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1 Introduction

In this supplementary material, we first illustrate the detailed implementation of
the CGSA module. Then, we evidence the training stability and easy convergence
for surface normal estimation on the 2-sphere, as compared with that in the 3D
Euclidean space. Additionally, we provide quantitative analysis on a small testing
list for Matterport3D, which is selected by Zeng et al. [8], to further validate the
superior performance of our model. Finally, we present more visual comparisons
with both the state-of-the-art methods and the different variants of our proposed
method.

2 Implementation of the CGSA Module

The key point of the CGSA module is to update each low confidence depth fea-
ture patch with the most similar high confidence depth feature patch as described
in Algorithm 1.

To be specific, we utilize the attention map M to divide Fc into Mc and
Mc ∈ RE×H×W in line 2 ∼ 4, where E,H,W correspond to the channel number,
height and width, respectively. ⊗ denotes the element-wise multiplication. ω
is a pre-defined large constant that ensures patches in the attention regions
will not be mistaken as reference patches. Then Mc and Mc are reshaped as
Mc ∈ RHW×E and Mc ∈ RE×HW in line 5 ∼ 6 for matrix multiplication. We
compute the pair-wise similarities, i.e.,S ∈ RHW×HW between Mc and Mc with
the squared L2 distance defined as ‖Mc −Mc‖22 = M2

c + M2
c − 2McMc in line

7 ∼ 10. After that, we obtain the mapping function Ψ ∈ RHW via finding
the index of the minimum value in each row of S in line 11. We apply Ψ to
Fd ∈ RE×HW to get the reference depth feature map F∗d ∈ RE×HW in line

12 ∼ 13, where the ith column of F∗d is equal to the Ψ(i)th column of Fd.
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Algorithm 1: Confidence guided semantic attention

Input: the color feature map Fc, the depth feature map Fd and the
down-sampled confidence map Ĉ

Output: the re-weighted depth feature map F ′d
1 E,H,W ← Fc.shape;

2 M← Float(Ĉ < 1);
3 Mc ← Fc ⊗M;

4 Mc ← Fc ⊗ (1−M) + ωM;
5 Mc ←Mc.reshape(HW,E);

6 Mc ←Mc.reshape(E,HW );

7 X Y ←MatrixMultiplication(Mc,Mc);
8 X ← Sum(Mc ⊗Mc, dim = 1).repeat(1, HW );

9 Y ← Sum(Mc ⊗Mc, dim = 0).repeat(HW, 1);
10 S ← (X + Y − 2X Y );
11 Ψ← Argmin(S, dim = 1);

12 Fd ← Fd.reshape(E,HW );

13 F∗d ← Ψ(Fd);
14 F∗d ← F∗d .reshape(E,H,W );

15 F ′d ← Ĉ ⊗Fd + (1− Ĉ)⊗F∗d ;

Finally, F∗d are reshaped as F∗d ∈ RE×H×W and the CGSA module outputs the
re-weighted depth feature map F ′d with the following scheme in line 14 ∼ 15:

F ′d = Ĉ ⊗Fd + (1− Ĉ)⊗F∗d . (1)

The algorithm can be easily converted into a batch version that deals with
several depth feature maps within a batch group simultaneously. Since we convert
the searching task into tasks of matrix multiplication and finding the index of
the minimum value in each row of S, the CGSA module is very efficient. Note
that we detach M and Ψ during gradients backwards propagation. Therefore,
the whole process of the CGSA module is differentiable.

3 Training Stability: 2-Sphere vs. 3D Euclidean Space

In this section, we conduct several experiments to verify the stable training and
easy convergence of predicting surface normals on the 2-sphere, as compared
with that in the 3D Euclidean space.

Since our training process carries on S2, we convert the learned θ and φ back
to the 3D Euclidean space after prediction for evaluation. The reverting formulas
are: 

x = cos θ cosφ

y = sin θ cosφ

z = sinφ

(2)
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(a) Matterport3D (b) ScanNet (c) NYUD-v2

Fig. 1. Evaluation metrics convergence between R3 and S2 on Matterport3D, ScanNet
and NYUD-v2 datasets

Matterport3D

ScanNet

(a) GT (b) 5 (c) 15 (d) 35 (e) 60

Fig. 2. Visual quality comparisons between R3 (the first and third rows) and S2 (the
second and fourth rows) after 5, 15, 35 and 60 epochs on Matterport3D and ScanNet
datasets. The ground truths are shown in the leftmost column
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We compare surface normal estimation between R3 and S2 with the evalu-
ation metrics of the mean of angle error (mean) and angle difference less than
tn = 11.25◦ after 1, 5, 10, 20, 30, 40, 50 and 60 epochs on Matterport3D [1],
ScanNet [2] and NYUD-v2 [5] datasets. Moreover, we visualize the estimated
results after 5, 15, 35, 60 epochs to better understand the convergence. As seen,
both quantitative comparisons in Fig. 1 and visual comparisons in Fig. 2 reveal
that the model trained on the 2-sphere enjoys a much faster convergence and
achieves better performance when both models are converged.

4 Quantitative Analysis on the Selected Matterport3D
Dataset

The ground-truth data provided by Zhang et al. [9] are generated with multi-
view reconstruction. Zeng et al. [8] pointed out that some samples in the Mat-
terport3D suffer from severe reconstruction error, which may lead to unreliable
evaluation. Hence, they provided a new testing list removing samples with large
errors (782 out of 12084). Fig. 3 provides some examples. To validate the ro-
bustness of our method, we also make quantitative comparisons on this dataset
with the state-of-the-art methods. As shown in Table 1, our method still beats
the state-of-the-arts on this testing dataset.

(a) Color (b) Raw depth (c) HFM-Net (d) Ours (e) Bad GT

Fig. 3. Several samples of ground-truth/target normals with obviously reconstruction
errors

5 More Visual Quality Comparisons

In this section, we present more visual comparison results with the state-of-the-
art surface normal estimation and depth recovery methods on Matterport3D,
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Table 1. Performance of surface normal estimation on the new testing list of Matter-
port3D provided by Zeng et al. [8]

Metrics Zhang’s GeoNet SharpNet HFM-Net Ours

mean 19.346 17.234 17.997 13.062 12.336
median 9.762 8.744 10.061 5.270 4.517

Matter- rmse 29.312 32.859 29.996 22.983 22.934
port3D 11.25◦ 52.64 64.89 56.88 72.23 73.73

22.5◦ 72.12 78.50 75.22 84.41 85.37
30◦ 79.44 83.75 80.71 88.31 89.11

Fig. 4. Visualization of colormaps. The surface normal is visualized as red for left,
green for up and blue for outward and the depth changes from blue to red with the
depth values from 0 to 1

ScanNet and NYUD-v2 datasets. The methods in comparison are Zhang’s net-
work [10], GeoNet [6], SharpNet [7] and HFM-Net [8] for surface normal esti-
mation and GeoNet [6], SharpNet [7], MonoD [3] and LabDEN [4] for depth
recovery. Besides, more visual comparisons of different variants of the proposed
method on the above three datasets are also provided in this section. The col-
ormap for visualization is illustrated in Fig. 4. Specifically,

– Figures 5, 6 and 7 show the surface normal estimation comparisons on the
three datasets, respectively.

– Figures 8, 9 and 10 show the depth recovery comparisons on the three
datasets, respectively.

– Figure 11 compares all the different variants of our proposed method simul-
taneously.
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(a)Color (b)Raw depth(c)Zhang’s (d)GeoNet (e)SharpNet(f)HFM-Net (g)Ours (h)GT

Fig. 5. Visual quality comparisons with the state-of-the-art surface normal estimation
methods on Matterport3D
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(a)Color (b)Raw depth(c)Zhang’s (d)GeoNet (e)SharpNet(f)HFM-Net (g)Ours (h)GT

Fig. 6. Visual quality comparisons with the state-of-the-art surface normal estimation
methods on ScanNet

(a)Color (b)Raw depth(c)Zhang’s (d)GeoNet (e)SharpNet(f)HFM-Net (g)Ours (h)GT

Fig. 7. Visual quality comparisons with the state-of-the-art surface normal estimation
methods on NYUD-v2
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(a)Color (b)Raw depth (c)GeoNet (d)SharpNet (e)MonoD (f)LabDEN (g)Ours (h)GT

Fig. 8. Visual quality comparisons with the state-of-the-art depth recovery methods
on Matterport3D

(a)Color (b)Raw depth (c)GeoNet (d)SharpNet (e)MonoD (f)LabDEN (g)Ours (h)GT

Fig. 9. Visual quality comparisons with the state-of-the-art depth recovery methods
on ScanNet
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(a)Color (b)Raw depth (c)GeoNet (d)SharpNet (e)MonoD (f)LabDEN (g)Ours (h)GT

Fig. 10. Visual quality comparisons with the state-of-the-art depth recovery methods
on NYUD-v2

(a)Color (b)Raw depth (c)R3 (d)-CGSA (e)-MFF(f)Our complete (g)GT

Fig. 11. Visual quality comparisons on surface normal estimation of different variants


