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Abstract. Deep unsupervised learning for optical flow has been pro-
posed, where the loss measures image similarity with the warping func-
tion parameterized by estimated flow. The census transform, instead of
image pixel values, is often used for the image similarity. In this work,
rather than the handcrafted features i.e. census or pixel values, we pro-
pose to use deep self-supervised features with a novel similarity measure,
which fuses multi-layer similarities. With the fused similarity, our net-
work better learns flow by minimizing our proposed feature separation
loss. The proposed method is a polarizing scheme, resulting in a more dis-
criminative similarity map. In the process, the features are also updated
to get high similarity for matching pairs and low for uncertain pairs, given
estimated flow. We evaluate our method on FlyingChairs, MPI Sintel,
and KITTI benchmarks. In quantitative and qualitative comparisons,
our method effectively improves the state-of-the-art techniques.

Keywords: Unsupervised, self-supervised, optical flow, deep feature,
similarity

1 Introduction

In computer vision, optical flow estimation is a fundamental step towards mo-
tion understanding. It describes the velocity of each point in the 3D world as
the projection of points to the 2D motion field. Thanks to its effective motion
description, it has been largely used for many applications, e.g., video recogni-
tion [31, 7], frame interpolation [4, 36], and inpainting [38], to name a few.

Recently, end-to-end deep networks for optical flow estimation [9, 16, 28,
32] have made architectural progresses, resulting in significant improvements
in terms of flow accuracy, efficiency, and generalization capability. For super-
vised optical flow training, large-scale synthetic datasets, e.g., FlyingChairs [9],
have been primarily used. While there are real-world datasets including Middle-
bury [4] and KITTI [10, 26], their sizes are limited to few hundred images and
each of them is limited to a specific scenario. This limitation is mainly due to
the extremely prohibitive cost to obtain or manually label accurate matching
points in thousands of video frames in the wild.
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Fig. 1: This figure shows different similarity maps of the reference point at time
step t to all pixels in the target image at t+ 1; red means higher similarity. We
compare the similarity computed by our deep feature against ones computed by
census transform and RGB. The fused similarity shows improved discriminative
response, while the census transform tends to be sensitive to local edge appear-
ance and RGB shows high similarity with similar colors. For simple visualization,
we compute similarity in the spatial domain

To train deep networks without ground-truth flows, unsupervised approaches
have been proposed. In principle, unsupervised methods exploit an assumption
that two matching points have similar features and learn to generate flows max-
imizing the similarity. In this line of research, choosing appropriate features is
critical for accurate optical flow estimation. The early work [19, 29] applies RGB
pixel values and image gradients as the feature, and recently it has been shown
that the census transform [39] is highly effective for optical flow learning [25, 22].

Another interesting aspect of the unsupervised optical flow networks is that
a network learns more than just the loss it is trained with. A recent work [22]
found that configuring the loss function only with the data term does work
without the smoothness term. This observation implies that the network fea-
ture learns meaningful patterns in moving objects only with the photometric
constancy assumption. A similar observation is also found in the literature on
self-supervision [27, 11], where deep features learn semantic patterns by conduct-
ing simple unsupervised tasks like a jigsaw puzzle or guessing rotation.

In this work, we learn self-supervised network features and use them to im-
prove the unsupervised optical flow. To learn from self-features, we propose to
use the similarity based on the product fusion of multi-layer features (Sec. 3.2).
We visualize similarity maps computed by different features in Fig. 1. Our fused
similarity demonstrates discriminative matching points highlighting the match-
ing pair, while lessening unmatched areas. On the other hand, the similarity
map (e.g., computed by the cosine) with RGB or the census transform shows
many high-response points across the whole area. This is mainly because those
features only encode patterns in a local area and do not represent semantic
meanings. We propose three loss functions utilizing the feature similarity for
optical flow training (Sec. 3.3). Across various quantitative and qualitative vali-
dations, we demonstrate the benefits of the proposed feature similarity and the
loss function. (Sec. 4). When compared to other deep unsupervised methods,
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our method achieves state-of-the-art results under various measures across Fly-
ingChairs, MPI Sintel, and KITTI benchmarks.

2 Related Work

End-to-end supervised deep methods. FlowNet [9] is the first end-to-end
framework that exploits a deep network for optical flow estimation. To train the
network, a large-scale labeled dataset called FlyingChairs was constructed [9].
Following the first work, FlowNet2 [16], SpyNet [28], and PWC-Net [32] have
made architectural progresses, resulting in significant improvements in terms of
flow accuracy, efficiency, and generalization capability.
Datasets. Large-scale synthetic datasets are available for supervised optical flow
training including FlyingChairs [9]. Following FlyingChairs, FlyingThings3D [24]
and FlyingChairs-Occ [15] datasets are incorporated into the collection with
improved reality and additional information. Real-world datasets annotated with
a rich optical flow are lacking. Middlebury [4] and KITTI [10, 26] are the most
commonly used ones. However, not only the scenes they have are limited to few
hundreds of images, but also they are constrained to specific scenarios: indoor
static objects for Middlebury and driving for KITTI. This limitation is mainly
due to the prohibitive cost to obtain or manually label accurate matching points
in thousands of video frames in the wild.
End-to-end unsupervised deep methods. To make use of deep networks
for optical flow without expensive ground-truth flows, deep unsupervised ap-
proaches have been proposed. Earlier methods [19, 29] brought ideas from the
classical variational methods, which adopt the energy functional containing the
data and smoothness terms into loss functions of deep learning. The loss function
in unsupervised methods can be calculated using the warping technique [17].

In unsupervised optical flow learning, how to filter out unreliable signals
from its loss is critical for achieving better results. In terms of the data term,
the census transform [39] has been proven to be effective in deep unsupervised
optical flow [25, 22]. Similarly, occlusion handling [25, 34] can eliminate possibly
occluded points from the loss calculation, where no target pixels exist due to
occlusion. Rather than just giving up supervision on occluded ones, hallucinated
occlusion [22, 23] can be helpful to give meaningful loss for those occluded points.
Additionally, training with multiple frames improves the noisy loss signal. Janai
et al. [18] use the constant velocity assumption and Liu et al. [23] build multiple
cost-volumes to give more information to a model.
Deep features for matching. In the fields of matching and tracking keypoints
or objects, deep network features have been used for robust matching [33, 5, 42].
At a high level, matching techniques are related to optical flow estimation [35,
30, 2, 3, 37, 13]. However, addressing all the pixels and their matching in a dense
manner (cf. sparse keypoints) is challenging. To the best of our knowledge, deep
features have not been exploited in objective functions for optical flow estima-
tion. On the other hand, there has been successful exploitation of deep features
in pixel-wise tasks, e.g., depth estimation [41] and generation by warping [14]. In
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Fig. 2: This shows the overview of our method, which is end-to-end trainable for
both optical flow and self-supervised deep features

our evaluations, the Zhan’s method [41], which was proposed for stereo match-
ing, or the losses more direct to optimize the deep features, e.g., the triplet
losses, have shown poor performance in unsupervised optical flow estimation.
Given the high level of noise due to occlusion, deformation, motion blur, and
the unsupervised settings of optical flow, the level of optimization, i.e., the loss
function for features, needs to be carefully designed.

3 Our Approach

In this work, we successfully learn and exploit deep features for improving un-
supervised optical flow estimation. The proposed framework simultaneously im-
proves the features and optical flow while adding a small additional cost for
training and no extra cost at runtime. For effective training, we build new loss
functions (Sec. 3.3) utilizing the fused similarity (Sec. 3.2). The feature sepa-
ration loss separates certain and uncertain matchings by our fused similarity
like a contrastive loss. Noting that even the best features can fail in cases like
occlusions, the separation mechanism effectively improves resulting flows by dis-
couraging to match uncertain pixels, as well as encoraging to improve certain
ones. Additionally, the regulated census loss and conditional smoothness loss
make use of the census features and the smoothness constraint adaptively con-
sidering the deep similarity to compensate for the low precision of deep features.

Figure 2 illustrates our method. Our method is an end-to-end trainable net-
work, which takes a sequence of images as an input for optical flow estimation; we
use PWC-Net [32] structure as a base model of the encoder and the decoder, and
train it using self-features, i.e., spatial conv features. In the training phase, we
add a similarity branch in which similarities of predicted flows are calculated and
fused; the resulting fused similarity is actively used in our training process. The
aggregated similarity over layers resolves disagreement among multiple-layer fea-
tures. We apply three loss functions to be minimized upon the fused similarity:
feature separation loss, regulated census loss, and conditional smoothness loss.
In the learning process, both the encoder and decoder are initialized using the
conventional unsupervised optical flow loss. Then, the proposed feature-based
losses are minimized. The method converges under different initialization and
parameter settings.
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3.1 Background on Unsupervised Optical Flow Learning

The learning-based optical flow method commonly works on a dataset to train
a model that has a set of spatio-temporal images X = {X1, X2, . . . , XN}, Xi ∈
RH×W×T×C , and ground-truth flows Y = {F1, F2, . . . FN}, Fi ∈ RH×W×T−1×2,
where H and W denote height and width, T is its sequence length, and C and
N are the numbers of channels and data, respectively. The goal is to train a
model fθ that calculates flow F̂i from the spatio-temporal sequence Xi ∈ X .
In a supervised case, we train a network by minimizing regression loss: Ls =
1
N

∑N
i ||Fi − F̂i||22. In an unsupervised case, however, we cannot access Y, but

only X . We thus configure an unsupervised loss term, Lp, with the photometric
consistency assumption:

Lp =
1

N

N∑
i

∑
(x,y,t)∈Ω

Ψ(Xi(x, y, t)−Xi(x+ u, y + v, t+ 1)), (1)

where Ω contains all the spatio-temporal coordinates, (u, v) = F̂i(x, y, t) is an
estimated flow at (x, y, t), and Ψ is the robust penalty function [22]; Ψ(x) =
(|x|+ε)q. Note that X(x+u, y+v, ·) includes the warping operation using bilinear
sampling [17], which supports back-propagation for end-to-end optimization. In
this paper, we use the census transform in Lp with the same configuration used
in [22] for all experiments unless otherwise stated.

Occlusion handling is performed by checking consistency [25] between for-
ward and backward flows. The estimated occlusion mask is denoted with Ĉoi (x, y, t),

which is 1 if F̂i(x, y, t) is not occluded, otherwise 0. This geometrically means
the backward flow vector should be the inverse of the forward one if it is not
occluded. Our loss terms use the occlusion map as previous work [25].

In this work, we use the data distillation loss [22] for occluded pixels:

Ld =
1

N

N∑
i

∑
(x,y,t)∈Ω

Ψ(F̂ si (x, y, t)− F̂ ti (x, y, t))Mf (x, y, t), (2)

where F̂ ti is a flow from a teacher model, F̂ si is a flow from a student model, and
Mf is a valid mask. In short, the teacher model processes inputs without artifi-
cial synthetic occlusion, and the student model gets inputs with the generated
occlusion. The student flow then learns from the teacher flow.

3.2 Feature Similarity from Multiple Layers

We use a model fθ that estimates optical flow, where the model can be decom-
posed into an encoder feθe and a decoder fdθd , such that fθ(Xi) = fdθd(feθe(Xi));
θ = θe ∪ θd. The encoder fe is a function that outputs L-layered features
hi = (h1i , h

2
i , . . . , h

L
i ); a lower numbered layer indicates a shallower layer in the

deep network.
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Fig. 3: We visualize the occlusion mask (Ĉo) and the similarity map (simf ). By
comparing the ground-truth error map and the fused similarity, we can observe
that the similarity is low when the error is high. The bottom row shows occlusion
mask and the similarity. Since the occlusion mask does not consider matching
confidence, it does not represent how confident the matching is. On the other
hand, our fused similarity marks whether the predicted flow is confident. Fur-
thermore, we can use back-propagation since the similarity is differentiable.

Given a matching F̂ (x, y, t), we define the similarity between Xi(x, y, t) and
Xi(x+ u, y + v, t+ 1) in a layer l to be:

siml(x, y, t;h
l
i, F̂i) =

hli(x, y, t) · hli(x+ u, y + v, t+ 1) + 1

2
, (3)

where (u, v) = F̂i(x, y, t). Since we use l2-normalization for hli, the function
sim(·) is equivalent to the normalized cosine similarity between the reference
feature and the target feature. Note that, for flows going out of the frame, no
gradient is propagated during training. Additionally, we update encoder weights
by indirect gradient, i.e., back-propagation through the decoder, while ignoring
direct gradient from siml to hli. That strategy is chosen because the direct gradi-
ent easily bypasses the decoder, and the encoder easily suffers from overfitting,
in the end, the output flow is downgraded.

Fused similarity. To utilize features from all layers, we propose to fuse multi-
layer feature similarities (sim1, sim2, . . . , simL). In CNNs, lower layer features
tend to show high response for low-level details, e.g. edge, color, etc., while
higher layers focus on objects [40]. As a result, similarity response of a lower
layer usually bursts around the whole image, while similarity of a deeper layer
has few modes. Therefore, to get stable, yet discriminative feature similarity
response as shown in Fig. 1, we define the fused similarity as product of multiple
features:

simf (·) =

L∏
l=1

siml(·;hli, F̂i). (4)
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For efficient calculation during training, we downsample the flow field F̂i to
the size of each layer feature using area interpolation before calculating the sim-
ilarity; we use area interpolation, since it can propagate gradient to all source
points, while other interpolation methods, e.g., bilinear interpolation, only up-
date few nearest source points.

3.3 Learning Optical Flow with Feature Similarity

In this section, we propose three loss functions to effectively use the similarity
map for optical flow estimation.
Feature separation loss. Given deep similarity, a model can learn flow by
simply maximizing sim(· · · ;hi, F̂i), since larger similarity possibly means better
matching solution. However, this simple approach in practice leads to worse
results, because matchings between pixels under occlusion do not get better,
even as we increase the similarity. In other words, maximizing the similarity for
these points makes the flows incorrectly matched to random pixels with higher
similarity.

To address this matching issue with uncertainty, we suppress flows with lower
similarity by minimizing their similarity further, while refining flows with higher
similarity by maximizing their similarity. First, we define a similarity threshold
k, which we separate the values from:

k =
1

2
(knoc + kocc), (5)

where knoc and kocc are average similarities of non-occluded pixels and occluded

pixels: knoc =
∑
Ω(simf ·Ĉi)∑

Ω(Ĉi)
, kocc =

∑
Ω(simf ·(1−Ĉi))∑

Ω(1−Ĉi)
. Since occlusion is an effective

criterion to set the boundary value, so that other kinds of difficulties can also
be covered as shown in the experiments (Fig. 6).

We then formulate the feature separating loss term as:

Lf =
1

N

N∑
i

∑
(x,y,t)∈Ω

−(simf (x, y, t)− k)2. (6)

Lf is a quadratic loss function encouraging the similarity to be far from k,
which serves as a boundary value that decides the direction of update. In other
words, it suppresses uncertain flows, i.e. simf (x, y) < k, down towards 0, and
certain flows, i.e. simf (x, y) > k, up towards 1. This can be also interpreted as
minimizing entropy in semi-supervised learning [12]; we make a network output
more informative by regularizing the similarity to be at each polar. A similar
approach separating feature similarity from a different domain, image retrieval,
has been shown to be effective [21].

One may concern that minimizing the similarity of uncertain flows, i.e.,
simf < k, can lead to an arbitrary matching solution. However, the product
operation in the fused similarity (Eq. 4) makes siml with a higher similarity
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relatively retained, while changing smaller similarity much faster. Given any a, b
s.t. 1 ≤ a, b ≤ L, whose similarity is not 0, one can derive the following equation:

∂Lf
∂sima(x, y, t)

=
simb(x, y, t)

sima(x, y, t)

(
∂Lf

∂simb(x, y, t)

)
. (7)

That is, the scale difference between the two gradients is proportional to the
fractional ratio of them, which can grow much faster when the denominator
becomes smaller in the scale of the multiplicative inverse. As a result, Lf is
minimized by the smaller similarity approaching zero; higher layer similarities
can be preserved to prevent arbitrary matching.
Regulated census loss. Since Lf (Eq. 6) is fully self-regulated, using only
Lf for training can mislead the network itself. Thus, by modifying the well-
known unsupervised loss (Eq. 1), we additionally use a regulated census loss,
Lr, controlled by similarity:

Lr =
1

N

N∑
i

∑
(x,y,t)∈Ω

Ψ(·)Ĉoi (x, y, t)simf (x, y, t). (8)

The warping operation used in Eq. 1 is the bilinear sampling. This can only
take into account four nearest pixels, making it difficult to address the pixel
position far from the estimation, as also pointed by Wang et al. [34]. Therefore,
the unsupervised loss (Eq. 1) does not give a correct direction when the current
estimation is far from the desired target flow; whatever the loss is, it would
be a noise in that case. In contrast, deep features have larger receptive fields
with global context, so does the fused similarity. Thus, we can suppress the
noise signal by multiplying the similarity; the similarity is designed to indicate
whether the current estimation is near the desired target point.
Conditional smoothness loss. We use the smoothness prior for spatial lo-
cations with low similarity. In general, using the smoothness prior for all pix-
els degrades the accuracy because the flow-field is blurred. Meanwhile, if clear
matching is not found, the smoothness constraint can help by being harmonized
with surrounding flows. We thus define our smoothness prior loss considering
similarity as:

Ls =
1

N

N∑
i

∑
(x,y,t)∈Ω

(|∇u|2 + |∇v|2)Ml(x, y, t), (9)

Ml(x, y, t) =

{
1, if simf (·) < k,

0, otherwise.
(10)

Loss for training. We jointly use the aforementioned losses to train our model
with stochastic gradient descent. Our final loss function is sum of these loss
functions:

L = Lr + λfLf + λsLs + λdLd, (11)

where λs are weight parameters, and Ld is the data distillation loss defined in
Eq. 2.
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Fig. 4: Training graphs of end-point-error (EPE) on two datasets. For DD(Ld),
we use census, occlusion handling and Ld, which is the same setting to [22]. For
ours(L), we use the full loss function L (Eq. 11). Ours performs consistently
better during training

4 Experimental Results

Our network structure is based on PWC-Net [32], which is a deep network that
contains warping, cost-volume, and context network to cover large displacements.
We train the network from scratch using Adam optimizer [20] for stochastic
gradient descent. In all experiment, we set the mini-batch size to 4.
Training procedure. Overall, we follow the training process of DDFlow [22]
to initialize the network. To train the model, we first pretrain our network with
FlyingChairs [9] and finetune it with each target dataset. For pretraining, we
use the conventional photometric loss with RGB (Eq. 1) for 200k steps and
additional 300k steps with occlusion handling. The resulting weights become
the base network parameters for the following experiments. Next, using each
target dataset, we finetune the base network. From this stage, we use the census
transform for photometric loss. We train the model for 200k steps with occlusion
handling. We then apply the final loss L (Eq. 11). We run first 1k steps without
Ld, i.e. λd = 0. Then, the teacher network (Sec. 3.1) is fixed to use Ld and
continues training using all the losses to 50k steps. We set hyper-parameters to
λs = 10−4 and λf = 4. We follow λd = 1 from the previous work [22].
Data augmentation. For better generalization, we augment the training data
using random cropping, random flipping, random channel swapping and color
jittering; color jittering includes random brightness and saturation. We normalize
the input RGB value into [−0.5, 0.5].
FlyingChairs. The FlyingChairs [9] is a synthetic dataset created by combining
chair and background images. The dataset consisting of 20 k pairs of images has
a given train/test split, thus we use its training set for training our network and
evaluate our model on its test set.
MPI Sintel. MPI Sintel [6] is a rendered dataset, originally from an open-source
movie, Sintel. For training, we use 1k images from the training set and upload
our results of the test set to its benchmark server for evaluation. We use both
versions of rendering, i.e., clean and final, for training.
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Fig. 5: (a-c) We measure the distance from the boundary k (Eq. 5) to fused
similarity on Sintel Final dataset. (a-c) show distance distributions of different
steps; we show EPE inside parenthesis. During training, our feature separation
loss pushes fused similarity away from the boundary k; note that the greater
the distance is, the more separation we have. (d-e) show average simf − k for
occluded / non-occluded pixels. Note that occluded pixels show negative value.
We measure the distance using ground-truth (GT) flows to observe the effect
mainly on the encoder feature excluding the effect from the decoder side.

KITTI. KITTI [10] has a driving scene from the real world. This dataset has
only 200 pairs of images with ground-truth flows. We thus train our model using
unlabeled images from a multi-view extension set of KITTI without duplicated
images in the benchmark training or testing sets, following the previous work [34].

4.1 Evaluation on Benchmarks

Ablation study. The results on benchmark datasets show that the network
better learns to estimate flows with the feature similarity (Table 1). As can be
seen in the last row of the table, our final method (Ld + Lf + Lr) works better
in most cases than the other settings on both datasets. Due to low localization
precision of deep features, however, using only Lf without Lr does not much
improve the result. Interestingly, Lr that adaptively regulates the the conven-
tional census loss is highly effective. When Lr is combined together with Lf , the
combined loss (Lf + Lr) performs the best.

In Sintel where we report EPE on NOC and OCC, Lf improves better on
OCC than on NOC. It implies that the suppression part in Lf takes effect, which
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Table 1: Ablation study on various settings. Average end-point error (EPE)
is used as a metric. For Sintel, the results are evaluated over all (ALL), non-
occluded (NOC), and occluded (OCC) pixels. Results in parenthesis are achieved
by testing the model using the data that the model is trained on. In left columns
we show types of losses we use: occlusion handling (Ĉ), data-distilation [22] (Ld),
and ours: feature separation (Lf ) and regulated census (Lr). The first two rows
show the performance of our pretrained network trained with FlyingChairs

Base
Ĉ Ld Lf Lr

FlyingChairs Sintel Clean Sintel Final
feature ALL ALL NOC OCC ALL NOC OCC

RGB 4.01 5.61 3.01 38.64 6.44 3.76 40.45
RGB � 3.64 4.40 2.12 33.33 5.42 3.02 36.01

Census � 3.10 (3.22) (1.26) (28.14) (4.37) (2.25) (31.25)
Census � � 2.93 (3.15) (1.49) (24.35) (3.86) (2.11) (26.16)
Census � � � 2.87 (3.25) (1.46) (25.95) (4.15) (2.27) (28.01)
Census � � � 2.81 (2.91) (1.29) (23.40) (3.62) (1.95) (24.98)
Census � � � � 2.69 (2.86) (1.28) (22.85) (3.57) (1.94) (24.38)

Table 2: Average EPE on different displacements. ALL: all pixels. a-b: pixels
displaced within [a, b)

Sintel clean Sintel final

ALL 0-10 10-40 40+ ALL 0-10 10-40 40+

Lp (3.22) (0.59) (3.86) (20.45) (4.37) (0.83) (5.41) (27.17)
Ld (3.15) (0.59) (4.02) (19.51) (3.86) (0.71) (5.06) (23.63)
Ours (2.86) (0.49) (3.45) (18.36) (3.57) (0.64) (4.49) (22.36)

discourages matching with higher similarity for uncertain flows. Table 2 shows
that our method effectively covers various ranges of displacements.

We have also tested direct feature learning by the triplet loss [8], it did not
improve the baseline accuracy DDFlow [22] i.e. Ld+Lp alone in the experiments.
The proposed losses and learning strategy are crucial to unsupervised learning
of feature and optical flow.

Loss parameter. We show results with different parameter settings in Table 3.
Our smoothness constraint helps the network refine flows with lower similarity,
when set to lower weight values; with a high weight value, the flow field becomes
over-smoothed. With respect to λf , a weight greater than 4 can deteriorate the
learning. As can be seen in Figure 4, our final loss (Eq. 11) converges well and
it achieves higher performance than the baseline of using Ld.

Analysis on similarity. During training, our method gradually improves flow
and encoder feature. Figure 5 illustrates the fused similarity with respect to
each training step. Fig. 5a shows the distribution before we apply our feature
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Table 3: Average EPE depending on loss weighting parameters

(a) Smoothness weight

λs 10−2 10−3 10−4 10−5

FlyingChairs 3.27 2.84 2.85 2.83

Sintel Final (4.41) (4.34) (4.16) (4.41)

(b) Separation weight

λf 2.0 3.0 4.0 5.0

FlyingChairs 2.95 2.90 2.85 3.21

Sintel Final (4.33) (4.31) (4.16) (4.36)

Table 4: Comparison to state-of-the-art deep unsupervised optical flow methods.
Results in parentheses indicates it is evaluated using data it is trained on. We
report average end-point-error for most categories and percentage of erroneous
pixels for KITTI testset calculated from benchmark server. Best results in red
and second best results in blue.

Method
Chairs Sintel Clean Sintel Final KITTI 2015

test train test train test train test(Fl)

BackToBasic [19] 5.3 - - - - - -
DSTFlow-ft [29] 5.52 (6.16) 10.41 (6.81) 11.27 16.79 39%

OccAwareFlow-best [34] 3.30 (4.03) 7.95 (5.95) 9.15 8.88 31.2%
UnFlow-CSS-ft [25] - - - (7.91) 10.22 8.10 23.30%

MultiFrameOccFlow-ft [18] - (3.89) 7.23 (5.52) 8.81 6.59 22.94%
DDFlow-ft [22] 2.97 (2.92) 6.18 (3.98) 7.40 5.72 14.29%

SelFlow-ft-Sintel [23] - (2.88)† 6.56† (3.87)† 6.57† 4.84 14.19%

Ours-Chairs 2.69 3.66 - 4.67 - 16.99 -
Ours-ft-Sintel 3.01 (2.86) 5.92 (3.57) 6.92 12.75 -
Ours-ft-KITTI 4.32 5.49 - 7.24 - 5.19 13.38%

†: pretrained on the original Sintel movie

separation loss. After 20k steps of training with our method, the distribution
(Fig. 5b) becomes similar to ground-truth distribution (Fig. 5c). Figure 5d-
5e plots average difference, i.e., (simf − k), of each types of pixels, where we
observe the feature similarity becomes more discriminative gradually; average
similarities of non-occluded pixels and occluded pixels become higher and lower
respectively. The last result using GT flows shows solely on the feature factor
(encoder) without flow estimation factor (decoder), which confirms the updated,
more discriminative features.

Qualitative results. Training with our feature similarity loss makes the flow
and similarity much discriminative. During training, the similarity map changes
in a way that higher similarity becomes higher and lower similarity goes lower.
As a result, the network can improve its prediction by reinforcing clear matching
and suppressing uncertain matching. In Figure 6, we visualize how the similarity
loss can be beneficial to flow learning. In the examples, our loss effectively im-
proves the flow estimation by pushing similarity to each polar; that is why our
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method performs well in uncertain regions. In Figure 7, we compare ours with
SelFlow [23]. In the first two examples, the uncertain snow regions are the most
challenging part, so that the state-of-the-art SelFlow fails in such regions. On
the other hand, our method is able to handle such regions effectively, since the
similarity loss suppresses the flows in that regions.
Quantitative comparison to state-of-the-art. We compare our method with
existing deep unsupervised methods in Table 4. Our method effectively improves
the baseline framework [22] and shows competitive results against other unsu-
pervised methods. For Sintel, SelFlow gets a better result in the Sintel Final
testset; it is trained on 10 k additional Sintel movie frames, while our model uses
1 k frames from the MPI Sintel dataset. Since our method can be used jointly
with hallucinated occlusion and multiple-frame schemes from SelFlow [23], we
expect a much stronger unsupervised model if the two are combined. In the
real dataset KITTI, our method effectively improves over our baseline model
(DDFlow), and reduces the percentage of erroneous pixels to 13.38% in the test
benchmark. Overall, our approach achieves top-1 or top-2 consistently across
different benchmarks. This demonstrates the robustness of our approach and
benefits of utilizing deep self-supervised features and fused similarity.
Failure cases. Most unsupervised methods tend to estimate motion in a larger
area than it really is, and it occurs more frequently for smaller and faster objects.
In contrast, since our method estimates the similarity of a matching and refines it
with the similarity, it sometimes reduces flows for small and fast-moving objects.
In the last example in Figure 7, ours fails to catch the movement of few birds
flying fast over the stairs.

5 Conclusion

In this paper, we have shown that learning flow from self-supervised features is
feasible and effective with our fused similarity and feature separation loss. This
allows the network to better learn flows and features from a sequence of images
in the unsupervised way. We observe that, using the feature separation loss,
the flows are updated to make the fused similarity more discriminative, while
suppressing uncertain flows and reinforcing clear flows. The experiments show
that the proposed method achieves competitive results in both qualitative and
quantitative evaluation. The promising results confirm that, without labels, the
self-supervised features can be used to improve itself. This kind of self-regulation
techniques would be proven more effective under semi-supervised settings, where
part of labels are available.
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Fig. 6: Fused similarity of models trained w/o and w/ the feature similarity loss,
denoted by DD and ours, respectively. The similarity loss suppresses similarity
of the background snow texture behind the fighting man, resulting in the simi-
larity map in the second row. In the second example, the sky region is expanded
since the simlilarity increases by the similarity loss. As a result, the flow field
effectively separates the brown wing of the dragon and the sky in brown

Image GT flow SelFlow Ours

Fig. 7: Comparison to SelFlow [23] on the Sintel testset. We retrieve the resulting
images and the visualizations of ground-truth from its benchmark website [1]; it
provides only twelve test samples for each method
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