
Supplementary Material to
Efficient Attention Mechanism for Visual Dialog

that can Handle All the Interactions between
Multiple Inputs

Van-Quang Nguyen1, Masanori Suganuma2,1, and Takayuki Okatani1,2

1 Graduate School of Information Sciences, Tohoku University
2 RIKEN Center for AIP

{quang, suganuma, okatani}@vision.is.tohoku.ac.jp

A Representations of Utilities

A.1 Image Utility

The image utility is represented by the standard method employed in many
recent studies. It is based on the bottom-up mechanism [1], which extracts region-
level image features using the Faster-RCNN pre-trained on the Visual Genome
dataset [10]. For each input image, we select the top K objects, and represent
each of them by a visual feature vri ∈ R2048 and a bounding box expressed
by (xi,1, xi,2) and (xi,3, xi,4) (the coordinates of the upper-left and lower-right
corners.)

The feature vector vri is then converted into another vector vfi ∈ Rd as follows.
We introduce the following notation to express a single FC layer with ReLU, to
which dropout regularization is applied:

MLP
k→d

(x) ≡ Dropout(ReLU(W>x + b)), (1)

where x ∈ Rk is the input and W ∈ Rk×d and b ∈ Rd are the weights and biases.
Then, vfi is obtained by

vfi = LayerNorm(MLP
2048→d

(vri)), (2)

where LayerNorm is the layer normalization [2] applied to the output.
The bounding box geometry is converted into vbi ∈ Rd in the following way.

First, the image is resized to 600 × 600 pixels and the bounding box geome-
try is transformed accordingly. Then, representing each of the four coordinates
by a one-hot vector of size 600, we convert them into the embedding vectors
x̂i,1, . . . , x̂i,4(∈ Rd) using four different embedding layers. Then, we obtain vbi as
below

vbi =

4∑
j=1

LayerNorm(MLP
d→d

(x̂i,j)). (3)

2 Van-Quang Nguyen et al.

Finally, vfi encoding the visual feature and vbi encoding the spatial feature
are aggregated by adding and normalizing as

vi = LayerNorm(vfi + vbi). (4)

The resulting vi’s for the K objects (i = 1, . . . ,K) comprise a matrix V =
[v1, v2, · · · , vK]> ∈ RK×d, which gives the representation of the visual utility.

Optional Image Feature Enrichment. In the experiment of comparing ensembles
on the test split of Visdial v1.0, we enrich the image features for further improve-
ment. To be specific, for each object, we also obtain a class label with highest
probability (e.g. ‘cat’, ‘hair’, and ‘car’) and the top 20 attributes for each class
label (e.g., ‘curly’, ‘blond’, ‘long’, and so on, for the label ‘hair’). These can be
extracted from the Faster-RCNN along with the above CNN features and bound-
ing box geometry. We incorporate these into the image utility representation in
the following way.

The class label for the i-th object is first encoded into an embedding vector
eci ∈ R300 using the same embedding layer as the question. Then, we convert eci
into a d-dimensional vector vci by

vci = LayerNorm(MLP
300→d

(eci)). (5)

Similarly, for the top 20 attributes of each object i, we encode them into embed-
ding vectors of size 300, i.e. eai,1, . . . , e

a
i,20, and then convert them further into

vai ∈ Rd as

vai =

20∑
j=1

LayerNorm(MLP
300→d

(eai,j)w
a
i,j , (6)

where wa
i,j is the confidence score extracted from the Faster-RCNN for attribute

j of the i-th object. Then, the visual feature vfi , the spatial feature vbi , the class
feature vci , and the attribute feature vai are aggregated by their addition followed
by normalization as

vi = LayerNorm(vfi + vbi + vci + vai). (7)

We then use these vectors to form the matrix V instead of Eq.(4).

A.2 Question Utility

The question utility is also obtained by the standard method but with one ex-
ception, the employment of positional embedding used in NLP studies. Note
that we examine its effects in an ablation test shown in the main paper. A given
question sentence is first fit into a sequence of N words; zero-padding is applied
if necessary. Each word wi (i = 1, . . . , N) is embedded into a vector ei of a fixed
size using an embedding layer initialized with pretrained GloVe vectors [15].

Efficient Attention Mechanism for Multiple Inputs in Visual Dialog 3

They are then inputted into two-layer Bi-LSTM, obtaining two d-dimensional

vectors
−→
hi and

←−
hi as their higher-layer hidden state:

−→
hi = LSTM(ei,

−−→
hi−1),

←−
hi = LSTM(ei,

←−−
hi+1).

(8)

Their concatenation, hi = [
−→
hi
>,
←−
hi
>]>, is then projected back to a d-dimensional

space using a linear transformation, yielding a vector qfi . Positional embedding
qpi from the paper [18] is added to get the final representation qi ∈ Rd of wi as

qi = LayerNorm(qfi + qpi). (9)

The representation of the question utility is given as Q = [q1, . . . , qN]> ∈ RN×d.

A.3 Dialog History Utility

In this study, we choose to represent the dialog history as a single utility. Each
of its entities represents the question-answer pair at one round. As with previous
studies, the caption is treated as the first round of 2N -word which is padded or
truncated if necessary. For each round t > 1, the word sequences of the question
and the answer at the round is concatenated into 2N -word sequence with zero
padding if necessary. As with the question utility, after embedding each word
into a GloVe vector, the resulting sequence of 2N embedded vectors is inputted
to two-layer Bi-LSTM, from which only their last (higher-layer) hidden states are

extracted to construct 2d-dimensional vector [
−→
h0
>,
←−−
h2N

>]>. We then project it

with a linear transform to a d-dimensional space, yielding rft ∈ Rd. For the linear
projection, we use different learnable weights from the question utility. As in
Eq.(9), we add positional embedding, which represents the order of rounds, and
then apply layer normalization, yielding a feature vector of the round t question-
answer pair. The history utility is then given by R = [r1, . . . , rT]> ∈ RT×d.

B Design of Decoders

B.1 Discriminative Decoder

A discriminative decoder outputs the likelihood score for each of 100 candidate
answers for the current question at round T in the following way. We use a similar
architecture to the one used to extract question features in Sec. A.2 to convert
each candidate answer (indexed by i(= 1, . . . , 100)) to a feature vector ai ∈ Rd.
Specifically, it is two-layer Bi-LSTM receiving a candidate answer at its input,
on top of which there is a linear projection layer followed by layer normalization.
Using the resulting vectors, the score pi for i-th candidate answer is computed
by

pi = logsoftmaxi(a
>
1 c, . . . , a

>
100c). (10)

4 Van-Quang Nguyen et al.

In the test phase, we sort the candidate answers using these scores. In the training
phase, the cross-entropy loss LD between p = [p1, . . . , p100]> and the ground
truth label encoded by a one-hot vector y is minimized:

LD = −
100∑
i=1

yipi. (11)

When relevance scores s = [s1, . . . , s100]> over the answer candidates are avail-
able (called dense annotation in the VisDial dataset) rather than a single ground
truth answer, we can use them by setting yi = si for all i’s and minimize the
above loss. We employ dropout with rate of 0.1 for the LSTM.

B.2 Generative Decoder

Following [3], we also consider a generative decoder to score the candidate an-
swers using the log-likelihood scores. The generative decoder consists of a two-
layer LSTM to generate an answer using the context vector c as the initial hidden
state. In the training phase, we predict the next token based on the current to-
ken from the ground truth answer. In details, we first append the special token
“SOS” at the beginning of the ground truth answer, then embedding all the
sentence into the embedding vectors agt = [w0, w1, . . . , wN] where w0 is the em-
bedding vector of “SOS” token. The hidden state hn ∈ Rd at the n-th timestep
(extracted from the higher-layer LSTM) is computed given wn−1 and hn−1 as
follows:

hn = LSTM(wn−1, hn−1), (12)

where h0 is initialized by c. Thus, we compute pn, the log-likelihood of n-th word
as

pn = logsoftmaxj(W
>
n hn + bn), (13)

where Wn ∈ Rd×|V | and pn ∈ R|V |, where |V | is the vocabulary size; and j is
the index of n-th word in the vocabulary.

In the training phase, we minimize LG, the summation of the negative log-
likelihood defined by

LG = −
N∑

n=1

pn. (14)

In the validation and test phase, for each candidate answer AT,i, we compute si =∑N
n=1 p

(AT,i)
n where p

(AT,i)
n is the log-likelihood of the n-th word in the candidate

answer AT,i which is computed similarly as in Eq.(13). Then, the rankings of
the candidate answers are derived as softmaxi(s1, . . . , s100). We employ dropout
with rate of 0.1 for the LSTM.

Efficient Attention Mechanism for Multiple Inputs in Visual Dialog 5

C Implementation Details

When computing ĀY (X), we perform the following form of computation

A(Q,K, V) = softmax

(
QK>√

d

)
V,

where we compute a matrix product QK> as above. In the computation of
ĀX(Y), we need another matrix product, but it is merely the transposed ma-
trix KQ> due to the symmetry between X and Y . For the computational ef-
ficiency, we perform computation of ĀY (X) and ĀX(Y) simultaneously; see
MultiHeadAttention(X,Y) in our code. Further, following [12], we also pad
X and Y with two d-dimensional vectors that are randomly initialized with
He normal initialization. This implements “no-where-to-attend” features in the
computation of ĀY (X) and ĀX(Y).

Table 1: Hyperparamters used in the training procedure.

Hyperparameter Value

Warm-up learning rate 1e−5
Warm-up factor 0.2
Initial learning rate after the 1st epoch 1e−3
β1 in Adam 0.9
β2 in Adam 0.997
ε in Adam 1e−9
Weight decay 1e−5
Number of workers 8
Batch size 32

Table 1 shows the hyperparameters used in our experiments, which are se-
lected following the previous studies. We perform all the experiments on a GPU
server that has four Tesla V100-SXM2 of 16GB memory with CUDA version
10.0 and Driver version 410.104. It has Intel(R) Xeon(R) Gold 6148 CPU @
2.40GHz of 80 cores with the RAM of 376GB memory. We use Pytorch version
1.2 [14] as the deep learning framework.

D Analysis on Visdial v1.0 Validation Split

D.1 Analyzing Inconsistency between NDCG and Other Metrics

As mentioned in the main paper, we observed the inconsistency in the perfor-
mance of models evaluated by NDCG and other metrics, such as MRR. The
same is also reported in recent studies. We show an analysis on this.

6 Van-Quang Nguyen et al.

Answer in the Validation v1.0 set

P
er

ce
nt

ag
e

0%

5%

10%

15%

20%

25%
no ye

s
w

hi
te

ca
n'

t t
el

l
bl

ac
k

br
ow

n
i c

an
't

se
e.

..
ye

s
it

is
i c

an
't

te
ll

no
t t

ha
t i

... 2 0
da

y 1
it

lo
ok

s
i c

an
 s

ee
...

no
 th

ey

no
 it

 is
...

i c
an

't
te

ll.
..

ca
n'

t s
ee

no

 ju
st

 th
e.

..
it

ap
pe

ar
s

no
 p

eo
pl

e
th

er
e

is
 a

...
bl

ac
k

an
d

ye
s

th
er

e
i t

hi
nk

 s
o.

..
gr

ee
n

lo
ok

s
lik

e
no

 s
he

 is
...

Ground Truth Answers Answers with Non-zero Relevance Scores

Fig. 1: The distribution of the 30 most popular answers in the Validation v1.0
set.

We first recap how the Visdial v1.0 dataset was collected [3]. A live chat be-
tween two workers, i.e., a questioner and an answerer, was conducted on Amazon
Mechanical Turk (AMT). For an image provided with a caption, the questioner
raised a question based on the caption without seeing the image. The answerer
responded to the question by looking at the image, which are used as ground
truth answers.

To cope with the difficulty of evaluating answers generated by a model in
the form of free texts, Das et al. [3] proposed a method that discriminatively
evaluates the performance of visual dialog systems by using a set of 100 candidate
answers, to each of which a relevance score is given. It makes a system under
evaluation return the rankings of all the candidate answers and then calculates
the scores of metrics, e.g. NDCG, MRR, etc. based on the returned rankings. To
create a set of 100 candidate answers for each question, they collected from all the
answers given by the answerers, the plausible answers of the 50 most similar
questions to the ground truth answer including itself, the 30 most popular
answers, and 20 random answers. Each of these candidate answers was then
given a relevance score with a consensus of several AMT workers.

Now we make a few observations on the dataset. First, the ground truth
answers provided by the answerers are not always high-quality. As shown in
Table 2, 33.6% of the ground truth answers have relevance scores lower than
0.5. Assuming the AMT workers giving the relevance scores to be accurate, this

Efficient Attention Mechanism for Multiple Inputs in Visual Dialog 7

Table 2: The performance of the training strategies, i.e. based on the MRR or
NDCG early stopping, categorized by questions of corresponding relevance score
of ground truth answers.

Rel Score Percentage
MRR-favored NDCG-favored

MRR NDCG MRR NDCG

0.0 9.0% 58.26 44.06 56.12 48.00
0.2 11.0% 58.26 44.06 57.70 54.46
0.4 13.6% 61.07 56.94 60.69 58.94
0.6 16.0% 65.38 59.40 62.35 62.37
0.8 19.2% 67.34 62.90 64.45 66.79
1.0 31.2% 67.48 65.13 65.37 69.21

implies some of the “ground truth” answers provided by the answerers are simply
wrong. Second, the answerers tend to more frequently use short, general answers,
such as ‘no’ and ‘yes’. This is illustrated in Fig. 1 that shows the frequencies
of the most popular ones in the ground truth answers and also those having
non-zero relevance scores. It is clearly seen that the short and less informative
answers (i.e., ‘no’ and ‘yes’) are less frequently considered to be relevant.

Recall that NDCG metric is measured based on the rankings of all the can-
didate answers, whereas MRR and other metrics are based on the ranking of
the ground truth answers. Based on the above observations, we can say that the
NDCG is more appropriate as an evaluation metric, following the other recent
studies. This claim is also supported by Table 2, the results of the experiments
examining how evaluated performances vary depending on when to stop the
training of the proposed model. It is seen from the table that the model at
epoch 5, which is noted as ‘MRR-favored’ as it corresponds to early stopping
based on validation on MRR, yields high MRR and low NDCG scores over all
questions. It tends to give higher scores on the safe and popular answers that
appear more frequently in the ground truth answers. When we continue to train
the model until 12 epochs, it (noted as NDCG-favored) generates better rank-
ings for all possible answers rather than only the ground truth answers, yielding
large improvements in NDCG scores. However, it yields lower MRR scores, since
the model does not give high ranks to some of the “ground truth” answers; they
are indeed very likely to be bad answers. It is also seen from the table that the
both models yield better scores on the both MRR and NDCG metrics for the
questions having the ground truth answers with high relevance scores.

D.2 Question-Type Analysis

Following [4], we perform a question-type analysis of the NDCG scores achieved
by different decoders from the model mentioned in our main paper. The ques-

8 Van-Quang Nguyen et al.

Table 3: The performance comparison of discriminative and generative decoders
evaluated on question types evaluated on the NDCG metric.

Question Type Yes/No Number Color Others

Percentage 75% 3% 11% 11%

Decoder Model

Generative
ReDAN [4] 63.49 41.09 52.16 51.45
Ours 66.24 46.35 55.77 57.25

Discriminative
ReDAN [4] 60.89 44.47 58.13 52.68
Ours 64.08 49.86 60.95 58.16

Table 4: Retrieval performance of compared methods and ours on the val v0.9
split reported with a single model.

Model MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

SAN [20] 57.64 43.44 74.26 83.72 5.88
LF [3] 58.07 43.82 74.68 84.07 5.78

HRE [3] 58.46 44.67 74.5 84.22 5.72
HREA [3] 58.68 44.82 74.81 84.36 5.66

MN [3] 59.65 45.55 76.22 85.37 5.46
NMN [6] 61.60 48.28 77.54 86.75 4.98

HCIAE [11] 62.22 48.48 78.75 87.59 4.81
AMEM [17] 62.27 48.53 78.66 87.43 4.86

SF [7] 62.42 48.55 78.75 87.75 4.47
GNN [21] 62.85 48.95 79.65 88.36 4.57

CoAtt [19] 63.98 50.29 80.71 88.81 4.47
CoefNMN [9] 64.10 50.92 80.18 88.81 4.45

FGA [16] 65.25 51.43 82.08 89.56 4.35
RvA [13] 66.34 52.71 82.97 90.73 3.93
DAN [8] 66.38 53.33 82.42 90.38 4.04

Ours 67.94 55.05 83.98 91.58 3.69

tions are classified into four categories: Yes/No, Number, Color, and Others.
As shown in Table 3, the Yes/No questions account for the majority whereas
there is only 3% of the Number questions. Therefore, the performance on the
Yes/No questions translates into the overall performance of any models. Similar
to ReDAN [4], the performance of ours on the Number questions is the lowest
among the other question types, reflecting the hardness of the counting task.
Another similarity observed on our models and ReDAN is that generative de-
coders show better performance on the Yes/No questions while discriminative
decoders yield higher NDCG scores on the other questions. It is because genera-
tive decoders favor the short answers that are relevant more often in the Yes/No

Efficient Attention Mechanism for Multiple Inputs in Visual Dialog 9

questions. It is also seen that our model consistently shows better performance
over all question types, i.e. about 3pp on the Yes/No and Color questions, 5pp
on the Number questions, and 6pp on the other questions.

E Results on the Visdial v0.9 dataset

Following the previous studies, we report the performance of our method (specif-
ically, the discriminative decoder) on the VisDial v0.9 dataset. The v0.9 dataset
consists of the train v0.9 split (82,783 images) and the val v0.9 split (40,504
images). Note that all the hyperparameter settings are the same as those on the
Visdial v1.0 dataset except that we train the model with only five epochs.

Table 4 shows the results on the validation set along with performances of
other methods. It shows that our model consistently outperforms all the methods
across all metrics: MRR, R@1, R@5, R@10 and Mean.

F Qualitative Results

We provide additional examples of the results obtained by our method in Figs. 2-
11. They are divided into two groups, results for which the top-1 prediction
coincides with the ground truth answer (Figs. 2-6) and those for which they do
not coincide (Figs. 7-11). For each result, we show the attention maps created
on the input image and question, respectively.

G Experiments on AVSD

To test the generality of the proposed method on other tasks as well as its
performance on a greater number of utilities, we additionally apply it to the
Audio Visual Scene-aware Dialog (AVSD) task [5]. This task requires a system
to generate an answer to a question about events seen in a video given with
a previous dialog. AVSD provides more utilities than Visual Dialog, i.e., audio
features and video features, such as VGG or I3D features (I3D RGB sequence
and I3D flow sequence). We build a network by simply replacing the multimodal
attention mechanism in the baseline model of [5] with a simple extension of the
proposed attention mechanism. Details are given below.

G.1 Network Design

Following the baselines [5], we extract the question utility Q using a two-layer
LSTM. We separate the caption from the dialog history and feed it into another
two-layer LSTM to obtain the caption utility C. Similar to [5], the dialog history
consisting of previous question-answer pairs is inputted into a hierarchical LSTM
network; specifically, we encode each question-answer pair with one LSTM and
summarize the obtained encodings with another LSTM, yielding a final vector

10 Van-Quang Nguyen et al.

Table 5: Comparison of response generation evaluation results with objective
measures.

Model Video Feat. CIDEr BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L

Baseline [5] VGG 0.618 0.231 0.141 0.095 0.067 0.102 0.259
Ours VGG 0.841 0.266 0.172 0.118 0.086 0.117 0.296

Baseline [5] I3D 0.727 0.256 0.161 0.109 0.078 0.113 0.277
Ours I3D 0.851 0.277 0.178 0.122 0.088 0.119 0.302

representation cr. All LSTMs used for language encoding have d units. We con-
vert words into vectors with a shared embedding layer initialized with GLoVe
vectors.

The video provides two sources of features, i.e., video features and audio fea-
tures. We use the audio features extracted from the pretrained VGGish model
[5], which are fed to a projection layer, providing the audio utility A; it is rep-
resented as a collection of d-dimensional vectors. For video processing, following
[5], we consider two models with different features: i) VGG features extracted
from four uniformly sampled frames in the video, giving the video utility V , and
ii) I3D features extracted by the I3D network pretrained on an action recogni-
tion task, which are forwarded to projection layers to obtain an I3D-rgb utility
and an I3D-flow utility denoted by V and F .

To compute the multimodal attention between U utilities, we add a stack
of U proposed attention blocks; U = 4 for the model (i) and U = 5 for (ii).
To make the designs of two models (i) and (ii) similar, we use only A utility
to attend language utilities; and only Q and C are allowed to attend audio and
video utilities. After obtaining the updated representations of all utilities, we
summarize each utility into a single vector by the self-attention mechanism, in
which the summarized vector of question utility is denoted by cq. We concatenate
all these vectors together with cr, projecting it into a d-dimensional vector of
context representation c.

The decoder architecture is similar to the generative decoder described in Sec.
B.2 except that the input of the decoder at the i-th step is the concatenation of
wi−1, cq, and cr. At the time of inference, we use the beam search technique to
efficiently find the most likely hypothesis generated by the decoder.

G.2 Experimental Setup

Following [5], we perform the experiment on the AVSD prototype which is split
into training, validation, and test sets with 6172, 732, and 733 videos, respec-
tively. Each video is collected from the Charades dataset, annotated with a
caption and 10 dialog rounds. The hidden size d is set to 512; the GLoVe vectors
are 300-dimensional. We train the models in 15 epochs using the Adam optimizer
with initial learning rate 1× 10−3 in all the experiments. The dropout with rate
of 0.2 is applied for the LSTMs.

Efficient Attention Mechanism for Multiple Inputs in Visual Dialog 11

G.3 Experimental Results

Table 5 shows the results, which include evaluation on a number of metrics
to measure the quality of generated answers, i.e. CIDEr, BLEU, METEOR,
ROUGE L. It is seen that our models outperform the baselines presented in [5]
over all the metrics; specifically, it improves the CIDEr score by 22.3% (from
0.618 to 0.841) with VGG features and by 12.4% (from 0.727 to 0.851) with I3D
features.

References

1. Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., Zhang, L.:
Bottom-up and top-down attention for image captioning and visual question an-
swering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 6077–6086 (2018)

2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

3. Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J.M., Parikh, D.,
Batra, D.: Visual dialog. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 326–335 (2017)

4. Gan, Z., Cheng, Y., Kholy, A.E., Li, L., Liu, J., Gao, J.: Multi-step reasoning via
recurrent dual attention for visual dialog. In: Proceedings of the Conference of the
Association for Computational Linguistics. pp. 6463–6474 (2019)

5. Hori, C., Alamri, H., Wang, J., Wichern, G., Hori, T., Cherian, A., Marks, T.K.,
Cartillier, V., Lopes, R.G., Das, A., et al.: End-to-end audio visual scene-aware di-
alog using multimodal attention-based video features. In: ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
pp. 2352–2356 (2019)

6. Hu, R., Andreas, J., Rohrbach, M., Darrell, T., Saenko, K.: Learning to reason:
End-to-end module networks for visual question answering. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 804–813 (2017)

7. Jain, U., Lazebnik, S., Schwing, A.G.: Two can play this game: visual dialog with
discriminative question generation and answering. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 5754–5763 (2018)

8. Kang, G.C., Lim, J., Zhang, B.T.: Dual attention networks for visual reference
resolution in visual dialog. In: Proceedings of the Conference on Empirical Methods
in Natural Language Processing. pp. 2024–2033 (2019)

9. Kottur, S., Moura, J.M., Parikh, D., Batra, D., Rohrbach, M.: Visual coreference
resolution in visual dialog using neural module networks. In: Proceedings of the
European Conference on Computer Vision. pp. 153–169 (2018)

10. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S.,
Kalantidis, Y., Li, L.J., Shamma, D.A., et al.: Visual genome: Connecting language
and vision using crowdsourced dense image annotations. International Journal of
Computer Vision 123(1), 32–73 (2017)

11. Lu, J., Kannan, A., Yang, J., Parikh, D., Batra, D.: Best of both worlds: Transfer-
ring knowledge from discriminative learning to a generative visual dialog model.
In: Advances in Neural Information Processing Systems. pp. 314–324 (2017)

12 Van-Quang Nguyen et al.

12. Nguyen, D.K., Okatani, T.: Improved fusion of visual and language representations
by dense symmetric co-attention for visual question answering. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6087–6096
(2018)

13. Niu, Y., Zhang, H., Zhang, M., Zhang, J., Lu, Z., Wen, J.R.: Recursive visual
attention in visual dialog. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 6679–6688 (2019)

14. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

15. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representa-
tion. In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing. pp. 1532–1543 (2014)

16. Schwartz, I., Yu, S., Hazan, T., Schwing, A.G.: Factor graph attention. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 2039–2048 (2019)

17. Seo, P.H., Lehrmann, A., Han, B., Sigal, L.: Visual reference resolution using at-
tention memory for visual dialog. In: Advances in Neural Information Processing
Systems. pp. 3719–3729 (2017)

18. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems. pp. 5998–6008 (2017)

19. Wu, Q., Wang, P., Shen, C., Reid, I., van den Hengel, A.: Are you talking to me?
reasoned visual dialog generation through adversarial learning. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6106–6115
(2018)

20. Yang, Z., He, X., Gao, J., Deng, L., Smola, A.: Stacked attention networks for
image question answering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 21–29 (2016)

21. Zheng, Z., Wang, W., Qi, S., Zhu, S.C.: Reasoning visual dialogs with structural
and partial observations. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 6669–6678 (2019)

Efficient Attention Mechanism for Multiple Inputs in Visual Dialog 13

Q&A at a round Q&A at another round

Fig. 2: Examples of results for which the top-1 prediction is the same as the
ground truth answer on the validation split of Visdial v1.0. Each row shows
selected two rounds of Q&A for one image.

14 Van-Quang Nguyen et al.

Q&A at a round Q&A at another round

Fig. 3: Examples of results for which the top-1 prediction is the same as the
ground truth answer on the validation split of Visdial v1.0. Each row shows
selected two rounds of Q&A for one image.

Efficient Attention Mechanism for Multiple Inputs in Visual Dialog 15

Q&A at a round Q&A at another round

Fig. 4: Examples of results for which the top-1 prediction is the same as the
ground truth answer on the validation split of Visdial v1.0. Each row shows
selected two rounds of Q&A for one image.

16 Van-Quang Nguyen et al.

Q&A at a round Q&A at another round

Fig. 5: Examples of results for which the top-1 prediction is the same as the
ground truth answer on the validation split of Visdial v1.0. Each row shows
selected two rounds of Q&A for one image.

Efficient Attention Mechanism for Multiple Inputs in Visual Dialog 17

Q&A at a round Q&A at another round

Fig. 6: Examples of results for which the top-1 prediction is the same as the
ground truth answer on the validation split of Visdial v1.0. Each row shows
selected two rounds of Q&A for one image.

18 Van-Quang Nguyen et al.

Fig. 7: Examples of results for which the top-1 prediction is different from the
ground truth answer on the validation split of Visdial v1.0.

Efficient Attention Mechanism for Multiple Inputs in Visual Dialog 19

Fig. 8: Examples of results for which the top-1 prediction is different from the
ground truth answer on the validation split of Visdial v1.0.

20 Van-Quang Nguyen et al.

Fig. 9: Examples of results for which the top-1 prediction is different from the
ground truth answer on the validation split of Visdial v1.0.

Efficient Attention Mechanism for Multiple Inputs in Visual Dialog 21

Fig. 10: Examples of results for which the top-1 prediction is different from the
ground truth answer on the validation split of Visdial v1.0.

22 Van-Quang Nguyen et al.

Fig. 11: Examples of results for which the top-1 prediction is different from the
ground truth answer on the validation split of Visdial v1.0.

	Supplementary Material to Efficient Attention Mechanism for Visual Dialog that can Handle All the Interactions between Multiple Inputs

