1)
v ,m(t)

v

)
(6)

where m
(t)
v is the condensed message at node v, coming from the neighboring

nodes u ∈ Nv, and can be expressed as follows:

m(t)
v = �Vu∈Nvφ

(t)
(
h(t−1)
v , h(t−1)

u , euv
)

(7)
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where � denotes a differentiable, permutation invariant symmetric function,
e.g. mean, soft-max, etc.; γ(t) and φ(t) are concatenation operations followed by

1-D convolutions and ReLUs; euv is the edge feature of the edge Euv, h(t)
u→v :=

φ(t)
(
h

(t−1)
v , h

(t−1)
u , euv

)
is the accumulated message for the edge Euv at time-step

(t); and Nv is the set of all neighboring cameras connected to Vv. A diagram of
the elements involved in computing the next-level features is shown in Figure 3.

Table 1. The notations and symbols used in the manuscript

Orientation parameters in the view-graph

R̃uv|R∗uv :Observed|Noise-rectified relative R̃v|RΦv |R
∗
v : Initial|Refined|predicted absolute

R̂uv|R̂v :Ground-truth relative|absolute {Ruv}|{Rv} :Set of all relative|absolute

The network parameters and symbols

α∗uv|α̂uv :Predicted|Ground-truth outlier-score h(t)
v |m

(t)
v :Features|Message at node v

φ(t)|γ(t) :Feature update|Accumulated message lp1, lp2, lp3 :Single layers of linear perceptrons

4.2 View-graph cleaning network

The view-graph cleaning network (CleanNet) is built on a MPNN. The input to
CleanNet is a noisy view-graph and the output is a clean one, i.e. the network
takes noisy relative orientations R̃uv as the edge features euv and predicts the

noise-rectified relative orientations R∗uv from the accumulated message h
(T )
u→v :=

φ(T )
(
h

(T−1)
v , h

(T−1)
u , euv

)
at the last layer. It also predicts a score α∗uv depicting

the probability of the edge Euv to be an outlier. i.e.

R∗uv = lp1

(
h(T )
u→v

)
? R̃uv and α∗uv = lp2

(
h(T )
u→v

)
(8)

where lp1(.) and lp2(.) are single-layered linear perceptrons that map the accu-
mulated messages to the edge noise orientation and outlier score respectively. ′?′

is the matrix multiplication. The hidden states are initialized by null vectors,

i.e. h
(0)
v = ∅. Note that instead of directly estimating the rectified orientations,

we predict the noise in the relative orientation measurements, which are then
multiplied to obtain the rectified orientations. The loss is chosen as the weighted
combination of mean orientation error Lmre of the rectified R∗uv and ground-

truth R̂uv := R̂vR̂
−1
u relative orientations, and mean binary cross-entropy error

Lbce of the predicted α∗uv and the ground-truth outlier score α̂uv, i.e.

L =
∑
G∈D

∑
Euv∈E

(
Lmre

(
R∗uv, R̂uv

)
+ λLbce

(
α∗uv, α̂uv

))
(9)

where λ is a weight parameter (fixed as λ = 10). We formulate the orientations
using unit quaternions and the predictions are normalized accordingly. The error
in the prediction is also normalized by the degree of the node, i.e.

Lmre
(
R∗uv, R̂uv

)
=

1

|Nv||Nu|
dQ
( R∗uv
‖R∗uv‖2

, R̂uv
)

(10)



Neural robust rotation averaging 9

Experimentally, we observed the above loss produces superior performance than
the standard discrepancy loss (2). Note that the ground-truth outlier score α̂uv is
generated based on the amount of noise in the relative orientations. Specifically,
if the amount of noise in the relative orientation R̃−1

v R̂uvR̃u > 20◦, the ground-
truth edge label is assigned as an outlier, i.e. α̂uv = 1 and α̂uv = 0 otherwise.

h
(t−1)
2

h
(t−1)
1

h
(t−1)
4

h
(t−1)
3 ,m

(t)
3

h
(t−1)
6

h
(t−1)
5

h
(t)
1→3

h
(t)
4→3

h
(t)
6→3

h
(t)
5→3

h
(t−1)
4 h

(t−1)
3

e34

φ(t)

h
(t)
4→3

γ(t) h
(t)
3

• m(t)
3 = �

{
h
(t−1)
1→3 , h

(t−1)
4→3 , h

(t−1)
6→3 , h

(t−1)
5→3

}
• h(t)3 = γ(t)

(
h
(t−1)
3 ,m

(t)
3

)
• h(t)4→3 := φ(t)

(
h
(t−1)
3 , h

(t−1)
4 , e34

)

Fig. 3. An illustration of computing next level features of a message-passing network.

An edge Euv is marked as an outlier edge if the predicted outlier score α∗uv
is greater than a predefined threshold ε. In all of our experiments, we choose
the threshold ε = 0.751. A cleaned view-graph G∗ is then generated by removing
outlier edges from G and replacing noisy relative orientations R̃uv by the rectified
orientations R∗uv. Note that the cleaned graph G∗ is only employed to bootstrap
an initialization of the absolute orientations.

4.3 Bootstrapping absolute orientations

Hartley et al. [22] proposed generating a spanning tree by setting the camera with
the maximum number of neighbors as the root and recursively adding adjacent
cameras without forming a cycle. The reference orientation is fixed at the camera
at the root of the spanning tree. The orientations of the rest of the cameras in
the tree are computed by propagating away the rectified orientations R∗uv from

the root node along the edges, i.e. R̃v = R∗uvR̃u.
As discussed before, the noise in the the relative orientation along each edge

R∗uvR̂
−1
uv propagates at the subsequent nodes while computing the initial absolute

orientations of the cameras. Therefore, the spanning tree that minimizes the sum
of depths of all the nodes (a.k.a. shortest path tree [41]) is the best spanning tree
for the initialization. Starting with a root node, a shortest path tree could be
computed by greedily connecting nodes to each neighboring node in the breadth-
first order. The best shortest path tree can be found by applying the same
procedure with each one of the nodes as a root node (time complexityO(n2)) [24].
However, we employed the procedure just once (time complexity O(n)) with

1 The choice is not critical in the range ε ∈ [0.35, 0.8].
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the root at the node with the maximum number of adjacent nodes (similar to
Hartley et al. [22]) and observed similar results as with the best spanning tree.
The reference orientation of the initialization and the ground-truth is fixed at
the root of the tree. This procedure is very fast and it takes only a fraction of
a second for a large view-graph with thousands of cameras. We abbreviate this
procedure as SPT and it is the default initializer in all of our experiments.

4.4 Fine-tuning network

The fine-tuning network (FineNet) is again built on a MPNN. It takes the initial

absolute orientations {R̃v} and the relative orientation measurements {R̃uv} as
inputs, and predicts the refined absolute orientations {R∗v} as the output. The

refined orientations are estimated from the hidden states h
(T )
v of the nodes at

the last layer of the network, i.e.

R∗v = lp3

(
h(T )
v

)
? R̃v (11)

where lp3 is a single layer of linear perceptron. We initialize the hidden states

of the MPNN by the initial orientations, i.e. h
(0)
v = R̃v. The edge attributes are

chosen as the relative discrepancy of the initial and the observed relative orien-
tations, i.e. euv = R̃−1

v R̃uvR̃u. The loss for the fine-tuning network is computed
as the weighted sum of edge consistency loss and the rotational distance between
the predicted orientation R̃v and the ground-truth orientation R̃v, i.e.

L =
∑
G∈D

( ∑
Euv∈E

Lmre
(
R∗uv, R̂uv

)
+

β

|Nv|
∑
Vv∈V

dQ
( R∗v
‖R∗v‖

, R̂v
))

(12)

where Lmre is chosen as the quaternion distance (10). This is a combination
of two loss functions chosen according to (5). We value consistency of the en-
tire graph (enforced via relative orientations in the first term) over individual
accuracy (second term), and so choose β = 0.1.

4.5 Training

The view-graph cleaning network and the fine-tuning network are trained sep-
arately. For each edge Euv in the view-graph with observed orientation R̃uv, an
additional edge Evu is included in the view-graph in the opposite direction with
orientation R̃vu := R̃−1

uv . This will ensure the messages flow in both directions
of an edge. In both of the above networks, the parameters are chosen as: the
number of time-steps T = 4, the permutation invariant function � as the mean,

and the length of the message m
(t)
v and hidden state h

(t)
v are 32.

Network parameters Θ: The parameters are involved with: (i) 1-D convo-
lutions of γ(t) in (6) and φ(t) in (7), and (ii) linear perceptrons lp1, lp2 in (8)
and lp3 in (11). With the above hyper-parameters (i.e. time-steps, length of the
messages, etc.), the total number of parameters of NeuRoRA becomes ≈49.8K.
Note that increasing the hyper-parameters could lead to a bigger network (more
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parameters) and that results a slower performance. A small size network is much
faster but is not capable of predicting accurate outputs for larger view-graphs.
We have tried different network sizes and found the current network size is a
good balance between speed and accuracy.
Architecture setup: The networks are implemented in PyTorch Toolbox2 and
trained on a GTX 1080 Ti GPU with a learning rate of 0.5 × 10−4 and weight
decay 10−4. Each of CleanNet and FineNet are trained for 250 epochs (takes
∼ 4 − 6 hours) to learn the network parameters. To prevent the networks from
over-fitting on the training dataset, we randomly drop 25% of the edges of each
view-graph along with observed noisy relative orientations in each epoch. During
testing all the edges were kept active. The parameters that yielded the minimum
validation loss were kept for evaluation. All the baselines including the proposed
networks were evaluated on an Intel Core i7 CPU.

5 Results

Experiments were carried out on synthetic as well as real datasets to demonstrate
the true potential of our approach.
Baseline methods We evaluated NeuRoRA against the following baseline meth-
ods (also described in Section 2):
– Chatterjee and Govindu [8]: the latest implementation with the default pa-

rameters and cost function in the shared scripts3 were employed. We also
employed their evaluation strategy to compare the predicted orientations.

– Weiszfeld algorithm [22]: the algorithm is straightforward but computation-
ally expensive and we only ran it for 50 iterations of `1 averaging.

– Arrigoni et al. [5]: the authors shared the code with the optimal parameters4.
– Wang and Singer [44]: this is employed with a publicly available scripts5.
We also ran the graph cleaning network (CleanNet) followed by bootstrapping
initial orientation (using SPT) as a baseline CleanNet-SPT, and ran SPT on the
noisy graph followed by fine-tuning network (FineNet) as another baseline SPT-
FineNet. Note that the proposed network NeuRoRA takes CleanNet-SPT as an
initialization and then fine-tunes the initialization in a single step by FineNet.
NeuRoRA-v2 is a variation of the proposed method where an initialization from
CleanNet-SPT is fine-tuned in two steps of FineNet, i.e. the output of FineNet
in the first step is fed as an initialization of FineNet in the second step.
Synthetic dataset We carefully designed a synthetic dataset that closely re-
sembles the real-world datasets. Since the amount of noise in observed relative
measurements changes with the sensor type (e.g. camera device), the structure
of the connections in the view-graphs and the outlier ratios are varied with the
scene (Figure 2). A single view-graph was generated as follows: (1) the num-
ber of cameras were sampled in the range 250−1000 and their orientations were

2 https://pytorch-geometric.readthedocs.io
3 http://www.ee.iisc.ac.in/labs/cvl/research/rotaveraging/
4 http://www.diegm.uniud.it/fusiello/demo/gmf/
5 https://github.com/huangqx/map synchronization

https://pytorch-geometric.readthedocs.io/en/latest/
http://www.ee.iisc.ac.in/labs/cvl/research/rotaveraging/
http://www.diegm.uniud.it/fusiello/demo/gmf/
https://github.com/huangqx/map$_$synchronization
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generated randomly on a horizontal plane (yaw only), (2) pairwise edges and cor-
responding relative orientations were randomly introduced between the cameras
that amounted to (10 − 30)% of all possible pairs, (3) the relative orientations
were then corrupted by a noise with a std σ where σ is chosen uniformly in the
range (5◦ − 30◦) once for the entire view-graph, and the directions are chosen
randomly on the vertical plane (to emulate realistic distributions 2), and (4) the
relative orientations were further corrupted by (0−30)% of outliers with random
orientations. Our synthetic dataset consisted of 1200 sparse view-graphs. The
dataset was divided into training (80%), validation (10%), and testing (10%).

The results are furnished in Table 2. The average angular error on all the
view-graphs in the dataset is displayed. The proposed method NeuRoRA per-
forms remarkably well compared to the baselines in terms of accuracy and
speed. NeuRoRA-v2 further improves the results. Overall, Chatterjee [8] per-
forms well but the performance does not improve with a better initialization.
Unlike Wang [44], Weiszfeld [22] improves the performance with a better initial-
ization given by CleanNet-SPT, but, it can not improve the solution further given
an even better initialization by NeuRoRA. Notice that the proposed NeuRoRA
is three orders of magnitude faster with a GPU than the baseline methods.

Table 2. Results of Rotation averaging on a test synthetic dataset. The average an-
gular error on all the view-graphs in our dataset is displayed. The proposed method
NeuRoRA is remarkably faster than the baselines while producing better results. There
is no GPU implementations of [8,22,5,44] available, thus the runtime comparisons on
cuda are excluded. Note that NeuRoRA takes only 0.0016s on average on a GPU.

Baseline Methods mn md cpu mn md cpu

Chatterjee [8] 2.17◦ 1.25◦ 5.38s ( 1×) Arrigoni [5] 2.92◦ 1.42◦ 8.20s (0.65×)

Weiszfeld [22] 3.35◦ 1.02◦ 50.92s (0.11×) Wang [44] 2.77◦ 1.40◦ 9.75s (0.55×)

Proposed Methods

CleanNet-SPT + [8] 2.11◦ 1.26◦ 5.41s (0.99×) NeuRoRA 1.45◦ 0.74◦ 0.21s ( 24×)

CleanNet-SPT + [22] 1.74◦ 1.01◦ 50.36s (0.11×) NeuRoRA-v2 1.30◦ 0.68◦ 0.30s ( 18×)

Other Methods

CleanNet-SPT 2.93◦ 1.47◦ 0.11s ( 47×) SPT-FineNet 3.00◦ 1.57◦ 0.11s ( 47×)

CleanNet-SPT + [44] 2.77◦ 1.40◦ 9.86s (0.53×) SPT-FineNet + [44] 2.78◦ 1.40◦ 9.86s (0.53×)

SPT-FineNet + [8] 2.12◦ 1.26◦ 5.41s (0.99×) SPT-FineNet + [22] 1.78◦ 1.01◦ 50.36s (0.11×)

NeuRoRA + [8] 2.11◦ 1.26◦ 5.51s (0.97×) NeuRoRA + [22] 1.73◦ 1.01◦ 50.46s (0.10×)

mn: mean of the angular error; md: median of the angular error; cpu: the average runtime
of the method; MethodA + MethodB: MethodB is initialized by the solution of MethodA

Real dataset We summarize the real datasets and display in Table 3. There
are a total of 19 publicly available view-graphs with observed noisy relative
orientations and the ground-truth absolute orientations. The ground-truth ori-
entations were obtained by applying incremental bundle adjustment [2] on the
view-graphs. The TNotreDame dataset is shared by Chatterjee et al. [8]6. The
Artsquad and SanFrancisco datasets are provided by DISCO [12]7. The rest of

6 http://www.ee.iisc.ac.in/labs/cvl/research/rotaveraging/
7 http://vision.soic.indiana.edu/projects/disco/

http://www.ee.iisc.ac.in/labs/cvl/research/rotaveraging/
http://vision.soic.indiana.edu/projects/disco/
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the view-graphs are publicly shared by 1DSFM [46]8. The ground-truth orienta-
tions are available for some of those cameras (indicated in parenthesis) and the
training, validation and testing are performed only on those cameras.

Due to limited availability of real datasets for training, we employed network
parameters pre-trained on the above synthetic dataset and further fine-tuned on
the real datasets in round-robin fashion (leave one out). Such evaluation proto-
col is employed because we did not want to divide the sequences into training
and testing sequences that might favor one particular method. The finetuning
is done for each round of the round-robin using the real-data apart from the
held-out test sequence. Overall, the proposed NeuRoRA outperformed the base-
lines for this task in terms of accuracy and efficiency (Table 3). The Artsquad
and SanFrancisco datasets have different orientation patterns as shared from a
different source [12]. In particular SanFrancisco dataset is captured along a road
which is significantly different from others. Thus, the performance of NeuRoRA
falls short to Chatterjee [8] and Wang [44] only on those two sequences, but,
is still better than Weiszfeld [22] and Arrigoni [5]. Nonetheless, the proposed
NeuRoRA is much faster than others.

Table 3. Results of MRA on real datasets. The proposed method NeuRoRA is much
faster than the baselines while producing overall similar or better results. The number
of cameras, for which ground-truths are available, is shown within parenthesis.

Datasets Chatterjee [8] Weiszfeld [22] Arrigoni [5] Wang [44] NeuRoRA

Name #cameras #edges mn md cpu mn md cpu mn md cpu mn md cpu mn md cpu
Alamo 627(577) 49.5% 4.2 1.1 20.5s 4.9 1.4 84.0s 6.2 1.6 2.7s 5.3 1.4 20.6s 4.9 1.2 2.2s
EllisIsland 247(227) 66.8% 2.8 0.5 2.5s 4.4 1.0 8.9s 3.9 1.2 0.2s 3.6 1.1 2.6s 2.6 0.6 0.4s
GendrmMarkt 742(677) 17.5% 37.6 7.7 11.1s 29.4 9.6 53.7s 41.6 13.3 8.9s 32.6 6.1 12.5s 4.5 2.9 0.5s
MadridMetrop 394(341) 30.7% 6.9 1.2 3.2s 7.5 2.7 14.5s 6.0 1.7 0.9s 5.0 1.4 3.6s 2.5 1.1 0.2s
MontrealNotre 474(450) 46.8% 1.5 0.5 9.1s 2.1 0.7 41.5s 4.8 0.9 2.9s 2.0 0.8 10.1s 1.2 0.6 1.0s
NYCLibrary 376(332) 29.3% 3.0 1.3 4.8s 3.8 2.1 14.4s 3.9 1.5 1.4s 2.9 1.4 3.2s 1.9 1.1 0.2s
NotreDame 553(553) 68.1% 3.5 0.6 23.3s 4.7 0.8 80.8s 3.9 1.0 4.2s 3.5 0.9 19.5s 1.6 0.6 2.0s
PiazzaDelP 354(338) 39.5% 4.0 0.8 3.3s 4.8 1.3 16.7s 10.8 1.2 0.6s 6.2 1.1 3.6s 3.0 0.7 0.4s
Piccadilly 2508(2152) 10.2% 6.9 2.9 449.0s 26.4 7.5 ∼20m 22.0 9.7 43.7s 10.1 3.9 118.1s 4.7 1.9 5.9s
RomanForum1134(1084) 10.9% 3.1 1.5 20.2s 4.8 1.8 115.0s 13.2 8.2 16.8s 4.6 3.5 19.6s 2.3 1.3 1.3s
TowerLondon 508(472) 18.5% 3.9 2.4 1.9s 4.7 2.9 17.1s 4.6 1.8 3.9s 2.9 1.5 3.6s 2.6 1.4 0.3s
Trafalgar 5433(5058) 4.6% 3.5 2.0 858.4s 15.6 11.3 ∼92m 48.6 13.2 167.4s 17.2 16.0 319.2s 5.3 2.2 15.5s
UnionSquare 930(789) 5.9% 9.3 3.9 6.8s 40.9 10.3 42.8s 9.2 4.4 12.1s 6.8 3.2 4.1s 5.9 2.0 0.6s
ViennaCath 918(836) 24.6% 8.2 1.2 48.1s 11.7 1.9 158.3s 19.3 2.39 6.0s 10.1 1.8 25.7s 3.9 1.5 2.1s
Yorkminster 458(437) 26.5% 3.5 1.6 4.0s 5.7 2.0 32.0s 4.5 1.6 2.5s 3.5 1.3 4.9s 2.5 0.9 0.4s
Acropolis 463(463) 10.7% 1.1 0.7 1.5s 0.6 0.3 15.0s 2.7 1.7 3.2s 2.4 1.6 1.7s 0.8 0.5 0.2s
ArtsQuad 5530(4978) 1.4% 4.8 3.5 116.1s 34.4 23.1 ∼32m 35.2 15.8 189.4s 6.0 3.2 73.9s 27.5 7.3 5.0s
SanFran 7866(7866) 0.3% 3.6 3.4 15.2s 18.8 16.4 ∼22m 66.8 43.9 354.7s 89.2 75.5 27.2s 17.6 12.6 2.6s
TNotreDame 715(715) 25.3% 1.0 0.4 10.6s 1.4 0.6 72.5s 2.4 0.9 5.7s 1.7 0.8 14.8s 1.7 0.7 1.4s

mn: mean of the angular error (in deg); md: median of the angular error (in deg); cpu: the runtime of
the method on a cpu (s: in sec, m: in minute); entries with > 20 deg or > 120s are marked in red.

Robustness Check In this experiment we study the generalization capability of
NeuRoRA. To check the individual effects of different sensor settings, we gener-
ate a number of synthetic dataset varying (i) #cameras (ii) #edges, (iii) amount
of noise and outliers, and (iv) planar/random camera motion. NeuRoRA is then
trained on one of such datasets and evaluated on the others. Each dataset consists
of 1000 view-graphs (large ones contain only 100). Results are furnished in Ta-
ble 4. Notice that NeuRoRa generalizes well across dataset changes except when

8 http://www.cs.cornell.edu/projects/1dsfm/

http://www.cs.cornell.edu/projects/1dsfm/
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the network is trained on planar cameras and tested on random. We therefore
advice to use two separate networks for planar and non-planner scenes. Notice
that Chatterjee [8] demands a large memory for large view-graphs and failed to
execute on a system of 64gb of RAM. We tested our method on view-graphs
upto 25K vertices and 24M edges on the same system.

Table 4. Robustness check: results of Rotation averaging on multiple datasets where
NeuRoRA is trained on one and evaluated on the other datasets.

Training datasets Evaluation datasets NeuRoRA Chatterjee [8]

Robustness |V| |E| E&O P |V| |E| E&O P mn md cpu mn md cpu

#cameras 1000 25.0% 30◦&10% X 250 25.0% 30◦&10% X 1.1◦ 0.9◦ 0.1s 1.8◦ 1.7◦ 0.3s

(|V|) 250 25.0% 30◦&10% X 5000 2.5% 30◦&10% X 1.1◦ 1.0◦ 4.9s 1.4◦ 1.3◦ ∼12m

250 25.0% 30◦&10% X 10000 2.5% 30◦&10% X 0.7◦ 0.6◦ 18.7s Out of memory

250 25.0% 30◦&10% X 25000 2.5% 30◦&10% X 0.6◦ 0.5◦ 142.6s Out of memory

#edges 1000 25.0% 30◦&10% X 1000 2.5% 30◦&10% X 2.4◦ 2.1◦ 0.1s 3.0◦ 2.8◦ 3.3s

(|E|) 1000 2.5% 30◦&10% X 1000 25.0% 30◦&10% X 0.5◦ 0.4◦ 2.5s 0.9◦ 0.8◦ 43.2s

noise & outliers 1000 25.0% 30◦&10% X 1000 25.0% 10◦&5% X 0.4◦ 0.3◦ 2.5s 0.3◦ 0.3◦ 31.6s

(E&O) 1000 25.0% 10◦& 5% X 1000 25.0% 30◦&10% X 0.6◦ 0.5◦ 2.5s 0.9◦ 0.8◦ 43.2s

planar 1000 25.0% 30◦&10% X 1000 25.0% 30◦&10% 7 2.2◦ 1.6◦ 2.5s 0.9◦ 0.8◦ 26.3s

(P) 1000 25.0% 30◦&10% 7 1000 25.0% 30◦&10% X 0.9◦ 0.7◦ 2.5s 0.9◦ 0.8◦ 26.3s

E: noise with a std chosen uniformly in the range (0◦ − E◦); O: percentage of outliers; P: flag for planar cameras

6 Discussion

We have proposed a graph-based neural network for absolute orientation re-
gression of a number of cameras from their observed relative orientations. The
proposed network is exceptionally faster than the strong optimization-based
baselines while producing better results on most datasets. The outstanding per-
formance of the current work and the relevant neural networks for test-time
optimization leads to the following question: “can we then replace all the op-
timizations in robotics / computer vision by a suitable neural network-based
regression?” The answer is obviously No. For instance, if an optimization at
test-time requires solving a simpler convex cost with a few parameters to opti-
mize, a naive gradient descent will find the globally optimal parameters, while a
network-based regression would only estimate sub-optimal parameters. To date,
neural nets have been proven to be consistently better at solving pattern recog-
nition problems than solving a constraint optimization problems. A few neural
network-based solutions are proposed recently that can exploit the patterns in
the data while solving a test-time optimization. Therefore the current work also
opens up many questions related to the right tool for a specific application.
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