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Abstract. According to Aristotle, “the whole is greater than the sum of
its parts”. This statement was adopted to explain human perception by
the Gestalt psychology school of thought in the twentieth century. Here,
we claim that when observing a part of an object which was previously
acquired as a whole, one could deal with both partial correspondence
and shape completion in a holistic manner. More specifically, given the
geometry of a full, articulated object in a given pose, as well as a partial
scan of the same object in a different pose, we address the new problem
of matching the part to the whole while simultaneously reconstructing
the new pose from its partial observation. Our approach is data-driven
and takes the form of a Siamese autoencoder without the requirement of
a consistent vertex labeling at inference time; as such, it can be used on
unorganized point clouds as well as on triangle meshes. We demonstrate
the practical effectiveness of our model in the applications of single-view
deformable shape completion and dense shape correspondence, both on
synthetic and real-world geometric data, where we outperform prior work
by a large margin.

Keywords: Shape Completion · 3D Deep Learning · Shape Analysis
? equal contribution



2 Halimi and Imanuel et al.

1 Introduction

One of Aristotle’s renowned sayings declares “the whole is greater than the sum of
its parts”. This fundamental observation was narrowed down to human perception
of planar shapes by the Gestalt psychology school of thought in the twentieth
century. A guiding idea of Gestalt theory is the principle of reification, arguing
that human perception contains more spatial information than can be extracted
from the sensory stimulus, and thus giving rise to the view that the mind generates
the additional information based on verbatim acquired patterns. Here, we adopt
this line of thought in the context of non-rigid shape completion. Specifically,
we argue that given access to a complete shape in one pose, one can accurately
complete partial views of that shape at any other pose.

3D data acquisition using depth sensors is often done from a single view
point, resulting in an incomplete point cloud. Many downstream applications
require completing the partial observations and recovering the full shape. Based
on this need, the task of shape completion has been extensively studied in the
literature. The required fidelity of completion, however, is task dependent. In
fact, in many cases even an approximate completion would be satisfying. For
example, completing a car captured from one side by assuming the occluded side
is symmetric would be perfectly acceptable for the purpose of obstacle avoidance
in autonomous navigation, even if in reality the other side of that car has a large
dent. In other cases, however, e.g. when capturing a person for telepresence or
medical procedure purposes, it is crucial that the completion is exact, and no
hallucination of shape details takes place. Clearly, this requirement is only viable
given access to additional measurements or prior information. Here, we wish to
focus on the latter case, which we coin as precise shape completion. In particular,
provided a complete non-rigid shape in one pose, we require a solution for
completing a partial view of the same shape in a different pose that is accurate,
fast, and can handle single-view partiality resulting from self-occlusion. In
this work we make a first attempt to address this specific setting, as opposed to
the ubiquitous regime of precise pose-reconstruction, and as such, we focus solely
on types of partialities that induce mild pose ambiguity.

Existing methods for rigid and non-rigid shape completion from partial scans
fall largely into two categories: generative and alignment based. Generative
methods have proven to be very powerful in completing shapes by learning to
match the class distribution. However, they inherently aim at solving an ill-posed
problem. Namely, they assume access only to the partial observation at inference
time, and thus are incapable of performing precise shape completion of shapes
unseen at train time. Non-rigid registration methods can take a full shape and
align it to a partial observation and thus fit our prescribed setting. However,
state of art methods are slow, and can usually handle only mild partiality. Here
we propose a new method for precise completion of a partial non-rigid shape in
an arbitrary (target) pose, given the full shape in a different (source) pose. Our
method is fast, accurate and can handle severe partiality. Based on a deep neural
network for point clouds, we learn a function that encodes the partial and full
shapes, and outputs the complete shape at the target pose. By providing the
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full shape, our completion achieves much higher accuracy than existing methods.
Since completion in done a single feed-forward pass our solution is orders of
magnitude faster than competing methods. In addition, our generated training
set of rendered partial views and their corresponding complete shapes covers a
broad range of plausible human poses, appearances and partialities which allows
our method to gracefully generalize to unseen instances. Finally, our solution
effortlessly recovers dense correspondences between the partial and full shapes
that considerably improves state of the art performance on the FAUST projection
benchmark.

Our main contributions can be summarized as follows:

1. We introduce a deep Siamese architecture to tackle precise non-rigid shape
completion;

2. Our solution is significantly faster, more accurate and can handle more severe
partialities than previous methods.

3. The recovered correspondences achieves state-of-the-art performance in partial
shape correspondence.

2 Related work

Roughly speaking, there exist three approaches that address the challenge of
reconstructing the geometry of an articulated shape from its partial scan, namely,
partial non-rigid registration of surfaces, surface registration to a known skeleton,
and shape completion of a given partial surface. While the first approach is the
closest to our setting, none of these approaches has yet provided a good solution
to the described application. Currently, state-of-the-art partial nonrigid shape
registration/alignment [45,47,26] methods do not handle the significant partiality
one often obtains when using commodity depth sensors, and their processing
time even for a moderate-size point clouds of few thousand vertices vary between
few minutes at best, to a few hours. In our experimental section, we compare
with the most efficient methods belonging to this class.

The methods that can handle substantial partiality usually rely on some
modification of the iterative closest point (ICP) algorithm and often have dif-
ficulties in handling large deformations between the full and the partial shape
[66,50]. Another existing approach for the non-rigid alignment problem is to use
an explicit deformation model such as skeleton rigging. These methods often
completely ignore the detailed geometric and textural information in the actual
scanned surface. Moreover, they rely on a rigged model for the full template,
which is a limiting assumption when the full model is not restricted to a standard
pose. The shape completion setting, as explained below, does not accommodate
the full shape and therefore hallucinates details by construction, resulting in
inferior completions, as shown by our results and ablation sections. We now turn
to review some of the above approaches in more detail.

Shape completion.
Recovering a complete shape from partial or noisy measurements is a long-

standing research problem that comes in many flavors. In an early attempt to use
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one pose in order to geometrically reconstruct another, Devir et al. [21] considered
mapping a model shape in a given pose onto a noisy version of the shape in a
different pose. Elad and Kimmel were the first to treat shapes as metric spaces
[22,23]. They matched shapes by comparing second order moments of embedding
the intrinsic metric into a Euclidean one via classical scaling. In the context
of deformable shapes, early efforts focused on completion based on geometric
priors [36] or reoccurring patterns [13,38,62,40]. These methods are not suited
for severe partiality. For such cases model-based techniques are quite popular,
for example, category-specific parametric morphable models that can be fitted to
the partial data [5,24,44,1,65]. Model-based shape completion was demonstrated
for key-points input [2], and was recently proven to be quite useful for recovering
3D body shapes from 2D images [71,70,28,78]. Parametric morphable models [5],
coupled with axiomatic image formation models were used to train a network to
reconstruct face geometry from images [58,57,64]. Still, much less attention has
been given to the task of fitting a model to a partial 3D point cloud. Recently,
Jiang et al. [34] tackled this problem using a skeleton-aware architecture. How-
ever, their approach works well when full coverage of the underlying shape is
given. [63] proposed a real time solution based on a reinforcement learning agent
controlled by a GAN network. [32] reconstructed a 3D completion by generating
and back-projecting multi-view depth maps. [75] focused on the ambiguity in
completion from a single view, and suggested to address it using adversarially
learned shape priors. Finally, [67] suggested a weakly supervised approach and
showed performance on realistic data.

Nonrigid Partial shape matching. Dense non-rigid shape correspondence
[37,17,41,29,60,15,19] is a key challenge in 3D computer vision and graphics,
and has been widely explored in the last few years. A particularly challenging
setting arises whenever one of the two shapes has missing geometry. Bronstein et
al.[10,11,13,9,12,14] dealt with partial matching of articulated objects in various
scenarios, including pruning of the intrinsic structure while accounting for cuts.
This setting has been tackled with moderate success in a few recent papers
[59,42,56], however, it largely remains an open problem whenever the partial
shape exhibits severe artifacts or large, irregular missing parts. In this paper
we tackle precisely this setting, demonstrating unprecedented performance on a
variety of real-world and synthetic datasets.

Deep learning of surfaces. Following the success of convolutional neural net-
works on images in the recent years, the geometry processing community has
been rapidly adopting and designing computational modules suited for such data.
The main challenge is that unlike images, geometric structures like surfaces come
in many types of representations, and each requires a unique handling. Early
efforts focused on a simple extension from a single image to multi-view represen-
tations [68,74]. Another natural extension are 3D CNNs on volumetric grids [76].
A host of techniques for mesh processing were developed as part of a research
branch termed geometric deep learning [16]. These include graph-based meth-
ods [72,73,30], intrinsic patch extraction [48,8,49], and spectral techniques [41,29].
Point cloud networks [54,55] have recently gained much attention. Offering a
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Fig. 2. Network Architecture. Siamese encoder architecture at the top, and the
decoder (generator) architecture at the bottom. A shape is provided to the encoder as
a list of 6D points, representing the spatial and unit normal coordinates. The latent
codes of the input shapes θpart(P ) and θwhole(Q) are concatenated to form a latent
code θ representing the input pair. Based on this latent code, the decoder deforms the
full shape by operating on each of its points with the same function. The result is the
deformed full shape Fθ(Q).

light-weight computation restricted to sparse points with a sound geometric ex-
planation [35], these networks have shown to provide a good compromise between
complexity and accuracy, and are dominating the field of 3D object detection
[53,77], semantic segmentation [25,3], and even temporal point cloud process-
ing [18,43]. For generative methods, recent implicit and parametric methods
have demonstrated promising results [27,51]. Following the success of encoding
non-rigid shape deformations using a point cloud network [26], here, we also
choose to use a point cloud representation. Importantly, while the approach
presented in [26] predicts alignment of two shapes, it is not designed to handle
severe partiality, and assumes a fixed template for the source shape. Instead, we
show how to align arbitrary input shapes and focus on such a partiality.

3 Method

3.1 Overview

We represent shapes as point clouds S = {si}ns
i=1 embedded in R3. Depending on

the setting, each point may carry additional semantic or geometric information
encoded as feature vectors in Rd. For simplicity we will keep d = 3 in our
formulation. Given a full shape Q = {qi}

nq

i=1 and its partial view in a different



6 Halimi and Imanuel et al.

pose P = {pi}
np

i=1, our goal is to find a nonlinear function F : R3 → R3 aligning
Q to P 4. If R = {ri}nr

i=1 is the (unknown) full shape such that P ⊂ R, ideally
we would like to ensure that F (Q) = R, where equality should be understood
as same underlying surface. Thus, the deformed shape F (Q) acts as a proxy to
solve for the correspondence between the part P and the whole Q. By calculating
for every vertex in P its nearest neighbor in R ≈ F (Q), we trivially obtain
the mapping from P to Q. The deformation function F depends on the input
pair of shapes (P,Q). We model this dependency by considering a parametric
function Fθ : R3 → R3, where θ is a latent encoding of the input pair (P,Q). We
implement this idea via an encoder-decoder neural network, and learn the space
of parametric deformations from example pairs of partial and complete shapes,
together with full uncropped versions of the partial shapes, serving as the ground
truth completion. Our network is composed of an encoder E and a generator Fθ.
The encoder takes as input the pair (P,Q) and embeds it into a latent code θ. To
map points from Q to their new location, we feed them to the generator along
with the latent code. Our network architecture shares a common factor with
3D-CODED architecture [26], namely the deformation of one shape based on the
latent code of the another. However [26] uses a fixed template and is therefore
only suited for no or mild partiality, as the template cannot make up for lost
shape details in the part. Our pipeline on the other hand, is designed to merge
two sources of information into the reconstructed model, resulting in an accurate
reconstruction under extreme partiality. In the supplementary we perform an
analysis where we train our network in a fixed-template setting, similar to 3D-
CODED and demonstrate the advantage of our paradigm. In what follows we
first describe each module, and then give details on the training procedure and
the loss function. We refer to Figure 2 for a schematic illustration of our learning
model.

3.2 Encoder

We encode P and Q using a Siamese pair of single-shape encoders, each producing
a global shape descriptor (respectively θpart and θwhole). The two codes are then
concatenated so as to encode the information of the specific pair of shapes, θ =
[θpart, θwhole]. Considering the specific architecture of the single-shape encoder, we
think about the encoder network as a channel transforming geometric information
to a vector representation. We would like to utilize architectures which have been
empirically proven to encode the 3D surface with the least loss of information, thus
enabling the decoder to convert the resulting latent code θ to an accurate spatial
deformation Fθ. Encouraged by recent methods [27,26] that showed detailed
reconstruction using PointNet [54], we also adopt it as our backbone encoder. We
provide the encoder 6 input channels, representing the vertex location and the
vertex normal field. We justify this design choice in section 3.6. Specifically, our

4 In our setting, we assume that the pose can be inferred from the partial shape (e.g., an
entirely missing limb would make the prediction ambiguous), hence the deformation
function F is well defined.
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encoder passes all 6D points of the input shape through the same "mlp" units, of
hidden dimensions (64, 128, 1024). Here, the term “mlp”, carries the same meaning
as in PointNet, i.e. multi-layer perceptron, with ReLU activation, and batch
normalization layers. After a max-pool operation over the input points, we receive
a single 1024-dimensional vector. Finally, we apply a linear layer of size 1024 and
a ReLu activation function. Hence, each shape in the input pair is represented
by a latent code θwhole, θpart of size 1024 respectively. We concatenate these to a
joint representation θ of size 2048.

3.3 Generator

Given the code θ, representing the partial and full shapes, the generator has to
predict the deformation function Fθ to be applied to the full shape Q. We realize
Fθ as a Multi-Layer Perceptron (MLP) that maps an input point qi on the full
shape Q, to its corresponding output point ri on the ground truth completed
shape. The MLP operates pointwise on the tuple (qi, θ), with θ kept fixed. The
result is the destination location Fθ(qi) ∈ R3, for each input point of the full
shape Q. This generator architecture allows, in principle, to calculate the output
reconstruction in a flexible resolution, by providing the generator a full shape
with some desired output resolution. In detail, the generator consists of 9 layers
of hidden dimensions (2054, 1024, 512, 256, 128, 128, 128, 128, 3), followed by a
hyperbolic tangent activation function. The output of the decoder is the 3D
coordinates. In addition, we can compute a normal field based on the vertex
coordinates, making the overall output of the decoder a 6D point. The normal is
calculated using the known connectivity of the full shape Q, from our training
dataset. Thus, the reconstruction loss in the below section could be generalized and
defined using the normal output channel, as well. In the implementation section,
we ablate this design choice, and show it leads to a performance improvement.

3.4 Loss function

The loss definition should reflect the visual plausibility of the reconstructed shape.
Measuring such a quality analytically is a challenging problem worth studying
on itself. Yet, in this paper we adopt a naive measurement of the Euclidean
proximity between the ground-truth and the reconstruction. Formally, we define
the loss as,

L(P,Q,R) =
nq∑
i=0

∥∥Fθ(P,Q)(qi)− ri
∥∥2 , (1)

where ri = π∗(qi) ∈ R is the matched point of qi ∈ Q, given by the ground-truth
mapping π∗ : Q→ R.

3.5 Training Procedure

We train our model using samples from datasets of human shapes. These contain
3D models of different subjects in various poses. The datasets are described in
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detail in Section 4.1. Each training sample is a triplet (P,Q,R) of a partial shape
P , a full shape in a different pose Q and a ground truth completion R. The
shapes Q and R are sampled from the same subject in two different poses. To
receive P we render a depth map of R, at a viewpoint of zero elevation and a
random azimuth angle in the range 0◦ and 360◦. These projections approximate
the typical partiality pattern of depth sensors. Note that despite the large missing
region, these projections largely retain the pose, making the reconstruction task
well-defined. We also analysed different types of projections, such as projections
from different elevation angles. This analysis is provided in the supplementary.
The training examples (Pn, Qn, Rn)Nn=1 were provided in batches to the Siamese
Network, where N is the size of the train set. Each input pair is fed to the
encoder to receive the latent code θ(Pn, Qn) and the reconstruction Fθ(Pn,Qn)(Qn)
is determined by the generator. This reconstruction is subsequently compared
against the ground-truth reconstruction Rn using the loss in Eq. (1).

3.6 Implementation considerations

Our implementation is available at https://github.com/OshriHalimi/precise_
shape_completion. The network was trained using the PyTorch [52] ADAM
optimizer with a learning rate of 0.001 and a momentum of 0.9. Each training
batch contained 10 triplet examples (P,Q,R). The network was trained for 50
epochs, each containing 1000 batches. The input shapes, Q and R, are were
centered, such that their center of mass lies at the origin.
Surace Normals In practice we found it helpful to include normal vectors as
additional input features, making each input point 6D. The normal vector field
is especially helpful for disambiguating contact points of the surface allowing
prevention of contradicting requirements of the estimated deformation function.
The input normals were computed using the connectivity for the mesh inputs,
and approximated using Hoppe’s method [31] for point clouds, as described in
the experimental section. We note that at training, we always had access to
the mesh connectivity and Hoppe’s method was only applied on real scans, at
inference time. Additionally, in the loss evaluation, we found that by considering
also surface normals, in addition to point coordinates, fine details are better
preserved. Therefore, in equation (1), we defined ri as the concatenation of the
coordinates and unit normal vector at each point: (~xri, α~nri) ∈ R6. We used a
scale factor of α = 0.1, for the normal vector. To conclude, we used the surface
normals in two places: (A) as additional channels for the input shapes, and (B)
in the loss definition. To quantify the contribution of each design choice we ran
all 4 configurations on FAUST dataset [6]. The relative improvement w.r.t not
using normals at all is as follows: A+\B-: 4.6%; A-\B+: −3.3%; A+\B+ (as
in the paper): 13%. Our experiments indicate that setting A+ is consistently
helpful in disambiguating contact points, and that the chosen setting A+\B+, is
the best performing.
ICP Refinement Empirically, the network reconstruction is often slightly shifted
from the source partial scan. To recover the partial correspondence via a nearest
neighbor query, it is crucial that the alignment be as exact as possible, and

https://github.com/OshriHalimi/precise_shape_completion
https://github.com/OshriHalimi/precise_shape_completion
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therefore we apply a rigid Iterative Closest Point algorithm [4], as refinement,
choosing the moving input as the partial shape, and the fixed input as the network
reconstruction. Since the initial alignment is already adequate, this step is both
stable and fast.
Activation Function Studying the displacement field statistics between all
pose pairs in our training datasets, we observed that the maximal coordinate
displacement is bounded by 1.804m, and relatively symmetric. Accordingly, in
the generator module, we used the activation 2*tanh(x) - a symmetric function,
bounded in the range [-2,2], akin to [26].

4 Experiments

The proposed method tackles two important tasks in nonrigid shape analysis:
shape completion and partial shape matching. We emphasize the graceful handling
of severe partiality resulting from range scans. In contrast, prior efforts either
addressed one of these tasks or attempted to address both at mild partiality
conditions. Here, we describe the different datasets used and then evaluate our
method on both tasks. Finally, we show performance on real scanned data.

4.1 Datasets

We utilize two datasets of human shapes for training and evaluation, FAUST [6]
and AMASS [46]. In addition we use raw scans from Dynamic FAUST [7] for
testing purposes only. FAUST was generated by fitting SMPL parametric body
model [44] to raw scans. It is a relatively small set of 10 subjects posing at 10
poses each. Following training and evaluation protocols from previous works
(e.g. [41]), we kept the same train/test split, and for each of these sets, we
generated 10 projected views per model, using pyRender [33]. AMASS, on the
other hand, is currently the largest and most diverse dataset of human shapes
designed specifically for deep learning applications. It was generated by unifying
15 archived datasets of marker-based optical motion capture (mocap) data. Each
mocap sequence was converted to a sequence of rigged meshes using SMPL+H
model [61]. Consequently, AMASS provides a richer resource for evaluating
generalization. We generated a large set of single-view projections by sampling
every 100th frame of all provided sequences. We then used pyRender [33] to
render each shape from 10 equally spaced azimuth angles, keeping elevation at
zero. Keeping the data splits prescribed by [46], our dataset comprises a total of
110K, 10K, and 1K full shapes for train, validation and test, respectively; and
10 times that in partial shapes. Note that at train time we randomly mix and
match full shapes and their parts which drastically increases the effective set size.

4.2 Methods in comparison

The problem of deformable shape completion was recently studied by Litany et
al. [39]. In their work, completion is achieved via optimization in a learned shape
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space. Different from us, their task is completion from a partial view without
explicit access to a full model. This is an important distinction as it means
missing parts can only be hallucinated. In contrast, we assume the shape details
are provided but are not in the correct pose. Moreover, their solution requires a
preliminary step of solving partial matching to a template model, which by itself is
a hard problem. Here, we solve for it jointly with the alignment. The optimization
at inference time also makes their solution quite slow. Instead we output a result
in a single feed forward fashion. 3D-CODED [26] performs template alignment to
an input shape in two stages: fast inference and slow refinement. It is designed
for inputs which are either full or has mild partiality. Here we evaluate the
performance of their network predictions under significant partiality. In the
refinement step we use directional Chamfer distance, as suggested by the authors
in the partial case. FARM [47] is another alignment-based solution that has
shown impressive results on shape completion and dense correspondences. It
builds on the SMPL [44] human body model due to its compact parameterization,
yet, we found it to be very slow to converge (up to 30 min for a single shape)
and prone to getting trapped in local minima. We also tried to compare with a
recent nonrigid registration method [45] that aligns a given full source point cloud
to a partial target point cloud. However, this method didn’t converge on our
moderate size point clouds (< 7000 vertices) even within 48 hours, therefore we
do not report on this method. 3D-EPN [20] is a rigid shape completion method.
Based on a 3D-CNN, it accepts a voxelized signed distance field as input, and
outputs that of a completed shape. Results are then converted to a mesh via
computation of an isosurface. Comparison with classic Poisson reconstruction [36]
is also provided. It serves as a naïve baseline as it has access only to the partial
input. Lacking a single good measure of completion quality, we provide 5 different
ones (see tables 1 and 2). Each measurement highlights a different aspect of
the predicted completion. We report the root mean square error (RMSE) of
the Euclidean distance between each point on the reconstructed shape and its
ground truth mapping. We report this measure for predictions with well defined
correspondence to the true reconstruction. We also report the RMSE of two
directional Chamfer distances: ground-truth to prediction, and vice versa. The
former measures coverage of the target shape by the prediction and the later
penalizes prediction outliers. We report the sum of both as full the Chamfer
distance. Finally, we report volumetric error as the absolute volume difference
divided by the ground truth volume. Please note that the results reported in [39]
as “Euclidean distance error” are reported differently in our Table 1 and 2. We
confirm that the column named “Euclidean Distance Error” in [39] is, in fact, a
directional Chamfer distance from GT to reconstruction. We, therefore, reported
that error in the appropriate column and added a computation of the Euclidean
distance.

4.3 Single view completion

We evaluate our method on the task of deformable shape completion on FAUST
and AMASS.



Towards Precise Completion of Deformable Shapes 11

Euclidean
distance

Volumetric
err.

Chamfer
GT → Recon.

Chamfer
Recon. → GT

Full
Chamfer

Poisson [36] − 24.8 ± 23.2 7.3 3.64 10.94
3D-EPN [20] − 89.7 ± 33.8 4.52 4.87 9.39
3D-CODED [26] 35.50 21.8 ± 0.3 11.15 38.49 49.64
FARM [47] 35.77 43.08 ± 20.4 9.5 3.9 13.4
Litany et al. [39] 7.07 9.24 ± 8.62 2.84 2.9 5.74
Ours 2.94 7.05 ± 3.45 2.42 1.95 4.37

Table 1. FAUST Shape Completion. Comparison of different methods with respect
to errors in vertex position and shape volume.

FAUST projections We follow the evaluation protocol proposed in [39] and
summarize the completion results of our method and prior art in Table 1. As can
be seen, our network generates a much more accurate completion. Contrary to
optimization-based methods [39,26,47] which are very slow at inference, our feed-
forward network performs inference in less than a second. To better appreciate the
quality of our reconstructions, in Figure 4 we visualize completions predicted by
various methods. Note how our method accurately preserves fine details that were
lost in previous methods. In the supplementary, we analyse the reconstruction
error as a function of proximity between the source and the target pose, as well
as provide additional completion results.

AMASS projections Using our test set of partial shapes from AMASS (gen-
erated as described in 4.1), we compare our method with two recent methods
based on shape alignment: 3D-CODED [26], and FARM [47]. As described in 4.2,
3D-CODED is a learning-based method that uses a fixed template and is not
designed to handle severe partiality. FARM, on the other hand, is an optimization
method built for the same setting as ours. We summarize the results in Table 2.
As can be seen, our method outperforms the two baselines by a large margin in all
reported metrics. Note that on some of the examples (about 30%) FARM crashed
during the optimization. We therefore only report the errors on its successful
runs. Visualizations of several completions are shown in Figure 3. Additional
completions are visualized in the supplementary.

Euclidean
distance

Volumetric
err.

Chamfer
GT → Recon.

Chamfer
Recon. → GT

Full
Chamfer

3D-CODED [26] 36.14 − 13.65 35.35 49
FARM [47] 27.75 49.42 ± 29.12 11.17 5.14 16.31
Ours 6.58 27.62 ± 15.27 4.86 3.06 7.92

Table 2. AMASS Shape Completion. Comparison of different methods with respect
to errors in vertex position and shape volume.

4.4 Non-rigid partial correspondences

Finding dense correspondences between a full shape and its deformed parts is
still an active research topic. Here we propose a solution in the form of alignment
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between the full shape and the partial shape, allowing for the recovery of the
correspondence by a simple nearest neighbor search. As before, we evaluate this
task on both FAUST and AMASS.

FAUST projections On the FAUST projections dataset, we compare with two
alignment-based methods, FARM and 3D-CODED. We also compare with 3
methods designed to only recover correspondences, that is, without performing
shape completion: MoNet [49], and two 3-layered Euclidean CNN baselines,
trained on either SHOT [69] descriptors or depth maps. Results are reported in
Figure 5. As in the single view completion experiment, the test set consists of
200 shapes: 2 subjects at 10 different poses with 10 projected views each. The
direct matching baselines solve a labeling problem, assigning each input vertex
a matching index in a fixed template shape. Differently, 3D-CODED deforms
a fixed template and recovers correspondence by a nearest neighbor query for
each input vertex using a one-sided Chamfer distance, as suggested in [26]. Our
method and FARM both require a complete shape as input, which we chose as
the null pose of each of the test examples. Due to slow convergence and unstable
behavior of FARM we only kept 20 useful matching results on which we report
the performance. As seen in Figure 5, our method outperforms prior art by a
significant margin. This result is particularly interesting since it demonstrates
that even though we solve an alignment problem, which is strictly harder than
correspondence, we receive better results than methods that specialize in the
latter. At the same time, looking at the poor performance demonstrated by the
other alignment-based methods, we conclude that simply solving an alignment
problem is not enough and the details of our method and training scheme allow
for a substantial difference. Qualitative correspondence results are visualized in
the supplementary.

AMASS Projections As FAUST is limited in variability, we further test our
method on the recently published AMASS dataset. On the task of partial corre-
spondence, we compare with FARM [47] and 3D-CODED [26] for which code
was available online. We report the correspondence error graphs in Figure 6. For
evaluation we used 200 pairs of partial and full shapes chosen randomly (but
consistently between different methods). Specifically, for each of the 4 subjects
in AMASS test set we randomized 50 pairs of full poses: one was taken as the
full shape Q and one was projected to obtain the partial shape P , using the
full unprojected version as the ground truth completion R. As with FAUST, we
report the error curve of FARM taking the average of only the successful runs.
As can be observed, our method outperforms both methods by a large margin.
Qualitative correspondence results are visualized in the supplementary.

4.5 Real scans

To evaluate our method in real-world conditions, we test it on raw measurements
taken during the preparation of the Dynamic FAUST [7] dataset. This use case
nicely matches our setting: these are partial scans of a subject for which we have
a complete reference shape at a different pose. As preprocessing we compute
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Fig. 3. AMASS Shape Completion.
At the top from left to right: full shape
Q, partial shape P , ground truth com-
pletion R. At the bottom from left to
right: reconstructions of FARM [47], 3D-
CODED [26] and ours.

Fig. 4. FAUST Shape Completion.
At the top from left to right: full shape
Q, partial shape P , ground truth com-
pletion R. At the bottom from left to
right: reconstructions from FARM [47],
3D-EPN [20], Poisson [36], 3D-CODED
[26], Litany et al [39] and ours.

point normals for the input scan using the method presented in [31]. The point
cloud and the reference shape are subsequently inserted into a network pretrained
on FAUST. The template, raw scan, and our reconstruction are shown, from left
to right, in Figure 7. We show our result both as the recovered point cloud as
well as the recovered mesh using the template triangulation. As apparent from
the figure, this is a challenging test case as it introduces several properties not
seen at test time: a point cloud without connectivity leads to noisier normals,
scanner noise, different point density and extreme partiality (note the missing
bottom half of the shapes). Despite all these, the proposed network was able to
recover the input quite elegantly, preserving shape details and mimicking the
desired pose. In the rightmost column, we report a comparison with Litany et
al. [39]. Note that while [39] was trained on Dynamic FAUST, our network was
trained on FAUST which is severely constrained in its pose variability. The result
highlights that our method captures appearance details while pose accuracy is
limited by the variability of the training set.

5 Conclusions

We proposed an alignment-based solution to the problem of shape completion
from range scans. Different from most previous works, we focus on the setting
where a complete shape is given, but is at a different pose than that of the scan.
Our data-driven solution is based on learning the space of distortions, linking
scans at various poses to whole shapes in other poses. As a result, at test time we
can accurately align unseen pairs of parts and whole shapes at different poses.
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Fig. 5. Partial correspondence error,
FAUST dataset. Same color dashed and
solid lines indicate performance before and
after refinement, respectively.
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Fig. 6. Partial correspondence error,
AMASS dataset.

Fig. 7. Completion from real scans from the Dynamic Faust dataset [7]. From
left to right: Input reference shape; input raw scan; our completed shape as a point
cloud; and as mesh; completion from Litany et al. [39].
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