# Learning Camera-Aware Noise Models [Supplementary Material]

Anonymous ECCV submission

Paper ID 4617

### **A** Network Architectures

We apply a U-Net [1] architecture to the generator G, and Table 1 shows the detailed configuration. The first five layers correspond to the encoder followed by four residual blocks, and the last five layers are the decoder. The residual block consists of two consecutive convolutions as well as a skip connection across the block. Besides, the latent vector from the camera encoder E is concatenated with the output of the 2<sup>nd</sup> residual block.

Table 2 shows the architecture of the discriminator D, which is similar to PatchGAN [2]. The  $\operatorname{out}_{D_f}$  and  $\operatorname{out}_D$  are used for the feature matching loss  $L_{\rm FM}$ and adversarial loss  $L_{\rm Adv}$ , respectively. Note that D determines the score of realness at the scale of  $46 \times 46$  according to the receptive field.

Finally, the architecture of the camera encoder E is shown in Table 3. To make latent vectors irrelevant to the spatial domain, we perform a global average pooling at the last layer. The latent vector is then concatenated with the middle features of G by expanding the spatial dimension.

### **B** Control of Noise Levels

Recall that the noise level of the final synthetic noise  $\tilde{n}$  can be controlled by adjusting the parameters of Poisson-Gaussian noise model for the initial synthetic noise  $\tilde{n}_{init}$ . For the same camera, these parameters are proportional to the digital gain, which is highly correlated to the ISO. Therefore, different noise levels should be observed in different ISOs. Fig. 1 shows the examples of noise and noisy image pairs from various noise models in a wide range of ISOs. We can find that as the ISO ascends, our noise samples become much noisier obviously. Moreover, our noise model always outperforms the compared methods in terms of Kullaback-Leibler divergence measurement.

## C More Qualitative Results

More synthesized noise samples as well as the corresponding noisy images are
 shown in Figs. 2–5. More qualitative results of real image denoising are shown
 in Figs. 6–9.

**Table 1. Architecture of the Generator.** The notation  $[\cdot, \cdot]$  represents concatena-045046tion and C, RES, T respectively denote convolution, residual block, and transposed046047convolution. The SN-IN indicates a Spectral Normalization [3] followed by an Instance047048Normalization [4] and LReLU is the Leaky ReLU [5]048

|              |                 |                        | Kernel       | Chai | nnels |        |          |        | Output                                           |
|--------------|-----------------|------------------------|--------------|------|-------|--------|----------|--------|--------------------------------------------------|
|              | Input           | Output                 | Size         | In   | Out   | Stride | Norm.    | Activ. | Size                                             |
| С            | in <sub>G</sub> | c1                     | $4 \times 4$ | 8    | 64    | 2      | -        | LReLU  | $\frac{h}{2} \times \frac{w}{2}$                 |
| С            | c1              | c2                     | $4 \times 4$ | 64   | 128   | 2      | SN-IN    | LReLU  | $\frac{\tilde{h}}{4} \times \frac{\tilde{w}}{4}$ |
| $\mathbf{C}$ | c2              | c3                     | $4 \times 4$ | 128  | 256   | 2      | SN-IN    | LReLU  | $\frac{h}{8} \times \frac{w}{8}$                 |
| $\mathbf{C}$ | c3              | c4                     | $4 \times 4$ | 256  | 512   | 2      | SN- $IN$ | LReLU  | $\frac{\ddot{h}}{16} \times \frac{\ddot{w}}{16}$ |
| $\mathbf{C}$ | c4              | c5                     | $4 \times 4$ | 512  | 512   | 2      | SN- $IN$ | LReLU  | $\frac{h}{32} \times \frac{w}{32}$               |
| RES          | c5              | res1                   | $3 \times 3$ | 512  | 512   | 1      | -        | -      | $\frac{h}{32} \times \frac{w}{32}$               |
| RES          | res1            | res2                   | $3 \times 3$ | 512  | 512   | 1      | -        | -      | $\frac{h}{32} \times \frac{w}{32}$               |
| RES          | $[res2, out_E]$ | res3                   | $3 \times 3$ | 1024 | 1024  | 1      | -        | -      | $\frac{h}{32} \times \frac{u}{32}$               |
| RES          | res3            | res4                   | $3 \times 3$ | 1024 | 1024  | 1      | -        | -      | $\frac{h}{32} \times \frac{u}{32}$               |
| Т            | res4            | t1                     | $4 \times 4$ | 1024 | 512   | 1/2    | SN-IN    | LReLU  | $\frac{h}{16} \times \frac{w}{16}$               |
| Т            | [t1, c4]        | t2                     | $4 \times 4$ | 1024 | 256   | 1/2    | SN- $IN$ | LReLU  | $\frac{h}{8} \times \frac{w}{8}$                 |
| Т            | [t2, c3]        | t3                     | $4 \times 4$ | 512  | 128   | 1/2    | SN-IN    | LReLU  | $\frac{h}{4} \times \frac{w}{4}$                 |
| Т            | [t3, c2]        | t4                     | $4 \times 4$ | 256  | 64    | 1/2    | SN- $IN$ | LReLU  | $\frac{\vec{h}}{2} \times \frac{\vec{w}}{2}$     |
| Т            | [t4, c1]        | $\operatorname{out}_G$ | $4 \times 4$ | 128  | 4     | 1/2    | SN-IN    | Tanh   | $\tilde{h} \times \tilde{w}$                     |

Table 2. Architecture of the Discriminator

|              |                            | _                          | Kernel       | Cha | nnels |        |          |        | Output                                                 |
|--------------|----------------------------|----------------------------|--------------|-----|-------|--------|----------|--------|--------------------------------------------------------|
|              | Input                      | Output                     | Size         | In  | Out   | Stride | Norm.    | Activ. | Size                                                   |
| С            | $in_D$                     | d1                         | $4 \times 4$ | 8   | 64    | 2      | -        | LReLU  | $\frac{h}{2} \times \frac{w}{2}$                       |
| $\mathbf{C}$ | d1                         | d2                         | $4 \times 4$ | 64  | 128   | 2      | SN- $IN$ | LReLU  | $\frac{\overline{h}}{4} \times \frac{\overline{w}}{4}$ |
| $\mathbf{C}$ | d2                         | $\operatorname{out}_{D_f}$ | $4 \times 4$ | 128 | 256   | 2      | SN- $IN$ | LReLU  | $\frac{h}{8} \times \frac{\tilde{w}}{8}$               |
| $\mathbf{C}$ | $\operatorname{out}_{D_f}$ | $\operatorname{out}_D$     | $4 \times 4$ | 256 | 1     | 1      | SN- $IN$ | -      | $\frac{\bar{h}}{16} \times \frac{\bar{w}}{16}$         |

 Table 3. Architecture of the Camera Encoder. Note that POOL represents global average pooling

|              |        | Kernel Channels        |              |     | Output |        |       |        |                                                  |
|--------------|--------|------------------------|--------------|-----|--------|--------|-------|--------|--------------------------------------------------|
|              | Input  | Output                 | Size         | In  | Out    | Stride | Norm. | Activ. | Size                                             |
| С            | $in_E$ | e1                     | $7 \times 7$ | 4   | 64     | 1      | -     | LReLU  | $h \times w$                                     |
| $\mathbf{C}$ | e1     | e2                     | $4 \times 4$ | 64  | 128    | 2      | SN-IN | LReLU  | $\frac{h}{2} \times \frac{w}{2}$                 |
| $\mathbf{C}$ | e2     | e3                     | $4 \times 4$ | 128 | 256    | 2      | SN-IN | LReLU  | $\frac{\tilde{h}}{4} \times \frac{\tilde{w}}{4}$ |
| С            | e3     | e4                     | $4 \times 4$ | 256 | 512    | 2      | SN-IN | LReLU  | $\frac{h}{8} \times \frac{w}{8}$                 |
| POOL         | e4     | $\operatorname{out}_E$ | -            | 512 | 512    | -      | -     | -      | $1 \times 1$                                     |



Fig. 1. Different noise levels in different ISOs. Each column represents a noise
modeling method, and each two consecutive rows correspond to a pair of noise and
noisy image in a specific ISO (from 100-N to 1600-N)

#### 4 ECCV-20 submission ID 4617





ECCV-20 submission ID 4617



















### 12 ECCV-20 submission ID 4617

| 495 | R  | Leferences                                                                           | 495 |
|-----|----|--------------------------------------------------------------------------------------|-----|
| 496 |    |                                                                                      | 496 |
| 497 | 1. | Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical | 497 |
| 498 |    | image segmentation. CoRR $abs/1505.04597$ (2015)                                     | 498 |
| 499 | 2. | Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-  | 499 |
| 500 |    | tional adversarial networks. In: Proceedings of the IEEE conference on computer      | 500 |
| 501 | 9  | Vision and pattern recognition. (2017) 1125–1134                                     | 501 |
| 502 | ე. | generative adversarial networks arXiv preprint arXiv:1802.05957 (2018)               | 502 |
| 503 | 4. | Ulvanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing in-     | 503 |
| 504 |    | gredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)                | 504 |
| 505 | 5. | Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in | 505 |
| 506 |    | convolutional network. arXiv preprint arXiv:1505.00853 (2015)                        | 506 |
| 507 |    |                                                                                      | 507 |
| 508 |    |                                                                                      | 508 |
| 509 |    |                                                                                      | 509 |
| 510 |    |                                                                                      | 510 |
| 511 |    |                                                                                      | 511 |
| 512 |    |                                                                                      | 512 |
| 513 |    |                                                                                      | 513 |
| 514 |    |                                                                                      | 514 |
| 515 |    |                                                                                      | 515 |
| 516 |    |                                                                                      | 516 |
| 517 |    |                                                                                      | 517 |
| 518 |    |                                                                                      | 518 |
| 519 |    |                                                                                      | 519 |
| 520 |    |                                                                                      | 520 |
| 521 |    |                                                                                      | 521 |
| 522 |    |                                                                                      | 522 |
| 523 |    |                                                                                      | 523 |
| 524 |    |                                                                                      | 524 |
| 525 |    |                                                                                      | 525 |
| 526 |    |                                                                                      | 526 |
| 527 |    |                                                                                      | 527 |
| 528 |    |                                                                                      | 528 |
| 529 |    |                                                                                      | 529 |
| 530 |    |                                                                                      | 530 |
| 531 |    |                                                                                      | 531 |
| 522 |    |                                                                                      | 532 |
| 533 |    |                                                                                      | 533 |
| 535 |    |                                                                                      | 535 |
| 536 |    |                                                                                      | 536 |
| 537 |    |                                                                                      | 530 |
| 538 |    |                                                                                      | 538 |
| 539 |    |                                                                                      | 539 |
|     |    |                                                                                      | 505 |