
Supplementary Information - ProxyNCA++:
Revisiting and Revitalizing Proxy Neighborhood

Component Analysis

Eu Wern Teh1,2, Terrance DeVries1,2, and Graham W. Taylor1,2

1 University of Guelph, ON, Canada
2 Vector Institute, ON, Canada

{eteh,terrance,gwtaylor}@uoguelph.ca

1 A comparison with NormSoftMax [7]

In this section, we compare the differences between ProxyNCA++ and Norm-
SoftMax [7]. Both ProxyNCA++ and NormSoftMax are proxy-based DML solu-
tions. By borrowing notations from Equation 6 in the main paper, ProxyNCA++
has the following loss function:

LProxyNCA++ = − log

 exp
(
−d(xi

||xi||2 ,
f(xi)
||f(xi)||2) ∗ 1

T

)
∑

f(a)∈A exp
(
−d(xi

||xi||2 ,
f(a)
||f(a)||2) ∗ 1

T

)
 (1)

And NormSoftMax has the following loss function:

LNormSoftMax = − log

 exp
(

xi

||xi||2
> f(xi)
||f(xi)||2 ∗ 1

T

)
∑

f(a)∈A exp
(

xi

||xi||2
> f(a)
||f(a)||2 ∗ 1

T

)
 (2)

The main difference between Equation 1 and 2 is the distance function. In
ProxyNCA++, we use a euclidean squared distance function instead of cosine
distance function.

Based on our sensitivity studies on temperature scaling and proxy learning
rate, we show that NormSoftMax perform best when the temperature scale, T
is set to 1/2 and the proxy learning rate is set to 4e−1 (see Figure 1 and 2).

We perform an ablation study of NormSoftMax in Table 1 and 2. On the
CUB200 dataset, we show that the Global Max Pooling (GMP) component
(max) improves NormSoftMax by 2.2pp on R@1. However, the fast proxies com-
ponent (fast) reacts negatively with NormSoftMax by decreasing its performance
by 0.6pp. By combining both the GMP and the fast proxies components into
NormSoftMax, we see a small increase of R@1 performance (0.6pp).

On the CARS196 dataset, there is a slight increase in R@1 performance
(0.3pp) by adding fast proxies component to NormSoftMax. When we add the
GMP component to NormSoftMax, we observe an increase of R@1 by 1.1pp.

2 Teh et al.

Fig. 1. A sensitivity study of temperature scaling for NormSoftMax [7] without layer
norm (norm), class balanced sampling (cbs), and fast proxies (fast). We show a plot of
R@1 with different temperature scales on CUB200 [5]. The shaded areas represent one
standard deviation of uncertainty.

1/1 1/2 1/3 1/4 1/5 1/8
Temperature

59

60

61

62

63
R@

1
Pe

rfo
rm

an
ce

Fig. 2. A sensitivity study of proxy learning rate for NormSoftMax [7] without layer
norm (norm), class balanced sampling (cbs) and with temperature scaling (scale) T =
1/2. We show a plots of R@1 with different proxy learning rates on CUB200 [5]. The
shaded areas represent one standard deviation of uncertainty.

4e-3 4e-2 4e-1 4e0 4e1 4e2 4e3
Proxies Learning Rate

61.50
61.75
62.00
62.25
62.50
62.75
63.00
63.25
63.50

R@
1

Pe
rfo

rm
an

ce

ProxyNCA++: Revisiting and Revitalizing ProxyNCA 3

Table 1. A comparison of ProxyNCA++ and NormSoftMax [7] on CUB200 [5]. All
models are experimented with embedding size of 2048. For NormSoftMax [8], we use
a temperature scaling of T = 1/2, a proxy learning rate of 4e−1 (fast) and learning
rates of 4e − 3 for the backbone and embedding layers. It is important to note that,
NormSoftMax [7] does not have max pooling and fast proxy component.

R@k 1 2 4 8 NMI

ProxyNCA++ 72.2±0.8 82.0±0.6 89.2±0.6 93.5±0.4 75.8±0.8
-max 69.0±0.6 80.3±0.5 88.1±0.4 93.1±0.1 74.3±0.4
-fast 70.3±0.9 80.6±0.4 87.7±0.5 92.5±0.3 73.5±0.9
-max -fast 69.1±0.5 79.6±0.4 87.3±0.3 92.7±0.2 73.3±0.7

NormSoftMax 65.0±1.7 76.6±1.1 85.5±0.6 91.6±0.4 69.6±0.8
(+max, +fast)
NormSoftMax 63.8±1.3 75.9±1.0 84.9±0.8 91.4±0.6 70.8±1.1
(+fast)
NormSoftMax 67.6±0.4 78.4±0.2 86.7±0.4 92.2±0.3 71.2±0.9
(+max)
NormSoftMax 64.4±1.1 76.1±0.7 85.0±0.7 91.4±0.3 70.0±1.1

Combining both the GMP and the fast proxies components, there is a 1.0pp
increase in R@1 performance.

Table 2. A comparison of ProxyNCA++ and NormSoftMax [7] on CARS196 [2]. All
models are experimented with embedding size of 2048. For NormSoftMax [8], we use
a temperature scaling of T = 1/2, a proxy learning rate of 4e−1 (fast) and learning
rates of 4e − 3 for the backbone and embedding layers. It is important to note that,
NormSoftMax [7] does not have max pooling and fast proxy component.

R@k 1 2 4 8 NMI

ProxyNCA++ 90.1±0.2 94.5±0.2 97.0±0.2 98.4±0.1 76.6±0.7
-max 87.8±0.6 93.2±0.4 96.3±0.2 98.0±0.1 76.4±1.3
-fast 89.2±0.4 93.9±0.2 96.5±0.1 98.0±0.1 74.8±0.7
-max -fast 87.9±0.2 93.2±0.2 96.1±0.2 97.9±0.1 76.0±0.5

NormSoftMax 86.0±0.1 92.0±0.1 95.5±0.1 97.6±0.1 68.6±0.6
(+max, +fast)
NormSoftMax 85.3±0.4 91.6±0.3 95.5±0.2 97.6±0.1 72.2±0.7
(+fast)
NormSoftMax 86.1±0.4 92.1±0.3 95.5±0.2 97.6±0.2 68.0±0.5
(+max)
NormSoftMax 85.0±0.6 91.4±0.5 95.3±0.4 97.5±0.3 70.7±1.1

4 Teh et al.

2 Two moon classifier

In Section 3.4 (About Temperature Scaling) in the main paper, we show a vi-
sualization of the effect of temperature scaling on the decision boundary of a
softmax classifier on a two-moon synthetic dataset. In detail, we trained a two-
layers linear model. The first layer has an input size of 2 and an output size of
100. This is followed by a ReLU unit. The second layer has an input size of 100
and an output size of 2. For the synthetic dataset, we use the scikit-learn’s 1

moons data generator to generate 600 samples with noise of 0.3 and a random
state of 0.

3 Regarding crop size of images

Image crop size can have a large influence on performance. Current SOTA
method [1] for embedding size 512 uses a crop size of 256 × 256, which we
also use for our experiments (See Table 3). We repeat these experiments with a
crop-size of 227 × 227 to make it comparable with older SOTA method [6] (See
Table 4). In this setting, we outperform SOTA for CARS and SOP. We tie on
CUB, and we underperform on InShop. However, since no spread information is
reported in SOTA [6], it is hard to make a direct comparison.

Table 3. A comparison of ProxyNCA++ and the current SOTA [1] in the embedding
size of 512 and a crop size of 256× 256.

R@k SOTA [1] Ours

CUB 66.8 69.0±0.8
CARS 86.2 86.5±0.4
SOP 80.1 80.7±0.5
InShop 90.4 90.4±0.2

Table 4. A comparison of ProxyNCA++ and the current SOTA [6] in the embedding
size of 512 and a crop size of 227× 227.

R@k SOTA [6] Ours

CUB 65.7 64.7±1.6
CARS 84.2 85.1±0.3
SOP 78.2 79.6±0.6
InShop 89.7 87.6±1.0

1 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.

make_moons.html

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

ProxyNCA++: Revisiting and Revitalizing ProxyNCA 5

4 Regarding the implementation of baseline

We follow Algorithm 1 in the original paper [3] when implementing our baseline.
In the original paper, there is an α variable that resembles temperature scaling.
However, α choice is ambiguous and is used to prove the error bound theoret-
ically. We replicate [3] on CUB, with embedding size of 64, crop size of 227,
and GoogLeNet [4] backbone. With the temperature scale, T=1/3, we obtain
a R@1 of 49.70, which is close to the reported R@1 49.2. This indicates our
implementation of ProxyNCA is correct.

The baseline ProxyNCA is implemented using the same training set up as
the proposed ProxyNCA++. As mentioned in our paper (Sec 4.1), we split the
original training set into the training (1st half) and validation set (2nd half). We
did not perform an extensive sweep of hyperparameters. In our experiment, we
first select the best hyperparameter for baseline ProxyNCA (i.e., learning rate
[1e-3 to 5e-3]) before adding any enhancements corresponding to ProxyNCA++.
We believe that it is possible to obtain better results for both ProxyNCA and
ProxyNCA++ with a more extensive sweep of hyperparameters.

5 Regarding the Global Max Pooling (GMP) vs. Global
Average Pooling (GAP)

In our paper, we show that GMP is better than GAP empirically. However,
we could not find any consistent visual evidence as to why GMP works better.
We initially hypothesized that GAP was failing for small objects. But after we
controlled for object size, we did not observe any consistent visual evidence
to support this hypothesis. In Figure 3, GMP consistently outperform GAP
regardless of object size; this evidence disproved our initial hypothesis.

Fig. 3. Performance summary (R@1) between GMP and GAP on various object sizes
(in percent w.r.t. image size) in the CUB dataset.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

200

400

600

800

1000

R@
1

co
un

t

112

751

971

884

658

369

200

109
41 11

108

809

1035

912

683

390

217

115
46

8

Performance Summary of Recall@1 between GAP and GMP
Global Average Pooling
Global Max Pooling

6 Teh et al.

6 Regarding the computation complexity of
ProxyNCA++

The inference time to compute embeddings for ProxyNCA++ and baseline Prox-
yNCA will depend on the base architecture. In our experiments, we used a
ResNet-50 model as a backbone, so inference time would be comparable to that
of a ResNet-50 classifier. There are two differences which have a negligible effect
on inference time: (a) The removal of the softmax classification layer, and (b)
the addition of layer norm.

As for training time complexity, ProxyNCA++ is comparable to ProxyNCA
both theoretically and in terms of runtime. Given a training batch size of B, we
only need to compute the distance between each sample w.r.t the proxies, K.
After that, we compute a cross-entropy of these distances, where we minimize the
probability of a sample being assigned to its own proxy. Therefore the runtime
complexity in a given batch is O(BK).

ProxyNCA++: Revisiting and Revitalizing ProxyNCA 7

References

1. Pierre Jacob, David Picard, Aymeric Histace, and Edouard Klein. Metric learn-
ing with horde: High-order regularizer for deep embeddings. arXiv preprint
arXiv:1908.02735, 2019. 4

2. Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representa-
tions for fine-grained categorization. In 4th International IEEE Workshop on 3D
Representation and Recognition (3dRR-13), Sydney, Australia, 2013. 3

3. Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and
Saurabh Singh. No fuss distance metric learning using proxies. In Proceedings of
the IEEE International Conference on Computer Vision, pages 360–368, 2017. 5

4. C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, June
2015. 5

5. Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie.
The caltech-ucsd birds-200-2011 dataset. 2011. 2, 3

6. Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott.
Multi-similarity loss with general pair weighting for deep metric learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5022–5030, 2019. 4

7. Andrew Zhai, Hao-Yu Wu, and US San Francisco. Classification is a strong baseline
for deep metric learning. 2019. 1, 2, 3

8. Feng Zheng, Cheng Deng, Xing Sun, Xinyang Jiang, Xiaowei Guo, Zongqiao Yu,
Feiyue Huang, and Rongrong Ji. Pyramidal person re-identification via multi-loss
dynamic training. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2019. 3

