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Abstract. In skeleton-based action recognition, graph convolutional net-
works (GCNs) have achieved remarkable success. Nevertheless, how to
efficiently model the spatial-temporal skeleton graph without introduc-
ing extra computation burden is a challenging problem for industrial
deployment. In this paper, we rethink the spatial aggregation in existing
GCN-based skeleton action recognition methods and discover that they
are limited by coupling aggregation mechanism. Inspired by the decou-
pling aggregation mechanism in CNNs, we propose decoupling GCN to
boost the graph modeling ability with no extra computation, no extra la-
tency, no extra GPU memory cost, and less than 10% extra parameters.
Another prevalent problem of GCNs is over-fitting. Although dropout is
a widely used regularization technique, it is not effective for GCNs, due
to the fact that activation units are correlated between neighbor nodes.
We propose DropGraph to discard features in correlated nodes, which
is particularly effective on GCNs. Moreover, we introduce an attention-
guided drop mechanism to enhance the regularization effect. All our con-
tributions introduce zero extra computation burden at deployment. We
conduct experiments on three datasets (NTU-RGBD, NTU-RGBD-120,
and Northwestern-UCLA) and exceed the state-of-the-art performance
with less computation cost.

Keywords: skeleton-based action recognition, decoupling GCN, Drop-
Graph

1 Introduction

Human action recognition, which plays an essential role in video understand-
ing and human-computer interaction, attracts more attention in recent years
[43,39,46]. Compared with action recognition with RGB video, skeleton-based
action recognition is robust to circumstance changes and illumination variations
[3,40,36,48,50,25,46,17,33,34,29].
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Traditional methods mainly focus on designing hand-crafted features [39,4].
However, the performance of these handcrafted-features-based methods is barely
satisfactory. Deep learning methods usually rearrange a skeleton sequence as
a pseudo-image [21,14,9] or a series of joint coordinates [32,50,25], then use
CNNs or RNNs to predict action labels. Recently, graph convolutional networks
(GCNs), which generalize CNNs from image to graph, have been successfully
adopted to model skeleton data [46]. The key component of GCN is spatial ag-
gregation, which aggregates features of different body joints. To increase the
flexibility of the skeleton graph construction, researchers propose various mod-
ules to enhance the spatial aggregation ability for GCNs [44,34,13,35,18].

In this paper, we rethink the spatial aggregation of GCNs, which is derived
from CNNs. We discover that existing GCN-based skeleton action recognition
methods neglect an important mechanism in CNNs: decoupling aggregation. Con-
cretely, every channel has an independent spatial aggregation kernel in CNNs,
capturing different spatial information in different frequencies, orientations and
colors, which is crucial for the success of CNNs. However, all the channels in
a graph convolution share one spatial aggregation kernel: the adjacent matrix.
Although some researchers partition one adjacent matrix into multiple adjacent
matrices and ensemble multiple graph convolution results of these adjacent ma-
trices [46,34,33,17,13,35,44], the number of adjacent matrices is typically less
than 3, which limits the expressiveness of spatial aggregation. Increasing the
number of adjacent matrices will cause multiplying growth of computation cost
and reduce efficiency.

Inspired by the decoupling aggregation in CNNs, we propose DeCoupling
Graph Convolutional Networks (DC-GCN) to address the above dilemma with
no extra FLOPs, latency, and GPU memory. DC-GCN split channels into g de-
coupling groups, and each group has a trainable adjacent matrix, which largely
increases the expressiveness of spatial aggregation. Note that the FLOPs of de-
coupling graph convolution is exactly the same with conventional graph convo-
lution. More importantly, DC-GCN is hardware-friendly and increases no extra
time and GPU memory, the two most determining factors in industrial deploy-
ment. Besides, DC-GCN only cost 5% ∼ 10% extra parameters.

Another prevalent problem in graph convolution is over-fitting. Although
dropout [37] is widely used in GCNs, we discover that the performance does not
increase obviously with dropout layer. Because graph convolution is actually a
special form of Laplacian smoothing [19], activation units are correlated between
neighbor nodes. Even one node in a graph is dropped, information about this
node can still be obtained from its neighbor nodes, which causes over-fitting. To
relieve the over-fitting problem, we propose DropGraph, a particularly effective
regularization method for graph convolutional networks. The key idea is: when
we drop one node, we drop its neighbor node together. In addition, we propose
an attention-guided drop mechanism to enhance the regularization effect.

The main contributions of this work are summarized as follows: 1) We propose
DC-GCN, which efficiently enhances the expressiveness of graph convolution
with zero extra computation cost. 2) We propose ADG to effectively relieve
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the crucial over-fitting problem in GCNs. 3) Our approach exceeds the state-
of-the-art method with less computation cost. Code will be available at https:
//github.com/kchengiva/DecoupleGCN-DropGraph.

2 Background

Human skeleton graph convolution The skeleton data represents a human
action as multiple skeleton frames. Every skeleton frame is represented as a
graph G(V,E), where V is the set of n body joints and E is a set of m bones.
For example, 3D joints skeleton positions across T frames can be represented as
X ∈ Rn×3×T , and the 3D joints skeleton frames in the t-th frame is denoted as
Xt = X:,:,t ∈ Rn×3. GCN-based action recognition models [46,44,34,33,13,35,18]
are composed of several spatial-temporal GCN blocks, where spatial graph con-
volution is the key component.

Let X ∈ Rn×C be the input features in one frame, and X′ ∈ Rn×C′ be the
output features of these joints, where C and C ′ are the input and output feature
dimension respectively. The spatial graph convolution is

X′ =
∑
p∈P

X′
(p)

=
∑
p∈P

Ã(p)XW(p), (1)

where P ={root,centripetal,centrifugal} denotes the partition subsets [46].

Ã(p) is initialized as D(p)−
1
2 A(p)D(p)−

1
2 , where D

(p)
ii =

∑
j(A

(p)
ij ) + ε. Here ε

is set to 0.001 to avoid empty rows. Recent works let both Ã(p) ∈ Rn×n and
W(p) ∈ RC×C′ trainable [34,33].

Regularization method

Over-fitting is a crucial problem in deep neural networks, including GCNs.
Dropout [37] is a common regularization method. Although dropout is very
effective at regularizing fully-connected layers, it is not powerful when used in
convolutional layers. [2] proposed Cutout for regularizing CNNs, which randomly
removes contiguous region in the input images. [5] proposed DropBlock, which
applying Cutout at every feature map in CNNs. The reason why Cutout and
DropBlock are efficient is that features are spatially correlated in CNNs. GCNs
have the similar problems with CNNs, where common dropout is not effective.
Inspired from DropBlock [5] in CNNs, we proposed DropGraph to effectively
regularize GCNs.

3 Approach

In this section, we analyze the limitation of the human skeleton graph convo-
lutional networks and propose DeCoupling Graph Convolutional Network (DC-
GCN). In addition, we propose an attention-guided DropGraph (ADG) to relieve
the prevalent overfitting problem in GCNs.

https://github.com/kchengiva/DecoupleGCN-DropGraph
https://github.com/kchengiva/DecoupleGCN-DropGraph
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3.1 Decoupling graph convolutional network

For clarity, we first discuss the case of graph convolution with a single partition
set, then naturally extend to the multiple partition case.

Motivation Graph convolution contains two matrix multiplication processes:
ÃX and XW. ÃX computes the aggregation information between different
skeletons, so we call it spatial aggregation. XW compute the correlate informa-
tion between different channels, so we call it channel correlation.

As shown in Fig.1 (a), the spatial aggregation (ÃX) can be decomposed
into computing the aggregation on every channel respectively. Note that all
the channels of feature X share one adjacency matrix A (drawn in the same
color), which means all the channels share the same aggregation kernel. We
call it coupling aggregation. All existing GCN-based skeleton action recognition
methods adopt the coupling aggregation, such as ST-GCN [46], Nonlocal adaptive
GCN [34], AS-GCN [18], Directed-GNN [33]. We collectively call them coupling
graph convolution.

…
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Fig. 1. Conventional GCNs (a) employ coupling aggregation, while CNNs (b) em-
ploy decoupling aggregation. We introduce the decoupling aggregation mechanism into
GCNs and propose decoupling GCN (c).

However, CNNs, the source of inspiration for GCNs, do not adopt the coupling
aggregation. As shown in Fig.1 (b), different channels have independent spatial
aggregation kernels, shown in different color. We call this mechanism decoupling
aggregation. Decoupling aggregation mechanism can largely increase the spatial
aggregation ability, which is essential for the success of CNNs.

DeCoupling GCN Conventional graph convolution limited by coupling aggre-
gation can be analogous to a “degenerate depthwise convolution” whose convolu-
tion kernels are shared between channels. The expressiveness of the “degenerate
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depthwise convolution” is notably weaker than a standard depthwise convolu-
tion. Therefore, we deduce that existing GCN-based skeleton action recognition
models [46,34,18,33,45,35] lack the decoupling aggregation mechanism.

In this paper, we propose decoupling graph convolution for skeleton action
recognition, where different channel has independent trainable adjacent matrix,
shown in Fig.1 (c). Decoupling graph convolution largely increases the variety
of adjacent matrix. Similar to the redundancy of CNN kernels [30], decoupling
graph convolution may introduce redundant adjacent matrix. Hence we split
channels into g groups. Channels in a group share one trainable adjacent ma-
trix. When g = C, every channel has its own spatial aggregation kernel which
causes large number of redundant parameters; when g = 1, decoupling graph
convolution degenerates into coupling graph convolution. Interestingly, exper-
iments show that 8 ∼ 16 groups are enough. In this case, we only increase
5% ∼ 10% extra parameters. The equation of decoupling graph convolution is
shown as below:

X′ = Ãd
:,:,1X

w
:,:bCg c

‖Ãd
:,:,2X

w
:,bCg c:b

2C
g c
‖ · · · ‖Ãd

:,:,gX
w

:,b (g−1)C
g c: (2)

where Xw = XW, Ãd ∈ Rn×n×g is the decoupling adjacent matrices. Indexes of

Ãd and Xw are in Python notation, and ‖ represents channel-wise concatenation.

By replacing coupling graph convolution with decoupling graph convolution,
we construct DeCoupling GCN (DC-GCN). Although the number of parameters
is slightly increased, the floating-number operations (FLOPs) of DC-GCN is
exactly the same with conventional GCN (n2C + nC2). More importantly, DC-
GCN costs no extra time and GPU memory, the two determining factors for
deployment. Compared with other variants of ST-GCNs [34,33,44,13], DC-GCN
achieves higher performance without incurring any extra computations.

Discussion DC-GCN can be naturally extended to multiple partition cases by
introducing decoupling graph convolution into every partition. Note that our
DC-GCN is different from the multi-partition strategy [46], which ensembles
multiple graph convolutions with different adjacent matrices. The FLOPs of the
multi-partition strategy is proportional to the number of adjacency matrices,
while DC-GCN introduces various adjacency matrices with no extra computa-
tion. Besides, all our experiments use 3-partition ST-GCN as baseline, which
shows the complementarity between multi-partition strategy and DC-GCN.

DC-GCN is different from SemGCN [49] in many aspects: 1) SemGCN focus
on pose regression, while we focus on action recognition. 2) The receptive field
of SemGCN is localized, and a heavy non-local module is inserted for non-local
modeling. Our DC-GCN has non-local receptive fields and increases no extra
FLOPs. 3) The parameter cost of SemGCN is nearly double of baseline. Our
DC-GCN only increases 5% ∼ 10% extra parameters.
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3.2 Attention-guided DropGraph

Motivation Although dropout is a widely used regularization method, the per-
formance of GCNs does not increase obviously with dropout layer. A possible
reason is that graph features are correlated between nearby neighbors. As shown
in [19], graph convolution is a special form of Laplacian smoothing, which mixes
the features of a node and its neighbors. Even one node is dropped, information
about this node can still be obtained from its neighbor node, leading to over-
fitting. We propose DropGraph to effectively regularize GCNs, and design an
attention-guided drop mechanism to further enhance the regularization effect.

DropGraph The main idea of DropGraph is: when we drop one node, we drop
its neighbor node set together. DropGraph has two main parameters: γ and K.
γ controls the sample probability, and K controls the size of the neighbor set
to be dropped. On an input feature map, we first sample root nodes vroot with
the Bernoulli distribution with probability γ, then drop the activation of vroot
and the nodes that are at maximum K steps away from vroot. DropGraph can
be implemented as Algorithm 1.

Algorithm 1 DropGraph

Input: a GCN feature X ∈ Rn×C , adjacent matrix A, γ, K, mode
1: if mode == Inference then
2: return X
3: else
4: Randomly sample Vroot ∈ Rn, every element in Vroot is in Bernoulli distribution

with probability γ.
5: Compute the drop mask M ∈ Rn to mask the nodes that are at maximum K

steps away from Vroot:
M = 1−Bool((A+I)KV>root), where Bool is function setting non-zero element
to 1.

6: Apply the mask: X = X×M
7: Normalize the feature:

X = X× count(M)/count ones(M)
8: end if

Let keep prob denote the probability of an activation unit to be kept. For
conventional dropout, keep prob = 1−γ. But for DropGraph, every zero entry on
vroot is expanded to its 1st, 2ed, · · · ,Kth-order neighborhood. Thus, keep prob
depends on both γ and K. In a graph with n nodes and e edges, we define the
average degree of each node as dave = 2e/n. The expectation number of nodes
in the ith-order neighborhood of a random sampled node can be estimated as:

Bi = dave × (dave − 1)i−1 (3)

The average expanded drop size is estimated as:
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drop size = 1 +

K∑
i=1

Bi (4)

If we want to keep activation units with the probability of keep prob, we set:

γ =
1− keep prob
drop size

(5)

Note that there might be some overlaps between drop areas, so this equation
is only an approximation. In our experiments, we first estimate the keep prob to
use (between 0.75-0.95), and then compute γ as Eq.5.

Attention-guided drop mechanism To enhance the regularization effect, we
let the attention area have higher probability to sample vroot. Let v be a node,
γv denote the probability of sampling the node v as vroot. We modify Eq.5 as:

γv = α̃v
1− keep prob
drop size

= αv
count(α)∑

α

1− keep prob
drop size

(6)

where α is the attention map, α̃ is the normalized attention map, count(α)
is the number of elements in α. To assess the distribution of attention area, a
common implicit assumption is that the absolute value of an activation is an
indication about the importance of one unit [47]. We follow this assumption and
generate α by averaging the absolute value across the channel dimension.

: spatial drop root node
: temporal drop root node

: spatial drop neighbor node
: temporal drop neighbor node

(a) dropout

(c) DropGraph

Temporal

(b) DropEdge

Fig. 2. Spatial-temporal DropGraph.
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Spatial-temporal ADG In skeleton action recognition, the input of attention-
guided DropGraph (ADG) is a spatiotemporal feature X ∈ Rn×C×T . As shown
in Fig.2, we apply ADG to spatial graph and temporal graph respectively.

The spatial aspect of the graph is the human physical structure with the
number of nodes n. We generate spatial attention on every skeleton αS ∈ Rn by
compressing the absolute value of X using average pooling on channel dimension
and temporal dimension. After sampling vroot, we expand the drop area to its
spatial neighbors. Then we broadcast the drop area to all temporal frames.

The temporal aspect of the graph is constructed by connecting consecutive
frames on temporal dimension, with the number of nodes T . We generate tem-
poral attention on every frame αT ∈ RT by compressing the absolute value of
X using average pooling on channel dimension and skeleton dimension. After
sampling vroot, we expand the drop area to its temporal neighbors. Then we
broadcast the drop area to all body joints.

We cascade spatial ADG and temporal ADG to construct spatiotemporal
ADG. We apply ADG on both GCN branch and skip connection branch. We
adopt linear scheme [5] to decreasing keep prob over time from 1 to target value.

Comparison with other regularization methods. We compare DropGraph
with other two regularization methods for GCNs: (a) dropout [37], which ran-
domly drops the nodes with a certain probability; (b) DropEdge [31], which
randomly drop the edges in a graph with a certain probability. As shown in
Fig.2, the drop area of both dropout and DropEdge are isolated, which can not
effectively remove related information of the dropped node. For dropout, even
if one node is dropped, information about this node can still be obtained from
its neighbor node. For DropEdge, even if one edge is dropped, related informa-
tion can still reach this node through other edges. DropGraph addresses their
drawbacks and achieve notably better performance (details in Sec.4.2).

4 Experiments

4.1 Datasets and Model Configuration

NTU-RGBD. NTU-RGBD is the most widely used 3D joint coordinates
dataset. It contains 56,880 action samples in 60 action classes. These samples are
performed by 40 distinct subjects. The 3D skeleton data is captured by Kinect
V2. Each action is captured by 3 cameras from different horizontal angles: −45◦,
0◦, 45◦. The original paper [32] recommends two protocols. 1) Cross-Subject (X-
sub): training data comes from 20 subjects, and the remaining 20 subjects are
used for validation. 2) Cross-View (X-view): training data comes from the cam-
era 0◦ and 45◦ , and validation data comes from camera −45◦.
NTU-RGBD-120. NTU-RGBD-120 is the extended version of the NTU-
RGBD dataset. It contains 114,480 action samples in 120 action classes, per-
formed by 106 distinct subjects. This dataset contains 32 setups, and every
different setup has a specific location and background. The original paper [22]
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recommends two evaluation protocols. 1). Cross-Subject (X-sub): training data
comes from 53 subjects, and the remaining 53 subjects are used for validation. 2).
Cross-Setup (X-setup): picking all the samples with even setup IDs for training,
and the remaining samples with odd setup IDs for validation.
Northwestern-UCLA. Northwestern-UCLA (NW-UCLA) dataset [42] con-
tains 1494 video clips covering 10 categories, which is captured by three Kinect
cameras. Each action is performed by 10 different subjects. We adopt the same
protocol as [42]: training data comes from the first two cameras, and samples
from the other camera are used for validation.
Model Setting. We construct the backbone as ST-GCN [46]. The batch size
is 64. We use SGD to train the model for 100 epochs. We use momentum of 0.9
and weight decay of 1e-4. The learning rate is set as 0.1 and is divided by 10 at
epoch 60 and 80. For NTU-RGBD and NTU-RGBD-120, we use the same data
preprocess as [34]. For NW-UCLA, we use the same data preprocess as [35].

4.2 Ablation Study

Decoupling graph convolution In this subsection, we demonstrate the effec-
tiveness and efficiency of DC-GCN.

(1) Efficacy of DC-GCN. We perform ablation study on different decou-
pling groups, shown in Fig.3. Our baseline is ST-GCN [46]. We also compare the
performance with non-local adaptive graph module (CVPR 2019) [34] and SE
module [8]. From Fig.3, we can draw the following conclusions:

(b) X-view(a) X-sub

Fig. 3. Decoupling GCN on NTU-RGBD dataset.

– DC-GCN outperforms the baseline at 1.0% on NTU X-sub task and 0.8% on
NTU X-view task. Compared with non-local adaptive graph and SE module,
DC-GCN achieves higher performance at no extra computation.

– Compared to coupling graph convolution network (group=1), decoupling
graph convolution network achieves higher performance. We do not need
to decouple the adjacent matrix of every channel. 8 groups are enough for
NTU-RGBD X-view task and 16 groups are enough for NTU-RGBD X-sub
task, which is used as our default setting in the following discussion.
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– Non-local adaptive GCN [34] uses a non-local module to predict the data-
dependent graph for each sample. Compared to it, our DC-GCN employs
several static graphs, but get even higher performance with less FLOPs.

Model GFLOPs Network Time(ms/batch) Memory(G)

Baseline 16.2 12 5.014

+SE 16.2 16 5.494

+Nonlocal 17.9 23 5.603

+Coupling
g = 1

16.2 12 5.014

+Decoupling
g = 4, 8, 16, C

16.2 12 5.014

Table 1. FLOPs, speed and GPU memory cost. The FLOPs is for one sample on
NTU-RGBD dataset. The speed and memory is measured on 1 NVIDIA Tesla K80
GPU with batch size = 64 in PyTorch evaluation mode. The time is network time,
without the data loading time.

(2) FLOPs, speed and GPU memory. DC-GCN is not only theoretically
efficient but also has high throughput and efficient GPU memory cost, as shown
in Table 1. We can conclude that:

– Decoupling GCN (g = 4, 8, 16, C) introduces no extra FLOPs/latency/GPU
memory compared to coupling GCN (g = 1). In addition, the latency and
GPU memory cost of DC-GCN are almost the same as ST-GCN baseline.

– DC-GCN is more efficient than non-local adaptive GCN. Non-local adaptive
GCN increases 10% extra FLOPs and 589M extra GPU memory, and cost
92 % extra time compared to DC-GCN.

– Although SE module is efficient at FLOPs, it costs 33% extra time and
480M extra GPU memory compared with baseline. This is, the theoretical
efficiency is not equivalent to fast speed and efficient GPU memory cost.
Compared with SE module, our DC-GCN is a hardware-friendly approach.

(3) Parameter cost. Decoupling GCN introduces extra parameters to
baseline. Because our group decoupling mechanism, DC-GCN only introduces
5% ∼ 10% extra parameters when g = 8 ∼ 16. If we increase the number of
channels of baseline to the same parameter cost, we do not get notable improve-
ment.

(4) Visualization of the learned adjacent matrices. We visualize the
learned adjacent matrices of coupling GCN (group=1) and decoupling GCN
(group=8), shown in Fig.4. Compared with coupling GCN where every channel
shares one adjacent matrix, decoupling GCN (group=8) largely increases the
variety of spatial aggregation. In this way, decoupling GCN can model diverse
relations among joints.
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Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

(d) Adjacent matrices in layer 1

Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

(f) Adjacent matrices in layer 9

Group 1

Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

(e) Adjacent matrices in layer 5

Group 1

Decoupling GCN

(a) Adjacent matrix in layer 1

(c) Adjacent matrix in layer 9

(b) Adjacent matrix in layer 5

Coupling GCN

Fig. 4. Visualization of the learned adjacent matrices. The green lines show the body
physical connections. The thickness of red lines shows the connection strength of the
learned adjacent matrices.

In shallow layers (e.g., layer 1), the skeleton connections in decoupling GCN
tend to be local, as shown in Fig.4 (d). For example, some adjacent matrices
have strong connections between head and hand (e.g., Group 4 and Group 8
in Fig.4 (d)), which are helpful for recognizing “wipe face” and “brush teeth”;
some adjacent matrices have strong connections between head and neck (e.g.,
Group 1 in Fig.4 (d)), which are helpful for recognizing “nod head” and “shake
head”; some adjacent matrices have strong connections between hand and wrist
(e.g., Group 3 in Fig.4 (d)), which are helpful for recognizing “write” and “count
money” ; some adjacent matrices have strong connections between two hands
(e.g., Group 2, Group 5 and Group 7 in Fig.4 (d)), which are helpful for recog-
nizing “clap” and “rub two hands”. This characteristic makes decoupling GCN
work well in action recognition tasks.

In deep layers (e.g., layer 9), the skeleton connections in decoupling GCN
tend to be global, as shown in Fig.4 (f). These adjacent matrices tend to gather
the global feature to one joint. In this way, the deep layers can integrate global
information (the whole human body) with local information (each single joint),
which helps predict the final classification score.

Attention-guided DropGraph In this subsection, we demonstrate the effec-
tiveness of attention-guided DropGraph (ADG).

(1) Comparison with other regularization methods. We compare
with three regularization methods: dropout [37], label smoothing [38] and DropE-
dge [31]. For our proposed DropGraph, we set K = 1 for spatial DropGraph and
K = 20 for temporal DropGraph respectively. The detail ablation study on K
is provided in the supplement material. Note that when K = 0, DropGraph
degenerates to dropout [37]. As shown in Table 2, dropout is not powerful in
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GCN. DropGraph notably exceeds the other regularization methods. With the
attention-guide drop mechanism, the regularization effect is further enhanced.

Model Regularization method X-sub ∆ X-view ∆

DC-GCN

- 87.1 0 94.3 0
dropout [37] 87.2 +0.1 94.4 +0.1

label smoothing [38] 87.1 +0.0 94.4 +0.1
DropEdge [31] 87.6 +0.5 94.7 +0.4

DropGraph (ours) 88.0 +0.9 95.0 +0.7
Attention-guided DropGraph (ours) 88.2 +1.1 95.2 +0.9

Table 2. Compare with other regularization methods. The top-1 accuracy (%) is eval-
uated on NTU-RGBD. ∆ shows the improvement of accuracy.

Fig. 5. Compare dropout, DropEdge and our ADG at different keep prob.

(2) The setting of keep prob. We discuss the setting of keep prob on
dropout, DropEdge and our proposed ADG. As shown in Fig.5, ADG provides
efficient regularization when keep prob = 0.85 ∼ 0.9. ADG has a notable im-
provement compared to the best result of dropout and DropEdge.

Ablation studies on NW-UCLA and NTU-RGBD-120 Besides the above
ablation study on NTU-RGBD dataset, we also perform ablation studies on NW-
UCLA and NTU-RGBD-120 datasets, shown in Table 3.

Backbone +DC +ADG NW-UCLA(%) NTU120 X-sub(%) NTU120 X-setup(%)

ST-GCN 89.8 79.7 81.3

ST-GCN X 91.6 81.3 82.7

ST-GCN X X 93.8 82.4 84.3
Table 3. Ablation study on NW-UCLA and NTU-RGBD-120. DC refers to decoupling.
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4.3 Comparisons to the State-of-the-Art

Multi-stream strategy is commonly employed in previous state-of-the-art ap-
proaches [46,34,35,43,33]. We adopt the same multi-stream ensemble strategy
with [33], which ensembles 4 streams: joint, bone, motion, and bone motion.
The joint stream uses the original joint position as input; the bone stream uses
the difference between adjacent joints as input; the motion stream uses the dif-
ference between adjacent frames as input.

We conduct extensive experiments on three datasets: NTU-RGBD dataset,
NW-UCLA dataset, and the recently proposed NTU-RGBD-120 dataset, shown
in Table 4, Table 5, and Table 6 respectively. Our approach exceeds all the
previous methods with a notable margin.

Note that the comparison with Directed-GNN is unfair because of the com-
putational cost disparity. Directed-GNN doubles the number of channels in tem-
poral convolution and introduces extra directed graph modules, whose compu-
tational cost (127G FLOPs) is nearly double of ours (65G FLOPs) 5. Never-
theless, we outperform the current state-of-the-art method Directed-GNN at
0.9% on NTU-RGBD X-sub task. On NW-UCLA, we outperform the current
state-of-the-art method AGC-LSTM at 2.0%. On NTU-120 RGB+D dataset,
we obviously exceed all previously reported performance.

Methods X-sub X-view

Lie Group [39] 50.1 52.8
STA-LSTM [36] 73.4 81.2
VA-LSTM [48] 79.2 87.7
ARRN-LSTM [16] 80.7 88.8
Ind-RNN [20] 81.8 88.0
2-Stream 3DCNN [21] 66.8 72.6
TCN [11] 74.3 83.1
ClipCNN+MTLN [9] 79.6 84.8
Synthesized CNN [27] 80.0 87.2
CNN+Motion+Trans [15] 83.2 88.8
ST-GCN [46] 81.5 88.3
Motif+VTDB [44] 84.2 90.2
STGR-GCN [13] 86.9 92.3
AS-GCN [18] 86.8 94.2
Non-local adaptive GCN [34] 88.5 95.1
AGC-LSTM [35] 89.2 95.0
Directed-GNN [33] 89.9 96.1

DC-GCN+ADG (ours) 90.8 96.6

Table 4. Comparisions of the top-1 accuracy (%) with the state-of-the-art methods
on the NTU-RGBD dataset.

5 Details about the computational complexity are provided in supplement material.
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Methods Year Top-1

Lie Group [39] 2014 74.2
Actionlet ensemble [41] 2014 76.0
Visualization CNN [28] 2017 86.1
Ensemble TS-LSTM [12] 2017 89.2
2s AGC-LSTM [35] 2019 93.3

DC-GCN+ADG (ours) - 95.3

Table 5. Comparisions of the accuracy (%) with the state-of-the-art methods on the
NW-UCLA dataset.

Methods X-sub X-setup

Part-Aware LSTM [32] 25.5 26.3
Soft RNN [7] 36.3 44.9
Dynamic Skeleton [6] 50.8 54.7
Spatio-Temporal LSTM [25] 55.7 57.9
Internal Feature Fusion [24] 58.2 60.9
GCA-LSTM [26] 58.3 59.2
Multi-Task Learning Network [9] 58.4 57.9
FSNet [23] 59.9 62.4
Multi CNN + RotClips [10] 62.2 61.8
Pose Evolution Map [29] 64.6 66.9
SkeleMotion [1] 67.7 66.9

DC-GCN+ADG (ours) 86.5 88.1

Table 6. Comparisions of the top-1 accuracy (%) with the state-of-the-art methods
on the NTU-RGBD-120 dataset.

5 Conclusion

In this work, we propose decoupling GCN to boost the graph modeling abil-
ity for skeleton-based action recognition. In addition, we propose an attention-
guided DropGraph module to effectively relieve the crucial over-fitting problem
in GCNs. Both these two contributions introduce zero extra computation, zero
extra latency, and zero extra GPU memory cost at deployment. Hence, our ap-
proach is not only theoretically efficient but also has well practicality and appli-
cation prospects. Our approach exceeds the current state-of-the-art method on
three datasets: NTU-RGBD, NTU-RGBD-120, and NW-UCLA with even less
computation. Since enhancing the effectiveness of the graph modeling and reduc-
ing the over-fitting risk are two prevalent problems in GCNs, our approach has
potential application value for other GCN tasks, such as recommender systems,
traffic analysis, natural language processing, computational chemistry.
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