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A Public Source Code & Dataset

Along with the submitted manuscript, we provide the source code of the proposed
DMM-Net and publish the proposed Omni-MOT dataset. We also provide our imple-
mentation to generate more videos similar to the proposed dataset using the CARLA
simulator [3]. Below, the links are provided for anonymous repositories for the sake of
the review process. The links will be made public after the acceptance. (Click on the
highlighted text to open the URL).

— DMM-Net is the source code of DMM-Net. It also contains the training and testing
script for both UA-DETRAC [10] and Omni-MOT dataset, and instructions for
reproducing the result of our methods.

— Omni-MOT Dataset provides the link to the dataset along with the related descrip-
tion.

— Omni-MOT Script is the source code for generating the Omni-MOT dataset and
extending it. It includes the script for recording the MOT data and playing the
recorded dataset.

B Videos for Dataset and Further Results

We provide the following videos for the review process. These and further videos will
also be made public after the acceptance:

— Omni-MOT dataset videos illustrates different scenes, camera viewpoints and weather
conditions used in the generated large-scale realistic dataset.

— Further results on Omni-MOT illustrates more tracking results on the proposed
dataset.

— Further results on UA-DETRAC show tracking results on a representative scene
from the UA-DETRAC challenge.


https://github.com/shijieS/DMMN
https://github.com/shijieS/OmniMOTDataset
https://github.com/shijieS/OMOTDRecorder
https://www.dropbox.com/sh/nom2u2s7snivwhu/AABCywWoePDi0MnNXM9tXzyfa?dl=0&preview=omni-mot_dataset.mp4
https://www.dropbox.com/sh/nom2u2s7snivwhu/AABCywWoePDi0MnNXM9tXzyfa?dl=0&preview=omni_result.avi
https://www.dropbox.com/sh/nom2u2s7snivwhu/AABCywWoePDi0MnNXM9tXzyfa?dl=0&preview=UA-DETREAC-MVI_39271.avi
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Fig. 1. Overall structure of the Omni-MOT dataset.

C Further Details of the Dataset

The structure of the proposed dataset can be best understood under five dimensions of
divisions. We depict these dimensions as different levels of a block diagram in Fig. 1
for a clear overview. Along the first dimension, we split the dataset into the training and
testing sets. Along the second, five towns of the CARLA simulator are employed for
making the dataset diverse. For each town, we set the camera with different viewpoints
for the third dimension of division. These viewpoints include three levels of difficulty,
namely, Easy, Ordinary, and Hard level. Along the fourth dimension, different weather
conditions split the data. These weather conditions contain Clear, Cloudy, and Rainy
weather. The last variability that makes our data diverse consists of three congestion
levels, namely; Low, Medium, and Severe congestion. Details are given below.

Train/Test split: The training set consists of 1,755 videos, 8, 775K frames, 134.2K
tracks, and 68.88M boxes. The testing set includes 1,755 videos, 5,265K frames,
122.37K tracks and 41.36M boxes.

Towns: There are five towns in our dataset, whose details are given in Table 1. Among
these, TownOS5 is the largest city that also has three overpass roads. Town02 is the small-
est city, whereas Town03 also contains a tube. Town04 is the most populous in terms of
T-junctions.

Camera viewpoints: 39 cameras are placed in each city with different viewpoints. The
camera horizontal field of view is 90°. We refer to the Omni-MOT dataset videos to
visually observe the viewpoints.

Weather conditions: Three kinds of weather are simulated, namely, Clear, Cloudy, and
Rainy, by changing the weather parameters of the CARLA simulator. These weather
parameters include cloudiness and precipitation, and their values range from 0 to 100.


https://www.dropbox.com/sh/nom2u2s7snivwhu/AABCywWoePDi0MnNXM9tXzyfa?dl=0&preview=omni-mot_dataset.mp4
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Table 1. Details of five towns. Column “Size” is manually measured and its format is
Width x Length

Name  Size (m) Cross T-junction Roundabout Overpass Tunnel

Town01 342 x 413 0 12 0 0 0
Town02 205 x 208 0O 9 0 0 0
Town03 438 x 483 5 14 2 0 1
Town04 816 x 914 8 21 3 1 0
Town05 430 x 486 13 8 0 3 0

Table 2. The number of vehicles for each congestion level of different towns.

City Low Medium Severe
TownO1 50 75 95
Town02 50 75 95
Town03 100 170 230
Town04 100 170 230
Town05 100 170 230

The cloudiness of Clear is 15, and the cloudiness of Cloudy and Rainy are 80. Both the
precipitation of Clear and Cloudy are 0, and the precipitation of Rainy is 60.

Road congestion: We include three levels of traffic congestion, i.e. low, medium, and
severe congestion. Because cities have different sizes, these congestion levels are de-
cided by different numbers of vehicles. Table 2 summarizes the number of vehicles for
the chosen level of congestion in all five towns.

In the proposed dataset, five different simulated cities are considered. For each city,
we use up to 39 cameras. The cameras are placed with viewpoints that have three levels
of difficulty for the MOT scenarios. Namely, (a) Easy view: which results in no occlu-
sion of the vehicles. (b) Ordinary view: that allows temporary occlusions but forbids
continuous occlusions. (¢) Hard view: that allows continuous occlusions in the videos.
Collectively, we provide 90 scenes in the dataset that result in 3,510 videos. There
are 14.04M frames of size 1920 x 1080 in the OMOT dataset that are recorded in the
‘XDIV’ format to provide high-quality videos with acceptable memory size.

C.1 Comparison to the existing MOT datasets

To put the proposed dataset into a better perspective, we also compare it to the exist-
ing popular datasets for the MOT task. In Table 3, we provide the comparison. Our
dataset comprises 3,510 videos, 14M+ frames, 250K tracks, and 110M+ bounding
boxes, whose frame number is almost 1,200 times larger than MOT17. The number
of provided tracks and boxes are 210 and 30 times larger than UA-DETRAC. Besides,
for the proposed Omni-MOT, all the boxes and tracks are automatically generated by
the enumerator that avoids any labeling error. In the table, we include nuScenes [2] and
Waymo [9] for the sake of comprehensive benchmarking. Nevertheless, these datasets
are related to self-driving vehicles that are captured with moving cameras.
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Table 3. Comparison with other popular MOT datasets. Columns “Frames* is the number of
frames (1k = 103, 1M = 10°), “Tracks* is the number of tracks and “Boxes* is the number of
bounding boxes. ”-” indicates that no information is provided.

Dataset Training Testing

Frames Tracks Boxes Frames Tracks Boxes
PETS [4] - - - 1.5k 106 18.5k
KITTI [5] 8k - - 11k - -
TUD [1] 610 - 610 451 31 2.6k
MOTI5 [6] 5.5k 500 39.9k 5.8k 721 61k
MOT17 [8] 5.3k 467 110k 5.9k 742 182k
UA-DETRAC [10] 84k 5.9k 578k 56k 2.3k 632k
nuScenes [2] 40k - 1.4M - - -
Waymo [9] 154k - 8.6M 23k - 1.3M

Omni-MOT(Ours) 8775k 134.2k 68.88M 5265k 122.37k 41.36M

Table 4. Data format of the ground truth file provided with the dataset.

Index Name Description

0 frame index 0-based frame index

1 vehicle id Unique ID of vehicle (0-based)

2 bbox Represents left, top, right, and bottom of the vehicle bounding box
6 3d bbox The 8 points of the vehicle’s 3D bounding boxes in image coordinates
14 vehicle position Vehicle’s center in the world coordinates

17 integrity Integrity of the vehicle. Binary value in (0, 1)

18 velocity vector Velocity vector in the world coordinates
21 acceleration vector  Acceleration vector in the world coordinates
24 wheel number Number of vehicle wheels
25 camera view size The width and the height of the camera view
27 camera FOV The field of view of the camera
28 camera position Camera position in the world coordinates
31 camera rotation Camera rotation in the world coordinates
34 weather condition =~ Weather condition in the current frame.

C.2 On the ground-truth annotations

The ground-truth annotations is generated by the CARLA simulator, which allows us
to capture comprehensive information on the target objects with high precision. Hence,
besides being accurate, we target the ground truth data for not only multiple object
tracking, but also other extended applications such as 3D estimation, velocity estima-
tion, camera calibration, etc. To this end, we bring as much information as we can into
the ground truth file. Table 4 gives details of the format of the ground truth files (avail-
able through the dataset download link provided above). The “3D bbox” at columns
6-13 contains values describing point coordinates. These points are the image projec-
tion of a minimum 3D cuboid envelope of the vehicle in the world coordinates. The
column “bbox” is calculated by the minimum rectangle envelope of these points. On
index 17, “integrity” encodes the visibility of vehicles. A clear description of the re-
maining entities is provided in the table.
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(a) Anchor Boxes (b) Anchor Tubes

Fig. 2. Illustration of the anchor tubes. The anchor boxes in (a) are a set of boxes in the 2D coordi-
nates. The SSD model predicts the scaling and translation parameters relative to each anchor box.
Extended from anchor boxes, the anchor tubes in (b) are a set of cuboids in the 3D coordinate.
Each anchor tube consists of Ny boxes. Our proposed network predicts the tube shape offset
parameters along the temporal dimension, the confidence for each object class, and the visibility
of each box in the tube.

D Anchor Tubes

The proposed notion of anchor tube is an extension of the concept of anchor boxes in
SSD [7]. In our technique, the anchor tubes are pre-defined and distributed at every
position of the selected feature maps. An anchor tube is essentially a set of anchor
boxes that share the same location in multiple frames along the temporal dimension,
as illustrated in Fig. 2. The Fig. 2(a) depicts three pre-defined anchor boxes at each
position of a 3-D feature map. The Fig. 2(b) illustrates a pre-defined anchor tube at a
position of a 4-D feature map. Similar to the main goal of the anchor boxes, the anchor
tubes format the network output dimensions. Consequently, our network is designed to
predict the tube shape offset parameters along the temporal dimension, the confidence
for each object class, and the visibility of each box in the tube.

E Further Details on Motion Model

The proposed DMM-Net outputs encoded anchor tubes directly. However, it entails
predicting numerous parameters (unless a compact encoding for the tubes is used). For
instance, assume that an anchor tube contains 16 boxes. In this case, the network would
need to output 16x4 scalar values to describe the tube. To limit the output parameters,
we introduce the motion function to describe these boxes in an encoded anchor tube. In
our experiments, we use the quadratic function that only needs 3x4 motion parameters
to describe an encoded anchor tube. The Eq. (1) below states the relationship between
the motion parameters and the ground truth tracks.

b;—l’)t = aﬁt exp(p11t2 + plgt —|— P13 —|— Aw)

b?,t = G,Zt exp(p21t2 =+ p22t + P23 + Ah)
bi% = pa1a,t* + paoal’t + pazal’, + aff + A
b = P41a?,tt2 + P4za§ftt + P43aﬁt +a + A%,

ey
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Table 5. Further results on Omni-MOT with Medium and Hard camera views and Cloudy weather
conditions: The symbol 1 indicates higher values are better, and | implies lower values are fa-
vored.

Type View Camera IDFI{ IDPT IDR{ Rellf Prenf GTT MT{PT{ ML) FP| FN| IDs| FM| MOTAT MOTP{
Hard Camera_l 35.8% 41.8% 31.3% 55.8% 74.6% 116 9 34 73 3359 7801 78 184 36.3% 73.2%
Test  Hard Camera_12 32.0% 38.6% 27.3% 48.0% 67.7% 136 1 38 97 2948 6704 113 188 242% 70.5%
Ordinary Camera 9 47.7% 51.1% 44.7% 68.5% 78.3% 61 16 32 13 2398 3986 42 150 492% 73.5%
Hard Camera 0 44.5% 48.2% 414% 63.1% 74.1% 137 17 36 84 2979 4865 66 155 40.9% 75.8%
Train  Hard Camera_l 30.7% 36.8% 26.3% 49.7% 69.7% 148 5 38 105 3236 7537 117 202 27.4% 73.2%
Ordinary Camera_5 68.9% 70.9% 66.9% 81.5% 86.3% 94 32 40 22 3443 4957 62 222 68.3% 81.1%
Average] - [47.0% 52.0% 42.8% 63.5% 77.3% 69280 218 394 1836335850 478 1101 444% 76.1%

where (af?, afz, agi’y, aﬁt) is the pre-defined box (center x, center y, width, height) of
i*" anchor tube at ¢t frame, (b¢%, b5, bl*,, bl",) is the box of i*" ground truth track at ¢*"
frame, {p11, - - , pa3} represents the motion ’parameters of the i encoded anchor tube,
and (A", A%, AW, AM) is the localization error of our network output. From Eq. (1),
we can see that the box center (b5, bf%) of the ground truth track is a quadratic function
of time, while (b}’,, bf ,) is more a complicated function. The motion parameters are able
to successfully model object motion for short time slots to generate effective tracklets.

F Further Quantitative Results

To better evaluate our technique and putting the values reported in the paper into a bet-
ter perspective, we provide further results of DMM-Net on two additional viewpoints
Omni-MOT. These results are reported in Table 5. The experiments are conducted for
cloudy weather conditions. The selected scenes are from Town 05 (with 230 vehicles)
that are indexed 1, 9, and 12 in the dataset, where scene-1 and scene-12 are with hard
camera view, and scene-9 is with ordinary camera view. Similar to the experiments in
the paper, we train the network for 22 epochs and use the same evaluation matrices
as used in the paper. The results show good performance of DMM-Net on the real-
istic dataset with accurate ground-truth. For these experiments, we observed that our
network was often able to track vehicles that are fully occluded. This is a direct ben-
efit of using motion modeling for tracking. On the flip side, we also observed a slight
drift of the bounding boxes for stationary objects due to the amplification of motion
caused by noisy detection. Nevertheless, this problem was never observed to cause crit-
ical problems. These observations can be verified in the videos provided on the URL
links above.
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