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Abstract. Light-field cameras capture sub-views from multiple perspec-
tives simultaneously, with possibly reflectance variations that can be used
to augment material recognition in remote sensing, autonomous driving,
etc. Existing approaches for light-field based material recognition suffer
from the entanglement between angular and spatial domains, leading to
inefficient training which in turn limits their performances. In this paper,
we propose an approach that achieves decoupling of angular and spatial
information by establishing correspondences in the angular domain, then
employs regularization to enforce a rotational invariance. As opposed to
relying on the Lambertian surface assumption, we align the angular do-
main by estimating sub-pixel displacements using the Fourier transform.
The network takes sparse inputs, i.e. sub-views along particular direc-
tions, to gain structural information about the angular domain. A novel
regularization technique further improves generalization by weight shar-
ing and max-pooling among different directions. The proposed approach
outperforms any previously reported method on multiple datasets. The
accuracy gain over 2D images is improved by a factor of 1.5. Ablation
studies are conducted to demonstrate the significance of each component.

Keywords: light field, material recognition, angular registration

1 Introduction

Material recognition is a fundamental problem in vision and plays an important
role in many industrial applications. For example, drones are used in topography
[21] for recognizing ground surfaces, and mowers can operate autonomously by
inspecting surrounding surface materials. As a result, material recognition has
been an active area of research, which is inherently challenging because the
appearances of materials depend on various factors such as shape, lighting and
exhibit strong visual variations. A variety of clues, such as texture, reflectance
and scene context, need be taken into account to achieve good performance.

The recent introduction of commercially available and compact light-field
cameras (e.g. Lytro Illum) provides an efficient way to improve image based
recognition, making it possible to significantly boost the performance of the



2 B. Guo et al.

original

light-field

center

sub-view

spatial feature extractor

(ConvNet)

ConvNet

angular feature extractor

representative

selection

angular

registration

sparse sub-views

grouped by directions

angular filter sub-networks 

directional pooling

fully-connected+softmax

spatial information
angular information

Fig. 1. Overview of the proposed framework. The light-field is represented by a spatial
component (up), as well as an angular component (down) which is cropped to avoid
occlusion and to facilitate alignment. Angular features are extracted from sparse sub-
views grouped by perspective directions; all directions share filter weights and are
aggregated via max-pooling. Spatial and angular features are combined at the end to
produce class probabilities

above-mentioned applications with a simple optical upgrade. These cameras can
capture sub-views from multiple viewpoints on a regular grid (i.e. the angular
domain) in a single shot. Such rich information can be used to obtain critical cues
such as depth information and intensity variation in different perspectives, which
are not directly available from 2D images. Existing research have investigated
using light-field cameras for recognizing not only materials [25], but also objects
[14] and reflectance [13]. They confirmed that significant accuracy boost can be
achieved by using light-field images over 2D images.

Several key aspects of light-field images were not addressed by existing meth-
ods. First, due to light-field camera optics, the angular domain is intertwined
with the spatial domain to express reflectance variation. As a result, filters di-
rectly applied to each domain separately cannot disentangle reflectance variation
efficiently. Moreover, occlusion in the scene can cause discontinuity of informa-
tion distribution and misalignment, where same positions in sub-views corre-
spond to different objects and materials. Third, the angular domain is highly
redundant as sub-views exhibit strong similarities. Without regularization, it is
hard to learn structural information and can easily lead to overfitting.

We propose a novel framework to tackle these problems. An overview of our
methods is shown in Fig. 1. Our contributions are summarized below:

– Sub-views are aligned by estimating sub-pixel displacements using their
Fourier transforms. A simple algorithm is deduced by leveraging angular
domain geometry. This alignment procedure disentangles reflectance varia-
tion in angular domain from spatial domain.
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– A representative region is selected based on inferred depth to avoid occlusion
and to ease alignment. The spatial information is preserved by a separate,
full sub-view. Two expert feature extractors (i.e. spatial and angular) are
combined for joint classification.

– We employ regularization in angular domain by (1) using sparse sub-views
grouped by perspective directions, so that the network is aware of the angu-
lar domain structure; (2) sharing parameters in all directions and enforcing
rotational invariance with a novel directional pooling layer.

2 Related Work

Material recognition. Two distinct approaches have been taken in the liter-
ature for image based material recognition. One relies on information beyond
object appearance, such as reflectance disks [33], scene depth [34], 3D surface
geometry [7] and spatial thermal textures [5]. They incorporate special measure-
ments and properties that are closely related to material characteristics. The
other approach relies on 2D images alone, usually by efficient use of context
information including object, texture and background. Schwartz and Nishino
[17] proposed to separate local material from object/scene context and combine
them later. Cimpoi et al. [6] introduced a new texture descriptor, which was used
along with object descriptors. These 2D image based methods are not directly
applicable to 4D light-field data studied in this paper; however, we are inspired
by the idea of global-local decomposition in that we use separate expert models
to extract spatial and angular features.

Qi et al. [15] explored the transform invariance of co-occurrence features, and
introduced a pairwise rotation invariant feature for 2D images. We instead design
a ConvNet architecture to enforce rotational invariance in angular domain for
light-fields. Xue et al. [32] used a stereo pair to perform material recognition,
by feeding their difference and one view to a neural network. Wang et al. [25]
proposed multiple ConvNet architectures for recognizing materials using light-
field images. Our work further explores this idea of using reflectance variation to
improve material recognition, which requires algorithmic adaptations to several
key characteristics of light-field images.
Computer vision for light-fields. Light-fields received increasing popularity
in the vision community over the years. One direction is to enhance the quality
of light-fields, as current acquisition techniques are still rudimentary. This in-
cludes super-resolution in spatial domain [27] or angular domain [31], denoising
[4] and light-field video interpolation [26]. Another line of research is to tackle
existing computer vision problems using light-field images. Many depth estima-
tion algorithms [11, 12, 24, 28] that rely on efficient use of angular information
were proposed. Similar methodologies were also adopted in other tasks. Lu et
al. [14] used domain-interleaved filters to simultaneously extract spatial and an-
gular features for object classification. Alperovich et al. [1] used an autoencoder
to find compact representations for epipolar plane images [2] (EPI), which can
be decoded to yield diffuse/specular intrinsic components. Chen et al. [3] used
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Fig. 2. Light-field geometry. (a) The 4D light-field parametrized by two parallel planes:
the lens plane Π (angular domain) and the sensor plane Ω (spatial domain). (b) Green
lines: Pixels with same spatial coordinates p correspond to different objects. Red lines:
Disparity p1 − p2 is linear to lens translation ϕ1 −ϕ2

the surface camera to model reflectance variation of 3D points, leading to bet-
ter stereo matching. We borrowed this idea in that our approach constructs the
surface camera via alignment to disentangle angular and spatial variations.
Neural networks for light-fields. Many papers employed neural networks to
analyze light-fields. To recognize materials or bidirectional reflectance distribu-
tion functions (BRDF), [13, 25] proposed to stack sub-views and take convolu-
tions in spatial domain, or instead apply filters in angular domain. We extend
the above ideas by enforcing sparsity in both domains in order to avoid occlusion
and reduce overfitting. Heber et al. [9] introduced stacking in EPI domain for
shape inference. [13, 25, 30] used alternating spatial and angular domain convo-
lutions to mimic a full 4D filter while keeping computational costs low. Shin et
al. [19] proposed to only use horizontal or crosshair sub-views to increase compu-
tational speed. Xue et al. [32] proposed the concept of angular gradients which
enables the network to be aware of angular structure. In this work we further
explore these ideas and find that, combined with weight sharing and pooling,
such sparsity in angular domain improves generalization by enforcing rotational
invariance, and improves the efficiency of extracting angular gradients.

3 Light-field Imaging Model

3.1 Light-field Geometry

The 4D light-field is usually parametrized using two parallel planes: a lens plane
Π, representing the angular domain, and a sensor plane Ω, representing the
spatial domain, as shown in Fig. 2(a). A ray of light passes through a micro-lens
on Π and is captured by a pixel on Ω. The light-field can be viewed as a function

L : Π ×Ω → RC , (ϕ,p) 7→ L(ϕ,p), (1)

where ϕ is a micro-lens on Π with angular coordinates (u, v)T, p is a pixel on
sensor Ω with spatial coordinates (s, t)T, and C is the number of color channels.
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The behavior of a micro-lens can be analyzed with a pinhole camera model. We
first fix the pixel p in spatial domain and vary the lenses ϕ in angular domain.
In Fig. 2(b), ϕ1, ϕ2 capture 3D points A1, A2, and ϕ3 captures a 3D point
B3. Here B is occluded by A since ϕ1 would capture B4 without A. It is clear
that variations in angular domain may correspond to multiple 3D points, or
even different objects in case of occlusion. However, for material recognition,
the key is to obtain reflectance variation of individual surface points in different
perspectives. This can be done by fixing the 3D point and correcting for disparity
in spatial domain. The light rays emitted from a 3D point A3 with depth zA reach
two lenses ϕ1 and ϕ2, and are captured by sensors at p1 and p2. The disparity
between p1 and p2 is related to lens translation linearly:

p1 − p2 =

(
1 +

f

zA

)
(ϕ1 −ϕ2). (2)

If scene depth zA and focal length f are known, one can use (2) to group pixels
in different sub-views with same originations. This is often called the angular
sampling image (ASI) [18], describing the reflectance variation of individual 3D
points. Operating on the ASI has the advantage that reflectance information is
decoupled from spatial variations, which allows specialized expert models to be
applied to each aspect, and later combined to form a joint decision.

3.2 Analysis of Baseline Methods

We now analyze several baseline methods (in italic) proposed in [25]. 2D-average
and viewpool feed each sub-view to a ConvNet and perform averaging or max-
pooling for aggregation. They fail to exploit between-view correlation and per-
form poorly. Stack stacks all sub-views before a ConvNet, the first layer of which
takes convolutions in spatial and angular domains simultaneously. We see pre-
viously that these two domains are intertwined; this complex coupling effect
causes the model to perform only slightly better than 2D models. EPI is similar
to stack as it stacks in EPI domain instead, achieving similar performance.

Two winning models from [25], namely ang-filter (referred to as angular-
filter in the original paper) and 4D-filter, provide significant performance boosts
over 2D models. Our first motivation is due to the baseline method ang-filter
outperforms stack. These two methods both apply convolutional filters in angular
domain, the difference is that ”ang-filter” has 1x1 spatial filters while ”stack”
has 3x3 spatial filters. This means ang-filter is only convolving in the angular
domain while stack is convolving in spatial and angular domains at the same
time, which suggests us to decouple these two domains. The second motivation
can be considered as a step further from the first motivation. According to the
analysis in Section 3.1, the angular domain itself is both affected by spatial
and reflectance variations. This suggests us to align pixels into ASIs, which will
decouple reflectance variations from spatial variations.
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4 Methods

In our proposed framework, we first decompose the light-field into a spatial com-
ponent and an angular component; features from both components are extracted
separately and combined at the end to produce class probabilities, as shown in
Fig. 1. The spatial component is the center sub-view, containing overall appear-
ance, object and scene context. The angular component is then aligned into ASIs
through representative selection and angular registration.

4.1 Representative Selection

ASIs can be formed by collecting pixels from sub-views according to (2). In
practice, the dense depth field is usually not available and needs to be estimated.
However, most depth estimation algorithms [10, 18, 24] rely on the assumption
that objects are made of Lambertian materials with uniform reflectance across all
viewing angles. This is clearly an oversimplification as our key to the problem
is reflectance variation. Even for methods that are robust to non-Lambertian
surfaces, dense depth estimation is still error-prone in case of occlusion [24].

We notice that by selecting a region with constant depth, the situation is
greatly simplified. By the disparity linearity (2), the disparity between two sub-
views becomes a constant for any 3D point in this region, which implies that
we can form ASIs by simply translating sub-views. Also, a region with constant
depth is mostly occlusion-free. Therefore, we crop the angular component to
a representative region that has approximately constant depth. As the spatial
component remains full resolution, we will not lose much spatial information by
cropping the angular component.

The dense depth map D(Ω) estimated from [11] is used for region selection,
which is less error-prone than using it to directly warp pixels (we verify this
experimentally in Sec. 5.3). The spatial domain is partitioned into an N×N
grid, and denote the depth values in each block by

∀1 ≤ i, j ≤ N,Dij =

{
D(s, t) :

(i− 1)S

N
< s ≤ iS

N
,

(j − 1)T

N
< t ≤ jT

N

}
, (3)

where S×T is the spatial resolution. The representative region is selected as the
one that minimizes the following loss

(i∗, j∗) = argmin
i,j

σ[Dij ] + λ
∣∣µ[Dij ]−med[D(Ω)]

∣∣, (4)

where σ[·], µ[·] and med[·] denote the standard deviation, mean and median of
a set. The first term penalizes the amount of depth variation as we wish it to
be approximately constant, and the second term penalizes outlier regions that
significantly deviate from the overall median depth, which usually correspond to
backgrounds. The Lagrangian coefficient λ is empirically set to 1.0 to provide a
good trade-off between these two terms.
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Fig. 3. Displacement estimation in Fourier domain. (a) If ∆t = 0, argS is constant in
η. There is a large amount of noise due to aliasing. (b) Median filtering on argS to
remove isolated noise. (c) Median values of argS at each ξ and its linear regression

4.2 Angular Registration

As the representative region has approximately constant depth, we can align
(also called register in literature) any sub-view with the center sub-view via
translation. By constraining disparity to be shared across spatial domain, the
pixel level Lambertian surface assumption is relaxed to sub-view level transla-
tion, which holds as long as changing viewpoints does not cause drastic overall
changes. Jeon et al. [11] used the Fourier domain to perform sub-pixel displace-
ment. Here we instead use the Fourier domain to estimate the displacement itself.
The Fourier shift theorem [16] states that if two images I1 and I2 of same size
S×T are related by a translation ∆p = (∆s,∆t), I2(s, t) = I1(s + ∆s, t + ∆t),
then their discrete Fourier transforms F{I1}, F{I2} are related by

F{I2}(ξ, η) = F{I1}(ξ, η) · e2πi(ξ∆s/S+η∆t/T ), (5)

therefore we can perform sub-pixel translation ∆p to I1 by

I2 = F−1{F{I1}(ω) exp(2πiω · (∆s/S,∆t/T )}. (6)

To estimate the translation between I1 and I2, take the inverse Fourier trans-
form of the cross-power spectrum

S =
F{I1}F∗{I2}
|F{I1}F{I2}|

= exp[−2πi
( ξ
S
∆s+

η

T
∆t

)
], (7)

to arrive at an impulse function at (∆s,∆t), where F ∗ denotes the complex
conjugate of F . However, this method can only measure integral translation,
and its performance is not robust to aliasing, i.e. imperfect correspondence which
is prevalent in case of non-Lambertian materials. Stone et al. [22] proposed a
generic sub-pixel registration algorithm that deals with aliasing. Here we deduce
a simplified approach by leveraging angular domain geometry.

By (2), ∆p is linear to the lens translation ∆ϕ = (∆u,∆v). If we choose two
sub-views with ∆v = 0, ∆t will also be zero, and the phase of the cross-power
spectrum argS = −2π∆s · ξ/S will be constant in η, as shown in Fig. 3(a).
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Fig. 4. Network architecture of the angular feature extractor. (a) Sub-views along
particular directions are stacked and fed to the network. (b) Angular-4. Stacks of each
direction have their own angular filter sub-networks. They are concatenated depth-
wise before shared convolutional layers, which consist of three basic building blocks,
each basic block is a sequence of “Conv-ReLU-Conv-BN-ReLU” layers. (c) Angular-
S. Comparing to angular-4, the angular filter sub-networks have shared weights. The
directional pooling layer is a MaxPool3D layer pooling among four directions. In (b) and
(c), all “AF” layers are Conv2D layers with kernel size Kaf ∈ {1, 3}, SAME padding,
containing #af ∈ {16, 32, 64} different angular filters.

We first apply a median filter to argS to remove isolated noise due to aliasing,
as shown in Fig. 3(b). Since we are dealing with periodic phase data, we take
circular medians [23] instead of ordinary medians. To reduce clustered noise along
the η axis, the median value argSξ = med[S(ξ, :)] is taken along η. Finally, we
regress argSξ on ξ/S using ordinary least squares to further reduce noise along
the ξ axis, as shown in Fig. 3(c). The estimated slope is then −2π times the
estimated displacement ∆ŝ. Note that if ∆s is larger than one pixel, argSξ will
wrap around π/−π. Therefore, we first locate the impulse F−1{S} to register I1
and I2 to the nearest integral pixel, then proceed with sub-pixel refinement.

The micro-lens array of a light-field camera can be modeled with a square
grid, with constant translation δ between adjacent lenses [35], as shown in
Fig. 2(a). Therefore, the disparity ∆ between adjacent sub-views is also a con-
stant. We estimate ∆s from two sub-views at both ends of the center row, and
∆t from two sub-views at both ends of the center column. ∆ is estimated by
averaging along two axes:

∆ =
1

2

( ∆s

U − 1
+

∆t

V − 1

)
, (8)

where U and V are the numbers of sub-views along axes u and v. With ∆,
we register all sub-views to the center sub-view using (6), so that the angular
domain of each spatial pixel forms an ASI. We provide some visual examples in
the supplementary material.
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4.3 Network Architecture

We extract spatial features from the spatial component with a standard 2D im-
age feature extractor (e.g. ResNet [8]). Angular features are extracted from the
cropped and registered angular component using an angular feature extractor,
shown in Fig. 4. We employ a multi-stream network [19] that reads sub-views
in some certain directions, i.e. center horizontal, center vertical, main diagonal
and antidiagonal, as shown in Fig. 4(a). The angular feature extractor angular-
4 (4 directions) is shown in Fig. 4(b). Sub-views in each direction are stacked
and encoded separately by angular filter sub-networks at the beginning to pro-
duce meaningful representations. This not only explicitly supplies the network
with structural information of angular domain, but also reduces angular redun-
dancy. The first layer “AF” is a convolutional layer consisting of multiple filters
that convolve across the angular domain. Angular-4 is a modification of the
multi-stream architecture in [19]. Convolutional kernel sizes and network depth
are altered; the last convolutional layer is replaced by global average pooling
to produce feature vectors. See more details in the caption of Fig. 4 and the
supplementary material.

The multi-stream architecture was originally proposed for depth estimation.
However, there is a major difference between depth estimation and material
recognition: depth is a 2D function with axes orientations, but material is in-
variant to camera and object rotations. These actions cause angular domain
axes to rotate. We can incorporate this prior knowledge by employing an invari-
ance mechanism, which we call angular rotational invariance. Our final archi-
tecture angular-S (shared) augments angular-4 with this invariance, as shown
in Fig. 4(c). All four angular filter sub-networks have shared weights, which is
implemented by passing all sub-view stacks to a single sub-network separately
to produce four feature maps. These feature maps are concatenated along a new
“direction” dimension, and a max-pooling layer is applied to this new dimension,
which we call directional pooling. We can verify this architecture indeed enforces
angular rotational invariance by observing that, if angular domain axes rotate by
multiples of π/4, it results in a permutation of sub-view stacks, and the output
of the directional pooling layer is invariant.

5 Experimental Results

5.1 Data and Training Procedure

We report results on multiple light-field material datasets to demonstrate the
robustness of our methods. The first dataset is LFMR [25], which contains real
light-field images captured by Lytro with spatial resolution 376×541 and angular
resolution 7×7. The second dataset is the rendered light-field images with same
resolutions from the BTF dataset [29], which was also used in [25] for evalua-
tion. Our data preprocessing procedures follow [25]: square sample patches are
extracted from whole light-field images; their centers are separated by at least
half the patch size, and more than 50% of the pixels correspond to the target
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material. Unless stated otherwise, most of our experiments use 128×128 patches.
Each dataset is randomly split into a training set and a test set by 7:3, 1/7 of
the training set is used as a validation set for hyper-parameter selection. Patches
from the same light-field image only appear in one set to avoid strong correlation
between the train/val/test sets.

Table 1. Classification accuracy (in percentage) comparison on test sets. “2D”: use
spatial features for classification. “model-4/S”: angular-4/S is used as the angular
feature extractor. “gain2D”: accuracy improvement over “2D”

dataset LFMR [25] BTF [29]

method accuracy gain2D accuracy gain2D

2D 70.45±0.23 - 67.35±0.33 -
StackNet [13] 72.67±2.39 2.22 70.19±1.87 2.84
AngConvNet [13] 73.23±2.29 2.78 72.16±1.08 4.81
Lu et al. [14] 76.48±1.23 6.03 73.84±1.31 6.49
4D-filter [25] 77.29±1.05 6.84 71.81±1.93 4.46
ang-filter [25] 77.83±0.89 7.38 73.27±0.85 5.92
MDAIN [32] 75.73±1.88 5.28 69.43±1.52 2.08

model-4 (ours) 80.38±0.53 9.93 75.14±0.66 7.79
model-S (ours) 81.75±0.61 11.30 77.52±0.58 10.17

Data augmentation is carried out in spatial domain, including random hor-
izontal flipping, randomly cropping the spatial resolution to the largest factor
of 224 (e.g. if the patch size is 128×128, we take 112×112 random crops), and
then upsampling to 224×224. We also normalize all sub-views by subtracting
half the max intensity (e.g. 128 for 8-bit images) uniformly in all color channels.
At test time, we perform centered cropping instead of random cropping, followed
by normalization. The angular feature extractor is trained from scratch, and the
spatial feature extractor is ResNet-18 (except the last fully-connected layer),
since it provides fast training and good generalization. All models are trained
with stochastic gradient descent and cross entropy loss for 200 epochs, with a
base learning rate of 10−4, momentum 0.9 and batch size 128. The angular fea-
ture extractor and the fully connected layer use 10× the base learning rate. All
experiments use the top-1 accuracy as their performance measures.

5.2 Overall Performance

Table 1 shows the results of our proposed framework on the test sets, and com-
pares with winning baseline methods from [25]. We also compare with architec-
tures designed for other closely related tasks. StackNet and AngConvNet were
proposed in [13] for surface BRDF recognition using light-field images. MDAIN
[32] uses multiple stereo pairs for material recognition. The authors tested on
light-field datasets by selecting 4 sub-view pairs of entire light-field images. We
replicate their test conditions except that patches are classified rather than the
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whole light-field. Lu et al. [14] proposed a domain-interleaved architecture that
resembles 4D-filter for light-field object classification. Since it requires 8×8 an-
gular resolution, we pad angular domain by replication and use it for material
classification. The classification accuracy is reported by averaging 5 random
train/test splits. More details are given in the table caption.

For fair comparison, all previous methods also use ResNet-18 as their back-
bone networks. Note that [25] originally used VGG-16 [20] as the backbone
architecture and achieved 7% gain on both ang-filter and 4D-filter. By switch-
ing to ResNet-18 we reproduce similar gains but with much less memory and
shorter runtime. We see that comparing to the best baseline method, our model-
S achieves 11.30%/7.38%=1.53 times gain on the LFMR dataset, and 10.17% /
6.49% = 1.57 times gain on the BTF dataset. This result shows that our pro-
posed framework significantly outperforms previously reported methods. While
previous methods achieve gains over 2D by utilizing additional data which is ar-
guably expected, our method outperforms these methods by more efficient usage
of these additional data.

5.3 Ablation Studies

We conduct extensive ablation experiments using the LFMR dataset, including
hyper-parameter choices, contribution of each technical component and robust-
ness tests.
Hyper-parameters. Table 2 (left) compares different angular filter kernel sizes

Table 2. Left: classification accuracy on validation set. Representative selection is
enabled. Right: classification accuracy with different N for representative selection.
N=1 means no cropping. We report results using both angular and spatial features
(“angular+spatial”), and only using angular features (“angular”) for classification. In
both tables, angular-S is the angular feature extractor, angular registration is enabled

Kaf #af mean acc. (%) std. (%)

1 16 81.35 0.57
1 32 81.92 0.56
1 64 80.93 0.60
3 32 81.16 0.60

feature N mean acc. (%) std. (%)

angular+spatial 1 81.45 0.42
angular+spatial 2 81.56 0.69
angular+spatial 3 81.92 0.56
angular+spatial 4 81.28 0.53

angular 1 66.34 1.22
angular 2 60.15 1.04
angular 3 55.31 1.41
angular 4 51.93 1.53

Kaf and numbers of angular filters #af. The classification accuracy on the vali-
dation set is reported by averaging 5 random train/validation splits. This agrees
with the observation in [25] that a medium #af offers the best performance,
while a low #af reduces representation power, and a large #af leads to overfit-
ting. We also observe that Kaf = 1 outperforms Kaf = 3. Kaf = 1 corresponds
to taking convolutions only in angular domain, i.e. aligned ASIs, while Kaf = 3
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corresponds to taking convolutions both in the ASI and spatial domain. This
result confirms that decoupling angular and spatial information is beneficial.

Table 2 (right) compares different N used for representative selection. N = 1
means the entire patch is used and selection is disabled. Besides the proposed
framework (“angular+spatial”), we also report results where only angular fea-
tures are used for classification (“angular”). For “angular+spatial”, a medium
sized region offers the best performance, as a large region may violate the con-
stant depth assumption, leading to potential occlusion and bad registration;
while a small region carries little information. In contrast, as the spatial com-
ponent is missing in “angular”, the best choice is to use the entire patch, which
contains the most spatial information. This result shows that by decomposing
light-fields into two components, we can conveniently represent local properties
with a small region without worrying about losing much spatial information.

Table 3. Left: ablation study on the test set of LFMR. “model-4/S”: angular-
4/angular-S is used as the angular feature extractor. “select”: use representative selec-
tion. “register”: use angular registration. Right: classification accuracy (in percentage)
comparison using different light-field patch sizes

id method select register mean acc. std.

1 ang-filter - - 77.83 0.89

2

model-4

3 3 80.38 0.53
3 3 7 79.85 0.45
4 7 3 79.36 1.05
5 7 7 78.91 0.75

6

model-S

3 3 81.75 0.61
7 3 7 81.00 0.56
8 7 3 81.45 0.42
9 7 7 80.74 0.52
10 random 3 81.41 0.73
11 7 warp 80.35 0.55

data 2D ang-filter model-S

size=32 49.18 58.79 63.29
size=64 58.73 66.38 71.73
size=128 70.45 77.83 81.75
size=256 78.80 82.37 85.69

Components. Table 3 (left) provides a breakdown of each component’s con-
tribution. Compare row 1 and 5, we see that using sparse inputs and explicit
directional information provides 1.1% gain. Compare row 5 and 9, we see that
enforcing angular rotational invariance provides 1.8% further gain. Within the
model-4 group, angular registration offers 0.5% gain, and representative selec-
tion offers 0.9% gain. When both are used, the combined gain 1.5% is nearly
additive. This gain becomes less significant (1.0%) for model-S, implying that
angular rotational invariance increases the network’s robustness to misaligned
and redundant data.

We analyze representative selection and angular registration in more detail
with two more ablation test cases. Row 10 selects representative regions ran-
domly rather than using (4) to select the best candidate. Its performance drops
since it is susceptible to occlusion and background. Row 11 uses the estimated
depth map to directly warp pixels, rather than to select representative regions.
We observe a performance degradation comparing to row 8 as it imposes the
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Fabric Foliage Fur Glass Leather Metal Paper Plastic Sky Stone Water Wood

Fabric

Foliage

Fur

Glass

Leather

Metal

Paper

Plastic

Sky

Stone

Water

Wood

0.65 0.00 0.10 0.01 0.09 0.00 0.03 0.05 0.00 0.02 0.01 0.04

0.01 0.92 0.02 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01

0.07 0.00 0.78 0.01 0.02 0.01 0.01 0.00 0.00 0.04 0.00 0.06

0.01 0.02 0.01 0.65 0.05 0.06 0.07 0.03 0.02 0.04 0.02 0.02

0.05 0.00 0.00 0.00 0.91 0.01 0.00 0.01 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.09 0.02 0.73 0.05 0.04 0.00 0.01 0.03 0.01

0.08 0.00 0.04 0.08 0.06 0.04 0.60 0.05 0.01 0.00 0.01 0.03

0.02 0.00 0.00 0.12 0.07 0.10 0.12 0.50 0.01 0.04 0.00 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.01 0.00

0.02 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.03 0.04

0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.03 0.92 0.01

0.02 0.01 0.02 0.01 0.02 0.01 0.10 0.00 0.00 0.09 0.01 0.73

ang-filter [25]

Fabric Foliage Fur Glass Leather Metal Paper Plastic Sky Stone Water Wood

Fabric

Foliage

Fur

Glass

Leather

Metal

Paper

Plastic

Sky

Stone

Water

Wood

0.70 0.00 0.06 0.00 0.12 0.03 0.03 0.03 0.00 0.00 0.00 0.00

0.00 0.95 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.07 0.00 0.81 0.00 0.03 0.00 0.01 0.00 0.00 0.01 0.00 0.03

0.00 0.00 0.00 0.77 0.01 0.06 0.02 0.07 0.00 0.00 0.01 0.02

0.03 0.00 0.01 0.01 0.87 0.00 0.00 0.01 0.00 0.02 0.00 0.01

0.01 0.00 0.00 0.07 0.00 0.72 0.02 0.06 0.00 0.04 0.00 0.04

0.04 0.00 0.02 0.04 0.00 0.02 0.74 0.03 0.01 0.02 0.00 0.04

0.02 0.00 0.01 0.08 0.08 0.10 0.10 0.55 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.97 0.00 0.01 0.00

0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.04 0.03

0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.02 0.00 0.90 0.00

0.00 0.00 0.00 0.02 0.01 0.02 0.00 0.01 0.00 0.11 0.00 0.79

model-S (ours)

Fig. 5. Confusion matrices of ang-filter [25] and model-S on the LFMR dataset. Paper,
glass, woods and plastic are the most improved categories

Lambertian assumption to all materials and alters ASIs. This further proves the
necessity and significance of our proposed methods.
Robustness. We verify the robustness of our methods by varying the light-
field patch sizes. Table 3 (right) compares performances of the 2D model using
spatial features (“2D”), the best baseline method ang-filter and our best method
model-S. It can be seen that under various input sizes, our method consistently
outperforms ang-filter and significantly improves the gain over “2D”.

5.4 Visualization

Angular filter output. Both ang-filter and our angular feature extractors use
angular filters to perform convolutions in angular domain before subsequent lay-
ers. Fig. 6 (left) compares their activations in ang-filter and angular-S, both using
1×1 kernels. We observe that in (a3), the activations of different sub-view stacks
differ, indicating the material (fabric) has strong reflection variation. Because
all angular filter sub-networks have shared weights, difference of activations can
only be caused by difference of inputs. Meanwhile in (b3), the material (plastic)
has homogeneous reflection, and its activations are similar across directions. In
contrast, this pattern is not present in (a2) and (b2), where directional informa-
tion is hard to visualize.
Angular v.s. spatial responses. By combining angular and spatial features
at the end, we can use the network to evaluate their relative strengths. For the
neuron i corresponding to the true class in the softmax layer, its pre-activation
is a linear transform of angular and spatial feature vectors. Define the angular
and spatial responses as the absolute values of W a

i φa and W s
i φs, so that the pre-

activation yi of the true class neuron i has the decomposition yi = W a
i φa+W s

i φs,
where W s

i , W a
i are weights of the fully-connected layer connected to neuron i,

φa and φs are angular and spatial feature vectors, respectively. Fig. 6 (right)
compares angular and spatial responses for two different patches in the same
light-field image. If the patch contains object or shape information so that the
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(a1)

(b1)

(a2) (b2)

horizontal

vertical

diagonal

antidiagonal

#1 #2 #3 #4 #1 #2 #3 #4

(a3) (b3)

Fig. 6. Left: angular filter activations of ang-filter and angular-S. (a1) and (b1) are
the original light-field patches, representative regions are outlined in red. (a2) and (b2)
are the first 16 feature maps from ang-filter. Columns in (a3) and (b3) correspond to
the first 4 feature maps from angular-S, each row corresponds to a stack of sub-views.
Right: angular/spatial responses of different patches in the same light-field image. Top:
original light-field images, selected patches are outlined in red. Bottom: corresponding
patches are displayed above bar graphs

material can be easily inferred, the spatial response is much higher than angular
response. Conversely, if context information is vague, then material has to be
inferred from local properties such as texture and reflection, the angular response
becomes more significant.

6 Conclusion

In this paper, we propose a novel framework for material recognition using light-
fields that can potentially boost many industrial applications with a simple op-
tical upgrade. The light-field is decomposed into the center sub-view and a rep-
resentative crop, responsible for spatial and angular feature extraction, respec-
tively. Thanks to the spatial-angular decomposition, we can keep most spatial
information intact while cropping the angular component to avoid occlusion and
for better registration. The angular feature extractor employs directional regular-
ization by weight sharing in angular filter sub-networks and directional pooling;
they together enforce rotational invariance in angular domain. Our methodology
is verified by thorough ablation and robustness studies. It also casts light on how
to efficiently learn from data with intertwined dimensions.
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