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Abstract. Many point cloud segmentation methods rely on transfer-
ring irregular points into a voxel-based regular representation. Although
voxel-based convolutions are useful for feature aggregation, they produce
ambiguous or wrong predictions if a voxel contains points from differen-
t classes. Other approaches (such as PointNets and point-wise convo-
lutions) can take irregular points for feature learning. But their high
memory and computational costs (such as for neighborhood search and
ball-querying) limit their ability and accuracy for large-scale point cloud
processing. To address these issues, we propose a deep fusion network ar-
chitecture (FusionNet) with a unique voxel-based “mini-PointNet” point
cloud representation and a new feature aggregation module (fusion mod-
ule) for large-scale 3D semantic segmentation. Our FusionNet can learn
more accurate point-wise predictions when compared to voxel-based con-
volutional networks. It can realize more effective feature aggregations
with lower memory and computational complexity for large-scale point
cloud segmentation when compared to the popular point-wise convolu-
tions. Our experimental results show that FusionNet can take more than
one million points on one GPU for training to achieve state-of-the-art
accuracy on large-scale Semantic KITTI benchmark. The code will be
available at https://github.com/feihuzhang/LiDARSeg.

1 Introduction

Semantic segmentation of 3D Point cloud is widely applicable in many scenarios,
including remote sensing, AR/VR, robotics, and self-driving cars. Many deep
neural network models have been proposed for this important task.

Approaches typically rely on a voxel-based regular representation that con-
verts unordered points to regular 3D voxel/grids before using 3D/2D convolu-
tions for feature learning [11, 23, 29, 36, 36, 43, 54, 54]. Inspired by the success
in image-based segmentation, these volumetric networks can be efficiently de-
signed and trained for semantic segmentation of 3D point clouds, using regu-
lar convolutions which have been shown useful for coarse-grain feature aggre-
gation/learning [3, 7, 61]. However, they can only give voxel-level predictions.
Moreover, their voxelization process transfers many raw points to one single
voxel that will produce ambiguous or wrong predictions at object borders when
voxels consist of points from different classes (as illustrated in Fig. 1(c)).

When compared to regular convolution operations, PointNets [35, 37] can
take irregular points for feature learning. However, the Multi-Layer-Perceptron
(MLP) [35] in PointNets keeps only the most significant activation and may
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(e) Ground Truth

(d) Our FusionNet

(c) Sparse Conv [3]

(b) PointConv [53]

(a) PointNet++ [37]

Fig. 1: Problem illustrations with large-scale point clouds (Semantic KITTI [2]). The L-
iDAR frame contains more than 120K points in a large 3D space of 160m×160m×20m.
Results are projected into 2D cylindrical images for visual comparisons. Top rows (a)
and (b): State-of-the-art PointNet++ [37] and point-wise convolutions [53] fail in large
objects/areas (e.g . sidewalk, car) due to insufficient feature propagations/aggregations
for large-scale point clouds. Third row (c): State-of-the-art sparse convolutions [3] pre-
dict wrong labels at the border between different classes due to their ambiguous and
coarse voxel-level learning. Fourth row (d): Our FusionNet gives accurate segmentation
labels for the large-scale point cloud. Last row (e): ground truth.

lose some useful detailed information for segmentation. Also, these models are
limited for training deep and robust networks for large-scale point clouds (Fig.
1(a)) because they have high memory and computational complexity in their
neighborhood search, sampling, and ball-querying operations [35,37,50,57].

There is also plenty of work on point-based convolutions that explores the
idea of convolutions directly on irregular points [8,25,26,46,47,55]. They learn to
approximate a weight function or interpolate convolutional weights [10,25,28,32,
50,53,55]. Compared to volumetric convolutions that can directly index a kernel
with fixed relative positions of the neighborhoods, the positions of neighbors
become unpredictable in these point-wise convolutions as the points are scattered
irregularly. Hence, the kernel for neighboring points must be calculated on the fly.
The additional memory costs and matrix multiplications will limit the training of
effective networks for large-scale point clouds and may produce wrong predictions
in some objects due to insufficient feature aggregations (Fig. 1(b)).

To address the challenges of designing effective network architectures for
accurate point-wise segmentation of large-scale point clouds, we develop a deep
fusion network architecture with a unique voxel-based “mini-PointNet” structure
for point cloud representation and a novel fusion module (Fig. 2) for feature
aggregation. The proposed FusionNet realizes both the voxel aggregation and the
fine-grain point-wise feature learning. It inherits all the advantages (in terms of
effectiveness and efficiency) of volumetric convolutional networks (e.g ., 3D UNet
[41]) while being able to learn point-wise features for accurate label predictions.

FusionNet possesses many advantages over existing models in large-scale
point cloud segmentation:

1) When compared to existing voxel networks [3, 7, 61], FusionNet can predict
point-wise labels and avoid those ambiguous/wrong predictions when a voxel
has points from different classes.
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2) When compared to the popular PointNets [35, 37, 50, 57] and point-based
convolutions [25,53], FusionNet has more effective feature aggregation oper-
ations (including the efficient neighborhood-voxel aggregations and the fine-
grain inner-voxel point-level aggregations). These operations help produce
better accuracy for large-scale point cloud segmentation.

3) FusionNet takes full advantage of the sparsity property to reduce its memory
footprint. For instance, it can take more than one million points in training
and use only one GPU to achieve state-of-the-art accuracy.

With an effective feature aggregation module and lower memory and compu-
tation costs, we can train our FusionNet to learn more effective deep features
for accurate large-scale point cloud segmentation (as illustrated in Fig. 1d). In
our experiments, FusionNet achieves state-of-the-art performance on large-scale
point cloud datasets. Especially, it outperforms state-of-the-art PointNets [37]
(by 40%), point-wise convolutions [53] (by 10%) and sparse CNN [3] (by 7%) in
mean IoU evaluations on the challenging Semantic KITTI benchmark.

2 Related Work

Existing approaches for 3D point cloud segmentation can be roughly categorized
into two types: regular voxel-based networks and irregular point-based networks.

2.1 Voxel-based Networks

There is substantial previous work on 3D CNN to convert point clouds to 2D or
3D volumetric grids/voxels (or similar slices/lattices) [29,36,54,61]. For example,
3D point clouds or shapes have been projected into several 2D image-like grids
with 2D convolutions for shape classification and retrieval tasks [36, 43]. Other
studies [11, 23, 29, 36, 54] voxelize point clouds into 3D volumetric voxels and
apply 3D convolution networks for point cloud processing and understanding.

Among these studies, VV-Net [30] uses a kernel-based interpolated varia-
tional auto encoder (VAE) on regular voxel grids; instance segmentation models
have been proposed on dense 3D voxels/2D grids [19,61]; panoptic labels can be
predicted using a spatially hashed volumetric map [31]; high-resolution RGB in-
puts have been leveraged by associating 2D images with the volumetric grid [11];
efficient feature aggregations have been explored in PVCNN [27] through a voxel-
based regular CNN in low resolution to avoid random memory accesses.

To extend voxel-based networks to high-resolution scene segmentation tasks
[2,4], a set of unbalanced octrees have been used to improve the resolution [40].
Sparse Submanifold CNN [3, 7] computes the convolutions only at activated
points to design high-resolution volumetric inputs. However, higher resolution
inputs mean more sparse inputs, making convolutional layers less efficient for
feature aggregation. Also, it will increase memory and computation costs.

2.2 Point-based Networks

Recent work takes raw points as input for feature learning and label predictions.
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PointNets: These methods aggregate features from different points by shared
multi-layer perceptrons (MLP) [35]. PointNet++ improves its network by adding
a hierarchical structure [37]. Wang et al . associate instances and semantics seg-
mentation [49] with feature encoder of stacked PointNet layers. He et al . learn
deep geodesic-aware representations for PointNet/PointNet++ [9]. The issue
with the MLP module is that they keep only the most significant activation on
features, leading to the loss of some useful detailed information for segmentation.

Point-wise Convolutions: Other recent work explores the extension of con-
volutions on irregular and unordered point-cloud inputs [8, 25,26,46,47,55].

For unordered points, PointCNN performs convolutions on transformed points
[25]. Zhang et al . use statistics from concentric spherical shells to resolve point-
order ambiguities [62]. FeaStNet generalizes conventional convolution layers by
adding a soft-assignment matrix [47]. KPConv learns flexible and deformable
point convolutions [46]. Point-wise Conv [13,53], GeoCNN [20] and annular con-
volution [18] query the nearest neighbors for convolutions with different kernels.

Some work explores contiguous convolutions [32,50,53] for point clouds. For
instance, PointConv [53] treats convolution kernels as nonlinear functions of the
coordinates and uses (MLP) modules to learn continuous weight functions for
point-wise convolutions. Hermosilla et al . develop Monte Carlo convolutions for
learning non-uniformly sampled point clouds [10]. Similarly, Mao et al . propose
to interpolate discrete convolutional weights for convolutions on points [28].

Other work explores the ideas of convolutions on unique surfaces. Rao et al .
map 3D points onto a discretized sphere for convolution definition [38]. Huang
et al . utilize a 4-rotational symmetric field to define a domain for convolution on
a surface [14]. Tangent convolution projects local surface geometry on a tangent
plane around every point, producing planar convolution-able tangent images [44].

In the original regular 2D/3D convolutions, the relative positions of the neigh-
borhoods are fixed, and the convolutional kernel can be directly indexed. How-
ever, for point-based convolutions, the points are irregularly scattered over a
3D space, making the relative positions of neighbors unpredictable. Hence, the
kernel for each neighboring point must be calculated on the fly using additional
matrix multiplications.

There are also graph or tree-based convolutions for point clouds, including
local spectral graph convolutions [48], graph attention convolutions [49], regu-
larized graph CNN (RGCNN) [45], and octree guided CNN with spherical ker-
nels [24]. The unique feature of them is that they often rely on a graph construc-
tion and a learned kernel function for convolutions on unordered points. These
are realized by additional modules/layers with extra computations and memory
overhead which limit their abilities for designing effective deep architectures in
large-scale point cloud processing.

Other Point Networks: There are also special networks developed for various
applications to directly take raw points as input for sampling [58, 60], seman-
tic [17, 39, 51, 59, 63, 64], and instance segmentation [33, 57]. Some employ new
and special data structures for point cloud processing, including 3D point capsule
encoder and decoder networks [65], over segmentation on graph structure [21],
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Fig. 2: Illustartion of the FusionNet module. (a) Neighborhood aggregation, including
i) point-level feature aggregation by the proposed Voxel-MLP and the ii) voxel-level
feature aggregation with sparse convolutions. (b) Inner-voxel aggregation of each voxel
in a feedback fashion. Features of all the points in the “mini-PointNet” are fused into
voxel-level features by average-pooling and concatenation. The voxel-level features are
then fed back to each point (with concatenation and refinement).

basis point sets [34], multi-resolution tree-structured networks [5], bilateral con-
volutions on a sparse lattice of the point cloud [42], recurrent neural networks
(RNN) on slices of a point cloud [15], and the superpoint graph-based semantic
segmentation [22].

3 FusionNet

Many previous models are either limited by the ambiguous voxel-level predic-
tions [7,29,61] or have insufficient feature aggregations that use high memory or
computational costs [25,27,37,61] in large-scale point-cloud segmentation. This
section describes our deep FusionNet model that can learn accurate point-wise
features and realize more effective and memory-efficient feature aggregations in
large-scale processing. It utilizes a unique voxel-based “mini-PointNet” for sparse
representation and the novel FusionNet modules for feature aggregations.

Fig. 2 illustrates the FusionNet module that includes both neighborhood
voxel aggregation (Fig. 2(a)) for voxel-level learning and inner-voxel aggre-
gation for fine-grain point-level learning (Fig. 2(b)). The rest of this section is
organized as follows. Sec. 3.1 describes the unique point cloud representation.
Sec. 3.2 and 3.3 present the design of the FusionNet module (Fig. 2). Sec. 3.4
shows the up- and down-sampling layers. Finally, Sec. 3.5 describes the archi-
tecture and its sparse implementation.

3.1 Point Cloud Representation

Our point cloud representation is based on a unique voxel-based “mini-PointNet”
that has two steps: voxelization and “mini-PointNet” construction.

Voxelization: Given point cloud P in a range of Lx × Ly × Lz as input,
we transfer the irregular points into regular 3D voxels with a resolution of
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H ×W ×D. The resolution is controlled by the voxel parameter s = (sx, sy, sz)
(length/width/height of the each voxel). Here, (H,W,D) = (Lx/sx, Ly/sy, Lz/sz).

Mini-PointNet: Each point p can be represented as p = {(px, py, pz), Fp} with
(px, py, pz) as its 3D space location and Fp as its point features (e.g . color, inten-
sity). Since many voxels may have more than one point, voxel V with m points
can be represented as a “mini-PointNet”: V = {(Vx, Vy, Vz), FV , {p1, p2, ...pm}},
where (Vx, Vy, Vz) is the coordinate of the voxel that containsm points {p1, p2...pm},
and FV is the voxel features that can be learned from those points in each voxel.

The voxel-based “mini-PointNets” are stored in sparse data structures to
reduce their memory requirement. Empty or invalid voxels are not be stored or
processed during feature aggregations.

After transferring the point cloud into the voxel-based “mini-PointNet” rep-
resentation, our FusionNets use the proposed feature aggregation modules to
learn deep feature representation for segmentation.

3.2 Neighborhood Aggregations

As illustrated in Fig. 2(a), there are two types of feature aggregations can prop-
agate information from neighborhood voxels to the current voxel: voxel feature
aggregation and point feature aggregation.

Voxel Feature Aggregation: We utilize regular convolutions for voxel fea-
ture aggregation, as the convolutional layer has been proven to be successful in
2D-image semantic segmentation. The knowledge can be easily transferred to
the design and training of deep network models for 3D point clouds. Regular
voxel-based convolutions are also more efficient than many existing point-wise
convolution models [10,25,28,32,50,53,55]. These models requires extra memory
and computations to learn or interpolate the weight kernels of the point convo-
lutions, as well as to locate the neighborhood points from irregular point cloud
by KNN search or ball querying.

To reduce the memory footprint and to develop deep neural networks for
the segmentation of large-scale point clouds, we use the Sparse Submanifold
Convolution layer [3, 7] for voxel-based aggregation to compute the convolution
only at activated voxels (as illustrated in step ii) of Fig. 2(a)). This approach
helps minimize the memory needed.

Point Feature Aggregation: Fig. 3(b) presents a more efficient voxel-based
multi-layer perceptron (Voxel-MLP) for neighborhood feature aggregation.

For the m points {p1, p2, ...pm} in the current voxel V , their point feature
can be aggregated from all the points in the neighborhood voxels N(V ) (e.g . 27
neighborhood voxels if the kernel size is 3) by our Voxel-MLP as follows:

mlp(p1, p2, ...pm) = γ

(
max

pk∈N(V )
{h(pk)} , {p1, p2, ...pm}

)
. (1)

The implementation details are presented in Algorithm 1. The response of h can
be interpreted as the spatial encoding [35] of a point. The feature aggregation γ
can be realized by concatenations and fully connected layers.
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Fig. 3: (a) The original MLP module widely used in PointNets [35, 37] and point-
wise convolutions [13,53]. It relies on neighborhood search/ball querying for each pixel
with high time complexity (O(n2) or O(n log(n)) with k-d tree). (b) Our voxel-level
MLP (e.g . kernel size = 3) directly aggregates features from all the points in the
neighborhood voxels to points in the target voxel, allowing neighborhoods to be easily
visited in regular voxels. The Voxel-MLP has a lower O(n) time complexity.

Algorithm 1: Implementation of the Voxel-MLP

for each voxel V : do
for all points p (p ∈ N(V )) in neighboor voxels N(V ) of V do

Spatial encoding:
i) spatial coordinate shifts ∆p← (px, py, pz)− (Vx, Vy, Vz);
ii) concatenation and FC layer: F′

p ← fc(cat{Fp,∆p});
Point feature max-pooling: Fmax ← max{F′

p, p ∈ N(V )};
end
for each point p in current voxel V do

Concatenate F′
p and Fmax: F

′′
p ← cat(F′

p,Fmax);

Refinement with point-wise fully-connected layer: FA
p ← fc(F′′

p);

end

end

Result: Aggregated point feature FA
p (p ∈ V )

Our Voxel-MLP (Fig. 3(b)) is similar to the original MLP module (Fig. 3(a))
widely used in PointNets [35,37] and point-wise convolutions [13,53] for segmen-
tation. However, the ball querying, sampling, or KNN neighborhood search in
these existing models need O(n2) time complexity for points selection in irreg-
ular point clouds. Although k-d trees can be used to accelerate the search with
O(n log(n)) complexity, building a k-d tree for each layer will also cost extra
memory and computations. In contrast, in our Voxel-MLP, all the neighborhood
points can be directly visited more efficiently from neighborhood voxels (by hash
mapping with O(1) time complexity for each point–in total O(n)).

The receptive field of the Voxel-MLP is controlled by the kernel size that is
the same as our convolutional aggregation. For example, when setting the kernel
size to 3, neighborhood points will be selected from 27 neighborhood voxels.

3.3 Inner-voxel Aggregation

Voxel-level aggregations only learn coarse-grain voxel features that usually pro-
duce ambiguous/wrong predictions at the object borders when voxels consist of
points from different classes. To address this issue, we design the inner-voxel
aggregation for fine-grain point-level feature aggregations and label predictions.
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Fig. 2(b) illustrates the inner-voxel aggregation realized by a feedback de-
sign of the feature fusion. The point-wise feature Fp and voxel feature FV are
from the outputs of the neighborhood aggregation block (Fig. 2(a)). They are
sent to the inner-voxel block for fusion and aggregation. We first use point-
wise average pooling to achieve the pooled feature vector from m points in the
“mini-PointNet.” The feature vector is then fused into the voxel feature FV by
concatenation. After refinement by one 1×1 convolution/FC layer, the aggregat-
ed voxel-level features FA

V are then fed back to each point in the “mini-PointNet”
by concatenations. Finally, a point-wise fully connected layer is employed to get
the aggregated point feature FA

p .
Namely, for each valid voxel V with m points ({p1, pk...pm} ∈ V ) in the

“mini-PointNet”, the inner-voxel aggregation can be represented as:

FA
V = γ1

(
avg
p∈V

{h(Fp, p))} , FV

)
FA
p = γ2

(
h(Fp, p), F

A
V

)
, p ∈ V.

(2)

Where the response of h can be interpreted as the spatial encoding of the point
p. It can be learned by fully-connected layers with the point feature Fp and its
spatial shifts to the voxel center (px − Vx, py − Vy, pz − Vz) as inputs (which is
similar to [35] and the Voxel-MLP). γ1 and γ2 are the feature fusion functions
which are realized by concatenations and fully-connected layer.

After the circulation of the inner-voxel aggregation, the voxel-level features
and the point features are deeply fused. They are then sent to the next FusionNet
module/layer for further aggregations.

3.4 Down/Up-sampling

Down- and up-sampling are essential in neural networks for segmentation since
they help capture pyramidal features in different resolutions and receptive fields.

For regular voxels, we use convolutions and transposed convolutions with
strides (e.g . 2) for down- and up-sampling. These are similar to existing image
segmentation models (e.g . UNet [41]) that have been found to be effective.

Fig. 4 illustrates our point feature down-sampling that strictly follows voxel-
level sampling. After voxel-level down-sampling, the size of a voxel is expanded
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Fig. 5: Illustration of the sparse data structure and the voxel/point visiting by hash
mapping.

to get a lower-resolution representation. To realize point-level down-sampling,
we reduce the number of points in each voxel by re-sampling to get the new
“mini-PointNet”. For example, we reduce the number of points of each voxel to
half while ensuring at least one valid point to avoid new empty voxels (Fig.4(c)).

When compared to the slow iterative farthest-sampling strategy [37] (which
sometimes takes 1–2 seconds for large-scale point cloud), the point sampling
in FusionNet is realized in each voxel independently and can be computed in
parallel by GPU in super fast speed (10–100 times faster than the farthest-
sampling strategy). Moreover, voxel-based sampling guarantees each valid voxel
to have at least one point and avoids the appearance of new empty voxels. This
is especially important for sparse point cloud or regions (such as LiDAR point
cloud where points are very sparse in the distance). Our voxel-based down-
sampling can keep the consistency between point-level and voxel-level networks
that cannot be realized by random sampling and the farthest-sampling strategy.

For point up-sampling, we use point interpolations proposed in PointNet [35]
to recover the high-resolution point representations.

3.5 Architecture and Sparse Implementation

Architecture: ∗We use the 3D UNet backbone which is the same as that
in [3, 7]. At each pyramid level, one FusionNet module is employed to replace
the convolutional layer. Both point-level and voxel-level features are densely
connected to the previous layers by concatenations.

Sparse Implementation: Fig. 5 illustrates the storage of the points and voxels
in a sparse data structure. Each voxel and its points can be visited quickly by
hash mapping. The coordinates (including the batch ID) of the voxels are used
as the keys to the hash map, and a querying coordinate directly points to the
location of each voxel and the “mini-PointNet”.

When compared to dense regular convolution nets [46, 61], FusionNet takes
full advantage of sparsity to minimize its memory requirement. It differs from
PointNets [35,37] and point-wise convolutional nets [13,53] that need high com-
putational complexity for neighborhood search. As FusionNet utilizes a regular-
voxel representation and hash mapping to realize the O(1) point/voxel indexing,
it is more suitable for large-scale point cloud segmentation tasks.

∗Architecture details are in the supplementary materials: www.feihuzhang.com

www.feihuzhang.com
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4 Experiments

In our experiments, we train our model with conventional cross-entropy loss for
40k iterations on one GPU.We use Momentum SGD with the Poly scheduler to
train networks from learning rate 1e-1 and apply data augmentation including
rotation around the gravity axis, scaling, spatial translation and spatial elastic
distortion. For evaluations, we use the standard mean Intersection over Union
(mIoU) and mean Accuracy (mAcc) as metrics following the previous works.

4.1 Datasets

We use three point cloud datasets for evaluations. Two of them are collected
from the indoor scenes, and the rest one is from the large-scale driving scenes.
S3DIS: Stanford 3D Indoor Spaces (S3DIS) dataset [1] contains scans of six
floors of three buildings. We use the Fold #1 split following many previous
works.
ScanNet: The ScanNet [4] 3D semantic segmentation benchmark consists of 3D
reconstructions of real rooms which has 1.5k rooms and 20 classes for semantic
segmentation. Each point cloud scan contains 7–550k points.
Semantic KITTI: The Semantic KITTI dataset is a new large-scale LiDAR
point cloud dataset in driving scenes. It has 22 sequences with 19 valid classes,
and each scan contains 10–13k points in a large space of 160m×160m×20m. We
use Sequences 0–7 and 9–10 as the training set (in total 19k frames), Sequence 8
(4k frames) as the validation set, and the remaining 11 sequences (20k frames)
as the test set. Different from other point cloud datasets, LiDAR points are
distributed irregularly in a large 3D space. There are many small objects with
only a few points and the points are very sparse in the distance. All these make
it challenging for semantic segmentation of the large-scale LiDAR point clouds.

4.2 Ablation Study

We test the performance of the models with different feature aggregation set-
tings: 1) only using the regular convolutional aggregation like that in [3, 7]; 2)
with both the convolutional voxel-feature aggregation and the neighborhood-
voxel point feature aggregation; and 3) with all three types of feature aggrega-
tions (our FusionNet).

Table 1 shows that only with the regular voxel-based convolutional aggrega-
tion, it will become a sparse convolutional nets [3, 7] and achieves 54.8% in the
mean IoU evaluation. By introducing the neighborhood point feature aggrega-
tion, the results can be improved by 4%. On the contrary, the FusionNet will
degenerate to pointnets [37] if we only use the point feature aggregation. Finally,
the full settings of the FusionNet get the best mean IoU of 63.7%.

4.3 Benchmark Evaluations

1) Semantic KITTI: We use a voxel size of 5cm for building our voxel-
based “mini-PointNet” representation. Each valid “mini-PointNet” contains 1–
60 points. The model is trained on the training set, and the results are submitted
to the online benchmark for evaluation using the 20k test set.
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Table 1: Ablation study on large-scale Semantic KITTI dataset.

Neighborhood-Voxel Aggregation
Inner-voxel Aggregation Mean Accuracy (%) Mean IoU

Voxel Feature Agg Point Feature Agg
√

89.6 54.8√ √
86.2 41.6√ √
90.7 58.9√ √ √
91.8 63.7

Table 2: Single scan results (19 classes) on Semantic KITTI benchmarks. All models
are trained on the training set and evaluated on the online benchmark.
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PointNet [35] 14.6 - 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7
SPGraph [22] 17.4 - 45.0 28.5 0.6 0.6 64.3 49.3 0.1 0.2 0.2 0.8 48.9 27.2 24.6 0.3 2.7 0.1 20.8 15.9 0.8
SPLATNet [42] 18.4 - 64.6 39.1 0.4 0.0 58.3 58.2 0.0 0.0 0.0 0.0 71.1 9.9 19.3 0.0 0.0 0.0 23.1 5.6 0.0
PointNet++ [37] 20.1 - 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9
SqzeSegV2 [52] 39.7 - 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 36.3
TanConv [44] 40.9 - 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5
PointASNL [56] 46.8 - 87.4 74.3 24.3 1.8 83.1 87.9 39.0 0.0 25.1 29.2 84.1 52.2 70.6 34.2 57.6 0.0 43.9 57.8 36.9
DarkNet53 [4] 49.9 87,8 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2
RandLANet [12] 50.3 85.9 88.0 67.9 56.9 15.5 81.1 94.0 42.7 19.8 21.4 38.7 78.3 60.3 59.0 47.5 48.8 4.6 49.7 44.2 38.1
PointConv [53] 51.2 87.1 88.9 68.4 58.9 19.7 84.6 93.1 37.8 20.7 22.9 38.1 79.9 62.8 60.7 46.2 39.1 5.5 52.0 48.1 44.7
MinkNet42 [3] 54.3 89.5 91.1 69.7 63.8 29.3 92.7 94.3 26.1 23.1 26.2 36.7 83.7 68.4 64.7 43.1 36.4 7.9 57.1 57.3 60.1
FusionNet 61.3 91.2 91.8 77.1 68.8 30.8 92.5 95.3 41.8 47.5 37.7 34.5 84.5 69.8 68.5 59.5 56.8 11.9 69.4 60.4 66.5

The results are presented in Table 2 and visualized in Fig. 6 for comparisons.
Our FusionNet can achieve a new state-of-the-art performance in both the mean
IoU and the accuracy evaluations. It outperforms the PointNet++ [37] (by 40%),
state-of-the-art point-wise convolutions [53] (by 10%) and the sparse convolution
[3] (by 7%) in mean IoU evaluations. Moreover, It achieves the best IoUs in 14
out of the 19 classes. For many small objects (e.g . person, bicycle, motorcycle),
it outperforms other existing models by at least 10–25%.

FusionNet has many advantages for the large-scale LiDAR point cloud seg-
mentation. Compared to state-of-the-art voxel-based networks [3, 7], FusionNet
can predict point-wise labels and avoid those ambiguous/wrong predictions at
object boundaries when a voxel has points from different classes. When com-
pared to state-of-the-art point-wise convolutions (e.g . [50]), our FusionNet gets
much better segmentation accuracy in the large-scale LiDAR dataset. This is
because our FusionNet is realized with more effective feature aggregation op-
erations (including the effective voxel-level neighborhood aggregations and the
fine-grain inner-voxel point-level aggregations).

2) 3DSIS and ScanNet: We also evaluate our FusionNet on two indoor-
scene datasets (3DSIS [1] and ScanNet [4]). The results are presented in Table
3 and Table 4. The voxel size is set to 5cm for our voxel-based “mini-PointNet”
representation. When compared with the sparse convolutional nets [3] which use
the same resolution as input, our FusionNet model can learn fine-grain point-
wise features and give point-wise predictions. Therefore, it can get better mean
IoUs (68.8% on ScanNet benchmark and 67.2% on S3DIS test set). Also, our
FusionNet outperforms state-of-the-art point-wise convolutions (e.g . PointCNN
[25], PointConv [53]) by 2–10% in the mean IoU evaluations. This is because
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Table 3: Stanford Area 5 Test (Fold #1)
(S3DIS) [1]

Methods mIoU mAcc

PointNet [35] 41.09 48.98
SparseUNet [6] 41.72 64.62
PVConv [27] 52.3 –

TangentConv [44] 52.80 60.70
3D RNN [59] 53.40 71.30
PointCNN [25] 57.26 63.86

SuperpointGraph [22] 58.04 66.50
MinkNet32 [3] 65.35 71.71
KPConv [46] 67.1 72.8
Our FusionNet 67.2 72.3

Table 4: 3D Semantic Label Bench-
mark on ScanNet [3].

Methods mIoU

ScanNet [4] 30.6
PointNet++ [37] 33.9
TangetConv [44] 43.8
SurfaceConv [32] 44.2
MVPNet [16] 64.1
PointConv [53] 66.6
PointASNL [56] 66.6

MinkNet42 (5cm) [3] 67.9
KPConv [46] 68.4

FusionNet (5cm) 68.8

our FusionNet is realized with a more powerful feature aggregation module for
learning more effective features in the segmentation.

4.4 Analysis of the Voxel-based “Mini-PointNet”

Our FusionNet is realized with the unique voxel-based “mini-PointNet” repre-
sentation. The voxel size is the key parameter that decides the resolution of our
“mini-PointNet” representation and will influence the accuracy of the segmen-
tation results. We evaluate the performance by using different voxel sizes for
building the networks. Similar networks (PVCNN [27] and sparse convolutions
networks [3]) are used for comparisons. They use either the dense voxel repre-
sentation [27] or the sparse voxel representation [3]. Models are tested on the
Semantic KITTI validation set. We fixed the number of points to 125k for the
memory test (in the training phase).

As shown in Fig. 7, higher resolution can help get better accuracy. But,
the memory and computational costs significantly increase (almost cubically)
which is a big limitation for learning on large-scale point clouds. State-of-the-
art voxel-based convolutional nets [3, 7] require an extremely high resolution to
achieve state-of-the-art accuracy. By using the same resolution setting, our Fu-
sionNet can get far better accuracy. The FusionNet with a lower resolution (5cm)
outperforms the high-resolution (3cm) sparse convolutional network [3]. This is
benefited from our unique voxel-based “mini-PointNet” representation that can
help learn point-wise predictions with more effective feature aggregations.

4.5 Efficiency for Large-scale Point Cloud Processing

In this section, we systematically evaluate the efficiency and abilities of our Fu-
sionNet on processing real-world large-scale point clouds. The Semantic KITTI
dataset [2] is used for evaluations. We compare our FusionNet with the recent
work that can also produce point-wise predictions. For fair comparisons, we fixed
the number of points (to 120k) for each LiDAR scan during the speed and mem-
ory test. In addition, we also measure the maximum number of 3D points each
network can take in a single pass to infer per-point semantics. All experiments
are conducted on the same device (RTX TITAN GPU).
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(b) PointConv [53] (b) Sparse Conv [3]

(c) Our FusionNet (d) Ground Truth

(d) Ground Truth

(c) Our FusionNet

(b) Sparse Conv [3]

(a) PointConv [53]

Fig. 6: Visualization of the results of LiDAR point clouds. Top (a-d) are the raw point
cloud results. Bottom (a-d) are the visual comparisons by projecting the point clouds
to cylindrical images. (a) State-of-the-art point-wise convolutions [53], (b) state-of-the-
art sparse convolutions [3], (c) our FusionNet, (d) ground truths. The differences are
as illustrated by red arrows (where bicycles are predicted as other objects by [3,53]).

Due to the high memory and computational costs and the limitation of the
architecture design, many state-of-the-art point-wise segmentation models [12,
35,37,53] require re-sampling to reduce and fix the number of points in each point
cloud frame for training and testing. This need to split the point cloud. But, in
LiDAR point clouds, points are very sparse in the distance, down-sampling will
further increase the sparsity and lead to worse segmentation accuracy due to the
insufficient feature aggregation from neighborhoods.

As a comparison, our FusionNet can directly take the entire point cloud as
input for training and testing that is more flexible in real applications. As shown
in Table 5, it can take up to 2.5 million points in a single pass to infer the
point-wise segmentation which is four times as many as that of PointNet++.

5 Conclusions and Future Work

In this paper, we propose a deep fusion network architecture (FusionNet) with
a new feature aggregation module for large-scale 3D semantic segmentation.
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Fig. 7: Performance illustration with different voxel sizes. (a) The mean IoU changes
along with the voxel sizes. PVCNN [27] and sparse convolutions [3]) are used for com-
parisons. Higher resolution can help get a better mean IoU. (b) The memory consump-
tion changes along with the voxel sizes (training phase using LiDAR frame [2]). The
memory consumption significantly increases as the resolution goes up. Our FusionNet
with a lower resolution (5cm) can achieve a better mean IoU when compared to the
sparse convolutions [3] (with a high resolution of 3cm).

Table 5: Efficiency comparisons for large-scale point cloud processing.

Approach
Memory

consumption(GB)
Elapsed time
(per scan)

Max inference
points (million)

PointNet [35] 3.1 0.2 0.8
PointNet++ (MSG) [37] 4.2 2.0 0.6

PointCNN [25] 13.4 3.0 0.2
PointConv [53] 3.0 3.0 0.8

Our FusionNet 1.0 0.9 2.3

The proposed FusionNet utilizes a unique voxel-based “mini-PointNet” for point
cloud representation and learning. It can realize both the neighborhood voxel-
level feature aggregation and the fine-grain point-wise feature learning. There-
fore, FusionNet can produce more accurate point-wise predictions when com-
pared to voxel-based convolutional networks. Also, when compared to popular
point-wise convolutions, it realizes more effective feature aggregations with lower
memory and computational costs.

Currently, part of our system (the hash mapping) is implemented on the
CPU that limits the running speed. We will try the GPU hash mapping in the
future that will significantly accelerate our FusionNet for real-time applications.
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