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Abstract. Recent research efforts enable study for natural language
grounded navigation in photo-realistic environments, e.g., following nat-
ural language instructions or dialog. However, existing methods tend to
overfit training data in seen environments and fail to generalize well in
previously unseen environments. To close the gap between seen and un-
seen environments, we aim at learning a generalized navigation model
from two novel perspectives: (1) we introduce a multitask navigation
model that can be seamlessly trained on both Vision-Language Navi-
gation (VLN) and Navigation from Dialog History (NDH) tasks, which
benefits from richer natural language guidance and effectively transfers
knowledge across tasks; (2) we propose to learn environment-agnostic
representations for the navigation policy that are invariant among the en-
vironments seen during training, thus generalizing better on unseen envi-
ronments. Extensive experiments show that environment-agnostic multi-
task learning significantly reduces the performance gap between seen and
unseen environments, and the navigation agent trained so outperforms
baselines on unseen environments by 16% (relative measure on success
rate) on VLN and 120% (goal progress) on NDH. Our submission to the
CVDN leaderboard establishes a new state-of-the-art for the NDH task
on the holdout test set. Code is available at https://github.com/google-
research/valan.

Keywords: Vision-and-Language Navigation, Natural Language Ground-
ing, Multitask Learning, Agnostic Learning

1 Introduction

Navigation in visual environments by following natural language guidance [18]
is a fundamental capability of intelligent robots that simulate human behaviors,
because humans can easily reason about the language guidance and navigate
efficiently by interacting with the visual environments. Recent efforts [3, 9, 42,

? Equal contribution.
?? Work done at Google.
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36] empower large-scale learning of natural language grounded navigation that
is situated in photo-realistic simulation environments.

Nevertheless, the generalization problem commonly exists for these tasks,
especially indoor navigation: the agent usually performs poorly on unknown
environments that have never been seen during training. One of the leading
causes of such behavior is data scarcity, as it is expensive and time-consuming
to extend either visual environments or natural language guidance. The number
of scanned houses for indoor navigation is limited due to high expense and
privacy concerns. Besides, unlike vision-only navigation tasks [31, 32, 50, 30, 23,
25] where episodes can be exhaustively sampled in simulation, natural language
grounded navigation is supported by human demonstrated interaction in natural
language. It is impractical to fully collect all the samples for individual tasks.

Therefore, it is essential though challenging to efficiently learn a more gen-
eralized policy for natural language grounded navigation tasks from existing
data [48, 49]. In this paper, we study how to resolve the generalization and data
scarcity issues from two different angles. First, previous methods are trained for
one task at the time, so each new task requires training a new agent instance from
scratch that can only solve the one task on which it was trained. In this work,
we propose a generalized multitask model for natural language grounded nav-
igation tasks such as Vision-Language Navigation (VLN) and Navigation from
Dialog History (NDH), aiming to efficiently transfer knowledge across tasks and
effectively solve all the tasks simultaneously with one agent.

Furthermore, even though there are thousands of trajectories paired with
language guidance, the underlying house scans are restricted. For instance, the
popular Matterport3D environment [6] contains only 61 unique house scans in
the training set. The current models perform much better in seen environments
by taking advantage of the knowledge of specific houses they have acquired over
multiple task completions during training, but fail to generalize to houses not
seen during training. To overcome this shortcoming, we propose an environment-
agnostic learning method to learn a visual representation that is invariant to
specific environments but can still support navigation. Endowed with the learned
environment-agnostic representations, the agent is further prevented from the
overfitting issue and generalizes better on unseen environments.

To the best of our knowledge, we are the first to introduce natural language
grounded multitask and environment-agnostic training regimes and validate their
effectiveness on VLN and NDH tasks. Extensive experiments demonstrate that
our environment-agnostic multitask navigation model can not only efficiently
execute different language guidance in indoor environments but also outperform
the single-task baseline models by a large margin on both tasks. Besides, the
performance gap between seen and unseen environments is significantly reduced.
Furthermore, our leaderboard submission for the NDH task establishes a new
state-of-the-art outperforming the existing best agent by more than 66% on the
primary metric of goal progress on the holdout test set.
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2 Background

Vision-and-Language Navigation. As depicted in Figure 1, Vision-and-
Language Navigation [3, 7] task requires an embodied agent to navigate in photo-
realistic environments to carry out natural language instructions. For a given
path, the associated natural language instructions describe the step-by-step guid-
ance from the starting position to the target position. The agent is spawned at
an initial pose p0 = (v0, φ0, θ0), which includes the spatial location, heading
and elevation angles. Given a natural language instruction X = {x1, x2, ..., xn},
the agent is expected to perform a sequence of actions {a1, a2, ..., aT } and ar-
rive at the target position vtar specified by the language instruction X. In this
work, we consider the VLN task defined for Room-to-Room (R2R) [3] dataset,
which contains instruction-trajectory pairs across 90 different indoor environ-
ments (houses). The instructions for a given trajectory in the dataset on an
average contain 29 words. Previous VLN methods have studied various aspects
to improve the navigation performance, such as planning [46], data augmenta-
tion [14, 40, 15], cross-modal alignment [45, 20], progress estimation [28], error
correction [29, 22], interactive language assistance [34, 33] etc. This work tackles
VLN via multitask learning and environment-agnostic learning, which is orthog-
onal to all these prior arts.
Navigation from Dialog History. Different from Visual Dialog [10] that
involves dialog grounded in a single image, the recently introduced Coopera-
tive Vision-and-Dialog Navigation (CVDN) dataset [42] includes interactive lan-
guage assistance for indoor navigation, which consists of over 2,000 embodied,
human-human dialogs situated in photo-realistic home environments. The task
of Navigation from Dialog History (NDH) demonstrated in Figure 1, is defined
as: given a target object t0 and a dialog history between humans cooperating
to perform the task, the embodied agent must infer navigation actions towards
the goal room that contains the target object. The dialog history is denoted as
< t0, Q1, A1, Q2, A2, ..., Qi, Ai >, including the target object t0, the questions Q
and answers A till the turn i (0 ≤ i ≤ k, where k is the total number of Q-A
turns from the beginning to the goal room). The agent, located in p0, is trying to
move closer to the goal room by inferring from the dialog history that happened
before. The dialog for a given trajectory lasts 6 utterances (3 question-answer
exchanges) and is 82 words long on an average.
Multitask Learning. The basis of multitask learning is the notion that tasks
can serve as mutual sources of inductive bias for each other [5]. When mul-
tiple tasks are trained jointly, multitask learning causes the learner to prefer
the hypothesis that explains all the tasks simultaneously, leading to more gen-
eralized solutions. Multitask learning has been successful in natural language
processing [8], speech recognition [11], computer vision [17], drug discovery [37],
and Atari games [41]. The deep reinforcement learning methods that have be-
come very popular for training models on natural language grounded navigation
tasks [45, 19, 20, 40] are known to be data inefficient. In this work, we introduce
multitask reinforcement learning for such tasks to improve data efficiency by
positive transfer across related tasks.
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N
I can't find an exit from this library. 
Should I turn left or right?

Turn right and start walking around 
the library. O

...

Walk towards the bookshelf to your right, 
and walk all the way around it...Taking two 
lefts. Stop in front of the chair thats next to 

the window.

NDH VLN

Fig. 1: While the NDH task (left) requires an agent to navigate using dialog
history between two human players - a navigator (N) who is trying to find
the goal room with the help of an oracle (O), the VLN task (right) requires
navigating using instructions written by human annotators.

Agnostic Learning. A few studies on agnostic learning have been proposed re-
cently. For example, Model-Agnostic Meta-Learning (MAML) [13] aims to train
a model on a variety of learning tasks and solve a new task using only a few
training examples. Liu et al. [27] proposes a unified feature disentangler that
learns domain-invariant representation across multiple domains for image trans-
lation. Other domain-agnostic techniques are also proposed for supervised [26]
and unsupervised domain adaption [38, 35]. In this work, we pair the environment
classifier with a gradient reversal layer [16] to learn an environment-agnostic rep-
resentation that can be better generalized on unseen environments in a zero-shot
fashion where no adaptation is involved.
Distributed Actor-Learner Navigation Learning Framework. To train
models for the various language grounded navigation tasks like VLN and NDH,
we use the VALAN framework [24], a distributed actor-learner learning infras-
tructure. The framework is inspired by IMPALA [12] and uses its off-policy cor-
rection method called V-trace to scale reinforcement learning methods to thou-
sands of machines efficiently. The framework additionally supports a variety of
supervision strategies essential for navigation tasks such as teacher-forcing [3],
student-forcing [3] and mixed supervision [42]. The framework is built using
TensorFlow [1] and supports ML accelerators (GPU, TPU).

3 Environment-agnostic Multitask Learning

3.1 Overview

Our environment-agnostic multitask navigation model is illustrated in Figure 2.
First, we adapt the reinforced cross-modal matching (RCM) model [45] and
make it seamlessly transfer across tasks by sharing all the learnable parameters
for both NDH and VLN, including joint word embedding layer, language en-
coder, trajectory encoder, cross-modal attention module (CM-ATT), and action
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Fig. 2: Overview of environment-agnostic multitask learning.

predictor. Furthermore, to learn the environment-agnostic representation zt, we
equip the navigation model with an environment classifier whose objective is to
predict which house the agent is. However, note that between trajectory encoder
and environment classifier, a gradient reversal layer [16] is introduced to reverse
the gradients back-propagated to the trajectory encoder, making it learn repre-
sentations that are environment-agnostic and thus more generalizable in unseen
environments. During training, the environment classifier is minimizing the en-
vironment classification loss Lenv, while the trajectory encoder is maximizing
Lenv and minimizing the navigation loss Lnav. The other modules are optimized
with the navigation loss Lnav simultaneously. Below we introduce multitask re-
inforcement learning and environment-agnostic representation learning. A more
detailed model architecture is presented in Sec. 4.

3.2 Multitask Reinforcement Learning

In this section, we describe how we adapted the RCM agent model to learn
the two tasks of VLN and NDH simultaneously. It is worth noting that even
though both the VLN and NDH tasks use the same Matterport3D indoor envi-
ronments [6], there are significant differences in the motivations and the over-
all objectives of the two tasks. While the natural language descriptions associ-
ated with the paths in the VLN task are step-by-step instructions to follow the
ground-truth paths, the descriptions of the paths in the NDH task are series
of question-answer interactions (dialog) between two human players which need
not necessarily align sequentially with the ground-truth paths. This difference in
the style of the two tasks also manifests in their respective datasets — the aver-
age path description length and average path length in the NDH task’s dataset
are roughly three times that of the VLN task’s dataset. Furthermore, while the
objective in VLN is to find the exact goal node in the environment (i.e., point
navigation), the objective in NDH is to find the goal room that contains the
specified object (i.e., room navigation).
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Interleaved Multitask Data Sampling. To avoid overfitting individual tasks, we
adopt an interleaved multitask data sampling strategy to train the model. Par-
ticularly, each data sample within a mini-batch can be from either task, so that
the VLN instruction-trajectory pairs and NDH dialog-trajectory pairs are inter-
leaved in a mini-batch though they may have different learning objectives.

Reward Shaping. Following prior art [46, 45], we first implement a discounted
cumulative reward function R for the VLN and NDH tasks:

R(st, at) =

T∑
t′=t

γt
′−tr(st′ , at′) (1)

where γ is the discounted factor. For the VLN task, we choose the immediate
reward function such that the agent is rewarded at each step for getting closer
to (or penalized for getting further from) the target location. At the end of the
episode, the agent receives a reward only if it terminated successfully. Formally,

r(st′ , at′) =

{
d(st′ , vtar)− d(st′+1, vtar) if t′ < T

1[d(sT , vtar) ≤ dth] if t′ = T
(2)

where d(st, vtar) is the distance between state st and the target location vtar,
1[.] is the indicator function and dth is the maximum distance from vtar that
the agent is allowed to terminate for success.

Different from VLN, the NDH task is essentially room navigation instead of
point navigation because the agent is expected to reach a room that contains
the target object. Suppose the goal room is occupied by a set of nodes {vi}N1 ,
we replace the distance function d(st, vtar) in Equation 2 with the minimum
distance to the goal room droom(st, {vi}N1 ) for NDH:

droom(st, {vi}N1 ) = min
1≤i≤N

d(st, vi) (3)

Navigation Loss. Since human demonstrations are available for both VLN and
NDH tasks, we use behavior cloning to constrain the learning algorithm to
model state-action spaces that are most relevant to each task. Following pre-
vious works [45], we also use reinforcement learning to aid the agent’s ability
to recover from erroneous actions in unseen environments. During navigation
model training, we adopt a mixed training strategy of reinforcement learning
and behavior cloning, so the navigation loss function is:

Lnav = −Eat∼π[R(st, at)− b]− E[log π(a∗t |st)] (4)

where we use REINFORCE policy gradients [47] and supervised learning gradi-
ents to update the policy π. b is the estimated baseline to reduce the variance
and a∗t is the human demonstrated action.
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3.3 Environment-agnostic Representation Learning

To further improve the navigation policy’s generalizability, we propose to learn
a latent environment-agnostic representation that is invariant among seen envi-
ronments. The objective is to not learn the intricate environment-specific fea-
tures that are irrelevant to general navigation (e.g. unique house appearances),
preventing the model from overfitting to specific seen environments. We can
reformulate the navigation policy as

π(at|st) = p(at|zt, st)p(zt|st) (5)

where zt is a latent representation.
As shown in Figure 2, p(at|zt, st) is modeled by the policy module (includ-

ing CM-ATT and action predictor) and p(zt|st) is modeled by the trajectory
encoder. In order to learn the environment-agnostic representation, we employ
an environment classifier and a gradient reversal layer [16]. The environment
classifier is parameterized to predict the house identity, so its loss function Lenv
is defined as

Lenv = −E[log p(y = y∗|zt)] (6)

where y∗ is the ground-truth house label. The gradient reversal layer has no
parameters. It acts as an identity transform during forward-propagation, but
multiplies the gradient by−λ and passes it to the trajectory encoder during back-
propagation. Therefore, in addition to minimizing the navigation loss Lnav, the
trajectory encoder is also maximizing the environment classification loss Lenv.
While the environment classifier is minimizing the classification loss conditioned
on the latent representation zt, the trajectory encoder is trying to increase the
classifier’s entropy, resulting in an adversarial learning objective.

4 Model Architecture

Language Encoder. The natural language guidance (instruction or dialog) is
tokenized and embedded into n-dimensional space X = {x1,x2, ...,xn} where
the word vectors xi are initialized randomly. The vocabulary is restricted to
tokens that occur at least five times in the training instructions (the vocabu-
lary used when jointly training VLN and NDH tasks is the union of the two
tasks’ vocabularies.). All out-of-vocabulary tokens are mapped to a single out-
of-vocabulary identifier. The token sequence is encoded using a bi-directional
LSTM [39] to create HX following:

HX = [hX
1 ;hX

2 ; ...;hX
n ], hX

t = σ(
−→
hX
t ,
←−
hX
t ) (7)

−→
hX
t = LSTM(xt,

−→
hX
t−1),

←−
hX
t = LSTM(xt,

←−
hX
t+1) (8)

where
−→
hX
t and

←−
hX
t are the hidden states of the forward and backward LSTM

layers at time step t respectively, and the σ function is used to combine
−→
hX
t and

←−
hX
t into hX

t .
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Trajectory Encoder. Similar to benchmark models [14, 45, 20], at each time
step t, the agent perceives a 360-degree panoramic view at its current location.
The view is discretized into k view angles (k = 36 in our implementation, 3
elevations by 12 headings at 30-degree intervals). The image at view angle i,
heading angle φ and elevation angle θ is represented by a concatenation of the
pre-trained CNN image features with the 4-dimensional orientation feature [sin
φ; cos φ; sin θ; cos θ] to form vt,i. The visual input sequence V = {v1,v2, ...,vm}
is encoded using a LSTM to create HV following:

HV = [hV
1 ;hV

2 ; ...;hV
m], where hV

t = LSTM(vt,h
V
t−1) (9)

vt = Attention(hV
t−1,vt,1..k) is the attention-pooled representation of all view

angles using previous agent state ht−1 as the query. We use the dot-product
attention [43] hereafter.
Policy Module. The policy module comprises of cross-modal attention (CM-
ATT) unit as well as an action predictor. The agent learns a policy πθ over
parameters θ that maps the natural language instruction X and the initial vi-
sual scene v1 to a sequence of actions [a1, a2, ..., an]. The action space which is
common to VLN and NDH tasks consists of navigable directions from the current
location. The available actions at time t are denoted as ut,1..l, where ut,j is the
representation of the navigable direction j from the current location obtained
similarly to vt,i. The number of available actions, l, varies per location, since
graph node connectivity varies. Following Wang et al. [45], the model predicts
the probability pd of each navigable direction d using a bilinear dot product:

pd = softmax([hV
t ; ctextt ; cvisualt ]Wc(ut,dWu)T ) (10)

where ctextt = Attention(hV
t ,h

X
1..n) and cvisualt = Attention(ctextt ,vt,1..k). Wc

and Wu are learnable parameters.
Environment Classifier. The environment classifier is a two-layer perceptron
with a SoftMax layer as the last layer. Given the latent representation zt (which
is hV

t in our setting), the classifier generates a probability distribution over the
house labels.

5 Experiments

5.1 Experimental Setup

Implementation Details. We use a 2-layer bi-directional LSTM for the in-
struction encoder, where the size of LSTM cells is 256 in each direction. The
inputs to the encoder are 300-dimensional embeddings initialized randomly. For
the visual encoder, we use a 2-layer LSTM with a cell size of 512. The encoder
inputs are image features derived as mentioned in Sec. 4. The cross-modal atten-
tion layer size is 128 units. The environment classifier has one hidden layer of size
128 units, followed by an output layer of size equal to the number of classes. The
negative gradient multiplier λ in the gradient reversal layer is empirically tuned
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and fixed at a value of 1.3 for all experiments. During training, some episodes
in the batch are identical to available human demonstrations in the training
dataset, where the objective is to increase the agent’s likelihood of choosing hu-
man actions (behavioral cloning [4]). The rest of the episodes are constructed
by sampling from the agent’s own policy. For the NDH task, we deploy mixed
supervision similar to Thomason et al. [42], where the navigator’s or oracle’s
path is selected as ground-truth depending on if the navigator was successful
in reaching the correct end node following the question-answer exchange with
the oracle or not. In the experiments, unless otherwise stated, we use the entire
dialog history from the NDH task for model training. All the reported results in
subsequent studies are averages of at least three independent runs.
Evaluation Metrics. The agents are evaluated on two datasets, namely Val-
idation Seen that contains new paths from the training environments and Val-
idation Unseen that contains paths from previously unseen environments. The
evaluation metrics for VLN task are as follows: Path Length (PL) measures the
total length of the predicted path; Navigation Error (NE) measures the distance
between the last nodes in the predicted and the reference paths; Success Rate
(SR) measures how often the last node in the predicted path is within some
threshold distance of the last node in the reference path; Success weighted by
Path Length (SPL) [2] measures Success Rate weighted by the normalized Path
Length; and Coverage weighted by Length Score (CLS) [21] measures predicted
path’s conformity to the reference path weighted by length score. For the NDH
task, the agent’s progress is defined as a reduction (in meters) from the distance
to the goal region at the agent’s first position versus at its last position [42].

5.2 Environment-agnostic Multitask Learning

Table 1 shows the results of training the navigation model using environment-
agnostic learning (EnvAg) as well as multitask learning (MT-RCM ). First, both
learning methods independently help the agent learn more generalized naviga-
tion policy, as is evidenced by a significant reduction in agent’s performance gap
between seen and unseen environments (better visualized with Figure 3). For in-
stance, the performance gap in goal progress on the NDH task drops from 3.85m
to 0.92m using multitask learning, and the performance gap in success rate on
the VLN task drops from 9.26% to 8.39% using environment-agnostic learning.
Second, the two techniques are complementary—the agent’s performance when
trained with both the techniques simultaneously improves on unseen environ-
ments compared to when trained separately. Finally, we note here that MT-RCM
+ EnvAg outperforms the baseline goal progress of 2.10m [42] on NDH valida-
tion unseen dataset by more than 120%. At the same time, it outperforms the
equivalent RCM baseline [45] of 40.6% success rate by more than 16% (relative
measure) on VLN validation unseen dataset.

To further validate our results on NDH task, we evaluated the MT-RCM +
EnvAg agent on the test set of NDH dataset which is held out as the CVDN

5 The equivalent RCM model without intrinsic reward is used as the benchmark.
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Table 1: The agent’s performance under different training strategies. The single-
task RCM (ST-RCM) model is independently trained and tested on VLN or
NDH tasks. The standard deviation across 3 independent runs is reported.

Fold Model
NDH VLN

Progress ↑ PL NE ↓ SR ↑ SPL ↑ CLS ↑

V
a
l

S
ee

n

seq2seq [42] 5.92
RCM [45]5 12.08 3.25 67.60 - -

Ours
ST-RCM 6.49 ±0.95 10.75 ±0.26 5.09 ±0.49 52.39 ±3.58 48.86 ±3.66 63.91 ±2.41
ST-RCM + EnvAg 6.07 ±0.56 11.31 ±0.26 4.93 ±0.49 52.79 ±3.72 48.85 ±3.71 63.26 ±2.31
MT-RCM 5.28 ±0.56 10.63 ±0.10 5.09 ±0.05 56.42 ±1.21 49.67 ±1.07 68.28 ±0.16
MT-RCM + EnvAg 5.07 ±0.45 11.60 ±0.30 4.83 ±0.12 53.30 ±0.71 49.39 ±0.74 64.10 ±0.16

V
a
l

U
n

se
en

seq2seq [42] 2.10
RCM [45] 15.00 6.02 40.60 - -

Ours
ST-RCM 2.64 ±0.06 10.60 ±0.27 6.10 ±0.06 42.93 ±0.21 38.88 ±0.20 54.86 ±0.92
ST-RCM + EnvAg 3.15 ±0.29 11.36 ±0.27 5.79 ±0.06 44.40 ±2.14 40.30 ±2.12 55.77 ±1.31
MT-RCM 4.36 ±0.17 10.23 ±0.14 5.31 ±0.18 46.20 ±0.55 44.19 ±0.64 54.99 ±0.87
MT-RCM + EnvAg 4.65 ±0.20 12.05 ±0.23 5.41 ±0.20 47.22 ±1.00 41.80 ±1.11 56.22 ±0.87

Fig. 3: Visualizing performance gap between seen and unseen environments for
VLN (success rate) and NDH (progress) tasks.

challenge6. Table 2 shows that our submission to the leaderboard with MT-
RCM + EnvAg establishes a new state-of-the-art on this task outperforming the
existing best agent by more than 66%.

5.3 Multitask Learning

We then conduct studies to examine cross-task transfer using multitask learn-
ing alone. First, we experiment multitasking learning with access to different
parts of the dialog—the target object to, the last oracle answer Ai, the prefacing
navigator question Qi, and the full dialog history. Table 3 shows the results of

6 https://evalai.cloudcv.org/web/challenges/challenge-page/463/leaderboard/1292
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Table 2: Comparison on CVDN Leaderboard Test Set. Note that the metric
Progress is the same as dist to end reduction.

Agent Progress ↑

Baselines
Random 0.83
Shortest Path Agent (upper bound) 9.76

Leaderboard Submissions
Seq2Seq [42] 2.35
MT-RCM + EnvAg 3.91

jointly training MT-RCM model on VLN and NDH tasks. (1) Does VLN com-
plement NDH? Yes, consistently. On NDH Val Unseen, MT-RCM consistently
benefits from following shorter paths with step-by-step instructions in VLN for
all kinds of dialog inputs. It shows that VLN can serve as an essential task to
boost learning of primitive action-and-instruction following and therefore sup-
port more complicated navigation tasks like NDH. (2) Does NDH complement
VLN? Yes, under certain conditions. From the results on VLN Val Unseen, we
can observe that MT-RCM with only target objects as the guidance performs
equivalently or slightly worse than VLN-RCM, showing that extending visual
paths alone (even with final targets) is not helpful in VLN. But we can see a
consistent and gradual increase in the success rate of MT-RCM on the VLN
task as it is trained on paths with richer dialog history from the NDH task. This
shows that the agent benefits from more fine-grained information about the path
implying the importance given by the agent to the language instructions in the
task. (3) Multitask learning improves the generalizability of navigation models:
the seen-unseen performance gap is narrowed. (4) As a side effect, results of
different dialog inputs on NDH Val Seen versus Unseen verify the essence of
language guidance in generalizing navigation to unseen environments.
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Fig. 4: Selected tokens from the vocabulary for VLN (left) and NDH (right) tasks
which gained more than 40 additional occurrences in the training dataset due
to joint-training.

Besides, we show multitask learning results in better language grounding
through more appearance of individual words in Figure 4 and shared semantic
encoding of the whole sentences in Table 4. Figure 4 illustrates that under-
represented tokens in each of the individual tasks get a significant boost in the
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Table 3: Comparison of agent performance when trained separately vs. jointly
on VLN and NDH tasks.

NDH Evaluation VLN Evaluation

Fold Model Inputs for NDH Progress PL NE SR SPL CLS
to Ai Qi A1:i−1;Q1:i−1 ↑ ↓ ↑ ↑ ↑

Val
Seen

NDH-RCM

3 6.97
3 3 6.92
3 3 3 6.47
3 3 3 3 6.49

VLN-RCM 10.75 5.09 52.39 48.86 63.91

MT-RCM

3 3.00 11.73 4.87 54.56 52.00 65.64
3 3 5.92 11.12 4.62 54.89 52.62 66.05
3 3 3 5.43 10.94 4.59 54.23 52.06 66.93
3 3 3 3 5.28 10.63 5.09 56.42 49.67 68.28

Val
Unseen

NDH-RCM

3 1.25
3 3 2.69
3 3 3 2.69
3 3 3 3 2.64

VLN-RCM 10.60 6.10 42.93 38.88 54.86

MT-RCM

3 1.69 13.12 5.84 42.75 38.71 53.09
3 3 4.01 11.06 5.88 42.98 40.62 54.30
3 3 3 3.75 11.08 5.70 44.50 39.67 54.95
3 3 3 3 4.36 10.23 5.31 46.20 44.19 54.99

Table 4: Comparison of agent performance when language instructions are en-
coded by separate vs. shared encoder for VLN and NDH tasks.

Language Encoder

Val Seen Val Unseen

NDH VLN NDH VLN

Progress ↑ PL NE ↓ SR ↑ SPL ↑ CLS ↑ Progress ↑ PL NE ↓ SR ↑ SPL ↑ CLS ↑

Shared 5.28 10.63 5.09 56.42 49.67 68.28 4.36 10.23 5.31 46.20 44.19 54.99
Separate 5.17 11.26 5.02 52.38 48.80 64.19 4.07 11.72 6.04 43.64 39.49 54.57

number of training samples. Table 4 shows that the model with shared lan-
guage encoder for NDH and VLN tasks outperforms the model that has sepa-
rate language encoders for the two tasks, hence demonstrating the importance
of parameter sharing during multitask learning.

Furthermore, we observed that the agent’s performance improves significantly
when trained on a mixture of VLN and NDH paths even when the size of the
training dataset is fixed, advancing the argument that multitask learning on
NDH and VLN tasks complements the agent’s learning. More details of the
ablation studies can be found in the Appendix.
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(a’) (b’)(a) (b)

Fig. 5: t-SNE visualization of trajectory encoder’s output for VLN task across 11
different color-coded seen (a,b) and unseen (a’,b’ ) environments. The depicted
representations in (a) and (a’) are learned with environment-aware objective
while those in (b) and (b’) are learned with environment-agnostic objective.

Table 5: Environment-agnostic versus environment-aware learning.
(a) Comparison on NDH.

Model
Val Seen Val Unseen

Progress ↑ Progress ↑

RCM 6.49 2.64
EnvAware 8.38 1.81
EnvAg 6.07 3.15

(b) Comparison on VLN.

Model
Val Seen Val Unseen

PL NE ↓ SR ↑ SPL ↑ CLS ↑ PL NE ↓ SR ↑ SPL ↑ CLS ↑

RCM 10.75 5.09 52.39 48.86 63.91 10.60 6.10 42.93 38.88 54.86
EnvAware 10.30 4.36 57.59 54.05 68.49 10.13 6.30 38.83 35.65 54.79
EnvAg 11.31 4.93 52.79 48.85 63.26 11.36 5.79 44.40 40.30 55.77

5.4 Environment-agnostic Learning

From Table 1, it can be seen that both VLN and NDH tasks benefit from
environment-agnostic learning independently. To further examine the general-
ization property of environment-agnostic learning, we train a model with the
opposite objective—learn to correctly predict the navigation environments by
removing the gradient reversal layer (environment-aware learning). The results
in Table 5 demonstrate that environment-aware learning leads to overfitting
on the training dataset as the performance on environments seen during train-
ing consistently increases for both the tasks. In contrast, environment-agnostic
learning leads to a more generalized navigation policy that performs better on
unseen environments. Figure 5 further shows that due to environment-aware
learning, the model learns to represent visual inputs from the same environment
closer to each other while the representations of different environments are far-
ther from each other resulting in a clustering learning effect. On the other hand,
environment-agnostic learning leads to more general representation across differ-
ent environments, which results in better performance on unseen environments.

5.5 Reward Shaping for NDH task

As discussed in Sec. 3.2, we conducted studies to shape the reward for the NDH
task. Table 6 presents the results of training the agent with access to different
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Table 6: Average agent progress towards goal room when trained using different
rewards and mixed supervision strategy.

Model
Inputs Goal Progress (m)

t0 Ai Qi A1:i−1;Q1:i−1 Val Seen Val Unseen

Baselines

Shortest-Path Agent 9.52 9.58
Random Agent 0.42 1.09

Seq2Seq [42]

3 5.71 1.29
3 3 6.04 2.05
3 3 3 6.16 1.83
3 3 3 3 5.92 2.10

Ours

NDH-RCM
(distance to goal location)

3 4.18 0.42
3 3 4.96 2.34
3 3 3 4.60 2.25
3 3 3 3 5.02 2.58

NDH-RCM
(distance to goal room)

3 6.97 1.25
3 3 6.92 2.69
3 3 3 6.47 2.69
3 3 3 3 6.49 2.64

parts of the dialog history. The results demonstrate that the agents rewarded
for getting closer to the goal room consistently outperform the agents rewarded
for getting closer to the exact goal location. This proves that using a reward
function better aligned with the NDH task’s objective yields better performance
than other reward functions.

6 Conclusion

In this work, we presented an environment-agnostic multitask learning frame-
work to learn generalized policies for agents tasked with natural language grounded
navigation. We applied the framework to train agents that can simultaneously
solve two popular and challenging tasks in the space: Vision-and-Language Nav-
igation and Navigation from Dialog History. We showed that our approach ef-
fectively transfers knowledge across tasks and learns more generalized environ-
ment representations. As a result, the trained agents not only close down the
performance gap between seen and unseen environments but also outperform
the single-task baselines on both tasks by a significant margin. Furthermore, the
studies show the two approaches of multitask learning and environment-agnostic
learning independently benefit the agent learning and complement each other.
There are possible future extensions to our work—MT-RCM can further be
adapted to other language-grounded navigation datasets (e.g., Touchdown [7],
TalkTheWalk [44], StreetLearn [31]); and complementary techniques like envi-
ronmental dropout [40] can be combined with environment-agnostic learning to
learn more general representations.



Environment-agnostic Multitask Navigation 15

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J.,
Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasude-
van, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: A sys-
tem for large-scale machine learning. In: 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 16). pp. 265–283 (2016),
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

2. Anderson, P., Chang, A., Chaplot, D.S., Dosovitskiy, A., Gupta, S., Koltun, V.,
Kosecka, J., Malik, J., Mottaghi, R., Savva, M., Zamir, A.R.: On evaluation of
embodied navigation agents. arXiv (2018), arXiv:1807.06757 [cs.AI]

3. Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünderhauf, N., Reid,
I., Gould, S., van den Hengel, A.: Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3674–3683
(2018)

4. Bain, M., Sammut, C.: A framework for behavioural cloning. In: Ma-
chine Intelligence 15, Intelligent Agents [St. Catherine’s College, Oxford,
July 1995]. pp. 103–129. Oxford University, Oxford, UK, UK (1999),
http://dl.acm.org/citation.cfm?id=647636.733043

5. Caruana, R.: Multitask learning: A knowledge-based source of inductive bias. In:
Proceedings of the Tenth International Conference on Machine Learning. pp. 41–
48. Morgan Kaufmann (1993)

6. Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., Song,
S., Zeng, A., Zhang, Y.: Matterport3d: Learning from rgb-d data in indoor envi-
ronments. International Conference on 3D Vision (3DV) (2017)

7. Chen, H., Suhr, A., Misra, D., Snavely, N., Artzi, Y.: Touchdown: Natural language
navigation and spatial reasoning in visual street environments. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 12538–
12547 (2019)

8. Collobert, R., Weston, J.: A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning. In: Proceedings of the
25th International Conference on Machine Learning. pp. 160–167. ICML ’08,
ACM, New York, NY, USA (2008). https://doi.org/10.1145/1390156.1390177,
http://doi.acm.org/10.1145/1390156.1390177

9. Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., Batra, D.: Embodied ques-
tion answering. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. pp. 2054–2063 (2018)

10. Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J.M., Parikh, D.,
Batra, D.: Visual Dialog. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2017)

11. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning
for speech recognition and related applications: an overview. In: 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing. pp. 8599–8603
(May 2013). https://doi.org/10.1109/ICASSP.2013.6639344

12. Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron,
Y., Firoiu, V., Harley, T., Dunning, I., Legg, S., Kavukcuoglu, K.: IMPALA:
Scalable distributed deep-RL with importance weighted actor-learner architec-
tures. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Con-
ference on Machine Learning. Proceedings of Machine Learning Research, vol. 80,



16 X. Wang et al.
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