
AutoSTR: Efficient Backbone Search for
Scene Text Recognition

Hui Zhang1,2, Quanming Yao2, Mingkun Yang1, Yongchao Xu1, Xiang Bai1

1Department of Electronics and Information Engineering,
Huazhong University of Science and Technology

24Paradigm Inc.

Abstract. Scene text recognition (STR) is challenging due to the di-
versity of text instances and the complexity of scenes. However, no STR
methods can adapt backbones to different diversities and complexities.
In this work, inspired by the success of neural architecture search (NAS),
we propose automated STR (AutoSTR), which can address the above is-
sue by searching data-dependent backbones. Specifically, we show both
choices on operations and the downsampling path are very important
in the search space design of NAS. Besides, since no existing NAS algo-
rithms can handle the spatial constraint on the path, we propose a two-
step search algorithm, which decouples operations and downsampling
path, for an efficient search in the given space. Experiments demonstrate
that, by searching data-dependent backbones, AutoSTR can outperform
the state-of-the-art approaches on standard benchmarks with much fewer
FLOPS and model parameters. 1

Keywords: Scene Text Recognition, Neural Architecture Search, Con-
volutional Neural Network, Automated Machine Learning

1 Introduction

Scene text recognition (STR) [28, 49], which targets at recognizing text from
natural images, has attracted great interest from both industry and academia
due to its huge commercial values in a wide range of applications, such as identity
authentication, digital financial system, and vehicle license plate recognition [1,
9, 41], etc. However, natural images are diverse, the large variations in size,
fonts, background and layout all make STR still a very challenge problem [38].
A STR pipeline (Fig.1) [38,48] usually consists of three modules: a rectification
module, which aims at rectifying irregular text image to a canonical form before
recognition; a feature sequence extractor, which employs a stack of convolutional
layers to convert the input text image to a feature sequence; and a feature
translator module, which is adopted to translate the feature sequence into a
character sequence.

1 Correspondence authors are Quanming Yao and Xiang Bai, and code is available at
https://github.com/AutoML-4Paradigm/AutoSTR.git.



2 H. Zhang, Q. Yao, M. Yang, Y. Xu and X. Bai

Rectification 

Module

Feature Sequence 

Extractor Module

Feature Translator 

Module

Searched Backbone

文本图像矫正
模块

特征序列提取
模块

特征序列翻译
模块

搜索的骨干网络

CNN

ሻ𝒩 = 𝒞𝐿(…𝒞2(𝒞1(𝑋ሻሻ
H

W 𝑐2

𝑐1

Fig. 1. Illustration of general structure of text recognition pipeline. Feature sequence
extractor is searched in this paper.

In recent years, numerous methods [38, 43, 48] have successfully improved
the text recognition accuracy via enhancing the performance of the rectification
module. As for feature translator, inspired by some other sequence-to-sequence
tasks, such as speech recognition [11] and machine translation [3], the translation
module is also elaborately explored with both Connectionist Temporal Classi-
fication (CTC) based [36] and attention based methods [4, 7, 8, 38, 43]. In the
contrast, the design of feature sequence extractor is relatively fewer explored.
How to design a better feature sequence extractor has not been well discussed
in the STR literature. However, text recognition performance can be greatly af-
fected by feature sequence extractor. For example, the authors [38] can obtain
significant performance gains by simply replacing feature extractor from vgg [39]
to ResNet [14]. Furthermore, the feature sequence extractor bears heavy calcu-
lation and storage burden [21,43]. Thus, no matter for effectiveness or efficiency,
the architecture of feature sequence extractor should be paid more attention to.

Besides, neural architecture search (NAS) [10,46] has also made a great suc-
cess in designing data-dependent network architectures, of which the perfor-
mances exceed the architectures crafted by human experts in many computer
vision tasks, e.g., image classification [25, 32], semantic segmentation [24] and
object detection [6]. Thus, rather than adopt an off-the-shelf feature extractor
(like ResNet [14]) from other tasks, a data-dependent architecture should be
redesigned for a better text recognition performance.

In this paper, we present the first work, i.e., AutoSTR, on searching fea-
ture sequence extractor (backbone) for STR. First we design a domain-specific
search space for STR, which contains both choices on operation for every convo-
lution layer and constraints feature downsampling path. Since no existing NAS
algorithms can handle the path constraint efficiently, we propose a novel two-
step search pipeline, which decouples operation and downsampling path search.
By optimizing the recognition loss with complexity regularization, we achieve a
trade off between model complexity and recognition accuracy. Elaborate exper-
iments demonstrate that, given a general text recognition pipeline, the searched
sequence feature extractor can achieve state-of-the-art results with fewer FLOPS
and parameters. The main contributions of this paper are summarized as follows:

– We discover that the architecture of the feature extractor, which is of great
importance to STR, has not been well explored in the literature. This mo-



AutoSTR: Efficient Backbone Search for Scene Text Recognition 3

tivates us to design a data-dependent backbone to boost text recognition
performance, which is also the first attempt to introduce NAS into STR.

– We introduce a domain-specific search space for STR, which contains choices
for downsampling path and operations. Then we propose a new search algo-
rithm, which decouples operations and downsampling path for an efficient
search in the space. We further incorporate an extra regularizer into the
searching process, which helps effectively trade off the recognition accuracy
with the model size.

– Finally, extensive experiments are carried on various benchmark datasets.
Results demonstrate that, AutoSTR can discover data-dependent backbones,
and outperform the state-of-the-art approaches with much fewer FLOPS and
model parameters.

2 Related Works

2.1 Scene Text Recognition (STR)

As in Sec 1, the general pipline (Fig.1) of sequence-based STR methods [38,48],
where a rectification module, a feature sequence extractor module and a feature
translator module are involved. Currently, most works focus on improving rec-
tification module or feature translator. Shi et al. [37, 38] first introduce spatial
transform network (STN) [17] for rectifying irregular text to a canonical form
before recognition. Since then, [30, 43, 48] further push it forward and make the
rectification module become a plug-in part. As for feature translator, CTC based
and attention based decoder dominate this landscape for a long time [4, 36, 38].
Nevertheless, as another indispensable part, the feature sequence extractor has
not been well discussed in the recent STR literature. As shown in Tab.1, although
different feature extractors are used in [36,43], they just follow the architecture
proposed for other fundamental tasks, like image classification. But recently,
some authors observe that the architectures of feature extractor have gaps be-
tween different tasks, like semantic segmentation [24] and object detection [6].
Therefore, these popular feature extractor might not be perfectly suitable for
STR, and it is important to search a data-dependent architecture.

2.2 Neural Architecture Search (NAS)

Generally, there are two important aspects in neural architecture search (NAS)
[10, 46], i.e., the search space and search algorithm. The search space defines
possibilities of all candidate architectures, and the search algorithm attempts
to find suitable architectures from the designed space. Specifically, a proper
space should explore domain information and cover good candidates, which are
designed by humans. Besides, it cannot be too large, otherwise, no algorithms
can efficiently find good architectures. Thus, usually designing a better search
space by domain knowledge can make the searching process easier.



4 H. Zhang, Q. Yao, M. Yang, Y. Xu and X. Bai

Table 1. Comparison with example text recognition and NAS methods that contain
a downsampling path search. “feat.seq.extractor”, “DS”, “seq. rec.”, “cls.”,“seg.” and
“grad. desc.” means feature sequence extractor, downsampling, sequence recognition,
classification,segmentation and gradient descent algorithm respectively.

model
feat. seq. extractor

task
search

operation DS path algorithm

hand- CRNN [36] vgg fixed seq. rec. —

designed ASTER [38] residual fixed seq. rec. —

SCRN [43] residual fixed seq. rec. —

NAS DARTS [25] searched fixed cls. grad. desc.

AutoDeepLab [24] searched one-dim seg. grad. desc.

AutoSTR searched two-dim seq. rec. two-step

Classically, network architectures are treated as hyper-parameters, which are
optimized by an algorithm like reinforcement learning [50] and evolution algo-
rithms [42]. These methods are expensive since they need to train each sam-
pled architecture fully. Currently one-shot neural architecture search (OAS)
[5, 25, 32, 45] have significantly reduced search time by sharing the network
weights during the search progress. Specifically, these methods encode the whole
search space into a supernet, which consists of all candidate architectures. Then,
instead of training independent weights for each architecture, distinctive archi-
tecture inherits weights from the supernet. In this way, architectures can be
searched by training the supernet once, which makes NAS much faster. How-
ever, as the supernet is a representation of the search space, a proper design of it
is a non-trivial task. Without careful exploitation of domain information, OAS
methods may not be even better than random search [22,35].

3 Methodology

3.1 Problem Formulation

As the input of STR is natural images, feature sequence extractor is constructed
with convolutional layers. A convolutional layer C can be defined as C(X; o, sh, sw)
(hereinafter referred to as C(X)), where X is input tensor, o denotes convolution
type, (e.g., 3×3 convolution, 5×5 depth-wise separable convolution), sh and sw

represent its stride in height and width direction respectively. Therefore, a back-
boneN can be regarded as a stack of L convolution layers, i.e., CL(. . . C2(C1(X))).
After been processed by N , X with input size (H,W ) will be mapped into a
feature map with a fixed size output to the feature translator module.

To determine a data-dependent backbone for STR, we need to search proper
architectures, which is controlled by S ≡ {(shi , swi )}Li=1 (for strides) and O ≡
{oi}Li=1 (for convolution type). Let Ltra measure the loss of the network on
training dataset and Aval measure the quality of architecture on the validation



AutoSTR: Efficient Backbone Search for Scene Text Recognition 5

set. We formulate the AutoSTR problem as:

min
S,O
Aval(N (w∗,S,O)), s.t.

{
w∗ = arg minw Ltra(N (w,S,O))

S ∈ P
, (1)

where S and O are upper-level variables representing architectures, and w as
lower-level variable and P as constraint, i.e.,

P ≡ {{(shi , swi )}Li=1 | H/
∏L

i=1 s
h
i = c1,W/

∏L
i=1 s

w
i = c2}.

Specifically, c1 and c2 are two application dependent constants; and the con-
straint P is to ensure the output size of the searched backbone is aligned with
the input size of the subsequent feature translator module.

3.2 Search Space

As explained in Sec 2.2, the search space design is a key for NAS. Here, we design
a two-level hierarchical search space for the AutoSTR problem in (1), i.e., the
downsampling-path level and operation level, to represent the selection range of
S and O respectively.

Downsampling-path level search space. Since the characters are horizon-
tally placed in the rectified text image, following [36], we use CNN to exact a
feature sequence to represent them. To reserve more discriminable features of
the characters in compact text or in narrow shapes, a common way is to keep
collapsing along the height axis until it reduces to 1, but compress less along the
width axis to ensure that the length of final sequence is greater than the length
of characters [36,38,48]. Specifically, the current mainstream methods are using
the feature extractor proposed in ASTER [38]. The height of the input text im-
age is unified to a fixed size, like 32. And to reserve more resolution along the
horizontal axis in order to distinguish neighbor characters [4, 36, 38, 43, 48], the
strides hyper-parameter s only selected from {(2, 2), (2, 1), (1, 1)}, where (2, 2)
appears twice and (2, 1) appears three times in the whole downsampling path to

satisfy P with
∏L
i=1 s

h
i = 32 and

∏L
i=1 s

w
i = 4. Finally, a text image with size

(32,W ) is mapped into a feature sequence with a length of W/4.
The downsampling-path level search space is illustrated in Fig.2. Our goal is

to find an optimal path in this 3D-mesh, and the downsampling strategy in [38]
is a spatial case in this search space. To the best of our knowledge, there are no
suitable methods to search in such a constrained search space.

Operation level search space. The convolutional layers of current text recog-
nition networks usually share the same operation [7,38,48], such as 3×3 residual
convolution. Instead of setting each oi to be a fixed operation, we select a opera-
tor for each convolutional layer from a choice block with C parallel operators, as
illustrated in the bottom of Fig.2. Then, we can obtain a deep convolutional net-
work by stacking these choice blocks. Our choices on operations are inspired by



6 H. Zhang, Q. Yao, M. Yang, Y. Xu and X. Bai

(1,w/4)

(32,w)

(16,w)

(32,w)

...

layer 1 2 3 4 L-3 L-2 L-1 L

(16,w/2)

𝑜𝑝1

𝑜𝑝2

𝑜𝑝𝐶

…

𝑜𝑝1

𝑜𝑝2

𝑜𝑝𝐶

…

𝑜𝑝1

𝑜𝑝2

𝑜𝑝𝐶

…

CB1 CB2 CB𝐿

𝑜𝑝1

𝑜𝑝2

𝑜𝑝𝐶

…

CB𝐿−3

… …

Fig. 2. Search space illustration. Top: a 3D-mesh representation of the downsampling-
path level search space. Bottom: operation level search space, where “CBi” donates
the ith choice block and each block allows C choices for operations.

MobileNetV2 [34], which uses lightweight depthwise convolutions to save FLOPS
and the number of parameters. Thus, we build a set of mobile inverted bottle-
neck convolution layers (MBConv) with various kernel sizes k ∈ {3, 5}, expansion
factors e ∈ {1, 3, 6} and a skip-connect layer.

Table 2. Basic operation (i.e., opi’s) in the choice block (the bottom of Fig.2), where
“k” denotes kernel size and “e” denotes expansion factors.

MBConv(k:3×3,e:1) MBConv(k:3×3,e:3) MBConv(k:3×3,e:6) MBConv(k:5×5,e:1)

MBConv(k:5×5,e:3) MBConv(k:5×5,e:6) Skip-Connect

Complexity of the search space. When L = 15, there are 30030 possible
downsampling paths in search space illustrated in Fig.2. On operation level, if
we allow it to be one of the seven operations in Tab.2, then it leads to a total
number 30030×715 ' 1.43×1017 possible architectures for the backbone, which
is prohibitively large. In the sequel, we show a two-step algorithm which can
efficiently search through the space.



AutoSTR: Efficient Backbone Search for Scene Text Recognition 7

3.3 Search Algorithm

Since the combination of S and O generates a very space, directly optimizing the
problem in (1) is a huge challenge. Motivated by the empirical observation that
choices of the downsampling path and the operations are almost orthogonal with
each other (see Sec 4.6), in this section, we decouple the process of searching S
and O into two steps for the backbone search. Specifically, in the first step, we
fix the operation O as the 3×3 residual convolution (denote as Ô) and search for
the downsampling path. In the second step, we search a convolution operation
for every layer in the path.

Step 1: search downsampling path. Let Lrec(N ;D) measure the sequence
cross-entropy loss [38] with predictions from a network N on a dataset D, and
Dtra (resp. Dval) denotes the training (resp. validation) dataset. In this step, we
search downsampling path when operations are fixed, and (1) becomes

S∗ = arg min
S∈P
Lrec(N (w∗,S, Ô);Dval), (2)

s.t. w∗ = arg min
w
Lrec(N (w,S, Ô);Dtra).

As in Sec 3.2, downsampling path can only have two (2, 2) and three (2, 1) to
satisfy P, which are denoted as downsampling type A and B respectively. Note
that some current NAS methods [25, 45] use the same number of layers per
convolution stage and have achieved good results. Using this reasonable prior
knowledge, for a network with L = 15, we set downsampling at layers 1, 4, 7,
10, 13, and equally separate the network into five stages. Then the downsam-
pling strategies can be divided into 10 types of typical paths: AABBB, ABABB,
ABBAB, ABBBA, BAABB, BABAB, BABBA, BBAAB, BBABA, and BBBAA. We
can do a small grid search in these typical paths to find a good path that is close
to S∗. Then by learning the skip-connect in searching step 2, we can reduce the
number of layers for each convolutional stage.

Step 2: search operations. First, inspired by recent NAS methods [5, 12]
we associate the operation opli at the lth layer with a hyperparameter αli, which
relaxes the categorical choice of a particular operation in the choice block (Fig.2)
to be continuous. Since opli’s influence both complexity and performance of the
backbone [5, 34,45], we introduce a regularizer, i.e.,

r(α) = [log(

L∑
l=1

C∑
j=1

FLOPS(oplj)) · αlj/ log G]β , (3)

on the architecture α, where β > 0 and G > 1 be application-specific constants.
Then, (1) is transformed as

α∗ = arg min
α
r(α) · Lrec(N (w∗,S∗,α),Dval), (4)

s.t. w∗ = arg min
w
Lrec(N (w,S∗,α);Dtra).



8 H. Zhang, Q. Yao, M. Yang, Y. Xu and X. Bai

We can see that when Lrec is the same, r(α) make architectures with less FLOPS
favored. Thus, the regularizer can effectively trade off the accuracy with the
model size. Finally, (4) can be solved by many existing NAS algorithms, such as
DARTS [25], ProxylessNAS [5] and NASP [45]. Here, we adopt ProxylessNAS [5]
as it consumes the GPU memory less.

3.4 Comparison with other NAS works

The search constraint P on the downsampling path for is new to NAS, which
is specific to STR. Unfortunately, none of existing NAS algorithms can effec-
tively deal with the AutoSTR problem in (1) here. It is the proposed search
space (Sec 3.2) and two-stage search algorithm (Sec 3.3) that make NAS for
STR possible (see Tab.1). We notice that AutoDeepLab [24] also considers the
downsampling path. However, it targets at in segmentation task and its unique
decoding method is not suitable for our search space.

4 Experiments

4.1 Datasets

We evaluate our searched architecture on the following benchmarks that are
designed for general STR. Note that the images in the first four datasets are
regular while others are irregular.

– IIIT 5K-Words (IIIT5K) [31]: it contains 5,000 cropped word images for
STR, 2,000 for validation and other 3,000 images for testing; all images are
collected from the web.

– Street View Text (SVT) [40]: It is harvested from Google Street View. Its
test set contains 647 word images, which exhibits high variability and often
has low resolution. Its validation set contains 257 word images.

– ICDAR 2003 (IC03) [29]: it contains 251 full scene text images. Following [40],
we discard the test images containing non-alphanumeric characters or have less
than three characters. The resulting dataset contains 867 cropped images for
testing and 1,327 images as validation dataset.

– ICDAR 2013 (IC13) [19]: it contains 1,015 cropped text images as test set
and 844 images as validation set.

– ICDAR 2015 (IC15): it is the 4th Challenge in the ICDAR 2015 Robust Read-
ing Competition [18], which is collected via Google Glasses without careful
positioning and focusing. As a result, the dataset consists of a large propor-
tion of blurred and multi-oriented images. It contains 1811 cropped images
for testing and 4468 cropped text images as validation set.

– SVT-Perspective (SVTP): it is proposed in [33] which targets for evaluating
the performance of recognizing perspective text and contains 645 test images.
Samples in the dataset are selected from side-view images in Google Street
View. Consequently, a large proportion of images in the datasets are heavily
deformed by perspective distortion.



AutoSTR: Efficient Backbone Search for Scene Text Recognition 9

4.2 Implementation Details

The proposed method is implemented in PyTorch. We adopt ADADELTA [47]
with default hyper-parameters (rho=0.9, eps=1e-6, weight decay=0) to mini-
mize the objective function. When searching the downsampling path, we train
5 epochs for each typical path where the convolutional layers are equipped with
default 3× 3 convolution. In the operation searching step, we warm-up weights
of each choice block by uniformly selecting operations for one epoch. And then
use the method proposed in Sec 3.3 to jointly train architecture parameters and
weight parameters for two epochs. In the evaluation step, the searched archi-
tectures are trained on Synth90K [15] and SynthText [13] from scratch without
finetuning on any real datasets. All models are trained on 8 NVIDIA 2080 graph-
ics cards. Details of each module in Fig.1 are as follows:

Rectification module. Following [38], we use Spatial Transformer Network
(STN) to rectify the input text image. The STN contains three parts: (1) Lo-
calization Network, which consists of six 3×3 convolutional layers and two fully
connected layers. In this phase, 20 control points are predicted. Before fed into
the localization network, the input image is resized to 32×64. (2) Grid Genera-
tor, which yields a sampling grid according to the control points. (3) Sampler,
which generates a rectified text image with the sampling grid. The sampler pro-
duces a rectified image of size 32×100 from the input image of size 64×256 and
sends it to the subsequent sequence feature extractor.

Feature sequence extractor module. The feature sequence extractor dy-
namically changes during the search phase. For every test dataset, an archi-
tecture is searched. During the search phase, Synth90K [15] (90k) and Synth-
Text [13] (ST) are used for training. The validation set of each target dataset
is considered as the search validation set and is used to optimize the network
structure. In order to prevent overfitting caused by too small validation set, we
add extra COCO-Text training set to the search validation set. To control the
complexity of the backbone, we only search those with less than 450M FLOPS
which is close to that of the backbone used in ASTER. The maximum depth of
our search network is 16 blocks, including a stem with 3×3 residual convolution
and 15 choice blocks. It has a total of 5 convolutional stages, each stage has 3
choice blocks, the number filters of each stage are respectively 32, 64, 128, 256,
512 respectively.

Feature translator module. A common attention based decoder [38] is em-
ployed to translate the feature sequence to a character sequence. For simplicity,
only left-to-right decoder is used. The module contains two layers of Bidirectional
LSTM (BiLSTM) encoder (512 input units, 256 hidden units) and an attention
based GRU Cell decoder (1 layer, 512 input units, 512 hidden units, 512 at-
tention units) to model variable-length character sequence. The decoder yields
95 character categories at each step, including digits, upper-case and lower-case
letters, 32 ASCII punctuation marks and an end-of-sequence symbol (EOS).



10 H. Zhang, Q. Yao, M. Yang, Y. Xu and X. Bai

Table 3. Performance comparison on regular and irregular scene text datasets. “ST”,
“90k” are the training data of SynthText [27], Synth90k [15], and “extra” means extra
real or synthetic data, respectively. The methods marked with “†” use the character
box annotations. “ASTER (ours)” is the reproduced ASTER baseline method, whose
difference is that only left-to-right translator is equipped.

Methods Data
Regular Irregular

IIIT5K SVT IC03 IC13 SVTP IC15

Jaderberg et al. [16] 90k - 80.7 93.1 90.8 - -

CRNN [36] 90k 81.2 82.7 91.9 89.6 - -

RARE [37] 90k 81.9 81.9 90.1 88.6 71.8 -

R2AM [20] 90k 78.4 80.7 88.7 90.0 - -

Yang et al. [44] 90k - - - - 75.8 -

Char-net [26] 90k 83.6 84.4 91.5 90.8 73.5 -

Liu et al [27] 90k 89.4 87.1 94.7 94.0 73.9 -

AON [8] ST+90k 87.0 82.8 91.5 - 73.0 68.2

FAN† [7] ST+90k 87.4 85.9 94.2 93.3 - 70.6

EP [4] ST+90k 88.3 87.5 94.6 94.4 - 73.9

SAR [21] ST+90k 91.5 84.5 - 91.0 76.4 69.2

CA-FCN† [23] ST+extra 92.0 86.4 - 91.5 - -

ESIR [48] ST+90k 93.3 90.2 - 91.3 79.6 76.9

SCRN† [43] ST+90k 94.4 88.9 95.0 93.9 80.8 78.7

ASTER [38] ST+90k 93.4 89.5 94.5 91.8 78.5 76.1

ASTER (ours) ST+90k 93.3 89.0 92.4 91.5 79.7 78.5

AutoSTR ST+90k 94.7 90.9 93.3 94.2 81.7 81.8

4.3 Comparison with State of the Art

Recognition accuracy. Following [2], all related works are compared in the
unconstrained-lexicon setting. Equipped with the searched backbone, the whole
framework is compared with other state-of-the-art methods, as shown in Tab.3.
AutoSTR achieves the best performance in IIIT5K, SVT, IC15, SVTP and get
comparable results in IC03, IC13. It is worth noting that AutoSTR outperforms
ASTER (ours) on IIIT5K, SVT, IC03, IC13, SVTP, IC15 by 1.4%, 1.9%, 0.9%,
2.7%, 2%, 3.3%, which domonstrate the effectiveness of AutoSTR. Although
SCRN can achieve comparable performance with AutoSTR, its rectification mod-
ule requires extra character-level annotations for more precise rectification. As
a plug-in part, AutoSTR is expected to further improve the performance while
been equipped with the rectification module of SCRN.

Memory and FLOPS. The comparison on FLOPS and memory size are
in Fig.3. We can see that, compared with the state-of-the-art methods, like
SAR [21], CA-FCN [23], ESIR [48], SCRN [43], ASTER [38], the searched ar-
chitecture cost much less in FLOPS and memory size. Thus, AutoSTR is much
more effective in mobile setting, where FLOPS and model size is limited.



AutoSTR: Efficient Backbone Search for Scene Text Recognition 11

(a) FLOPS (million).

IIIT5K IIIT5KSVTP SVTP

(b) Number of parameters (million).

Fig. 3. Accuracy versus computational complexity and memory on IIIT5K and SVTP.
Points closer to the top-left are better. Only methods with good performance, i.e., with
accuracy greater than 90% on IIIT5K, are plotted.

4.4 Case Study: Searched Backbones and Discussion

Dataset-dependency. In Fig.4, we illustrate architectures of searched fea-
ture extractors on each test dataset to give some insights about the design of
backbones. We observe some interesting patterns. The shallower convolutional
stages (e.g., 1, 2) of the network, prefer larger MBConv operations (e.g., MB-
Conv(k:5,e:6)) and do not have skip-connect layer. But in the deeper convolu-
tional stages (e.g., 3, 4, 5), smaller MBConvs are employed and skip connec-
tions are learned to reduce the number of convolutional layers. Especially in the
last convolutional stage, only one convolutional layer exists. The observed phe-
nomenon is consistent with some manually designed network architecture, such
as SCRN [43]. Specifically, in its first two stages, ResNet50 is used to extract
features, and in the later stages, only a few convolutional layers are attached to
quickly downsample feature map to generate feature sequences in the horizontal
direction. This phenomenon may inspire us to design better text image feature
extractor in the future.

Compactness. We compare our searched architectures with All MBConv(k:5,e:6)
baseline model which choices blocks with the maximum number of parameters
in each layer and uses ABABB downsampling strategy as shown in the right of
Fig.4. Comparing architectures in Fig.4, we can see that our searched structure
has less FLOPS and parameters, while maintain better accuracy, as shown in
Tab.4. Our searched architectures use less FLOPS and parameters, but exceeds
the accuracy of the baseline model, which explains that the maximum number of
parameters model (All MBConv(k:5,e:6) baseline) have lots of redundancy pa-
rameters, AutoSTR can remove some redundant layers and optimize the network
structure.

Table 4. Accuracies compared with the baseline of All MBConv(k:5,e:6).

Methods IIIT5K SVT IC13 IC15

All MBConv(k:5,e:6) 94.5 90.4 92.3 81.1

AutoSTR 94.7 90.9 94.2 81.8



12 H. Zhang, Q. Yao, M. Yang, Y. Xu and X. Bai

co
nv
3x
3_
bn

_r
el
u

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e3
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
3,
e3
)

M
BC

on
v(
k:
5,
e3
)

M
BC

on
v(
k:
5,
e3
)

co
nv
3x
3_
bn

_r
el
u

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e3
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e3
)

M
BC

on
v(
k:
5,
e3
)

M
BC

on
v(
k:
5,
e3
)

co
nv
3x
3_
bn

_r
el
u

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e3
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e1
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e3
)

IIIT5K
FLOPS: 256M
Params: 2.36M

A B A B B

A B A B B

A A B B B

SVT
FLOPS: 235M
Params: 2.16M

IC03
FLOPS: 205M
Params: 2.43M

co
nv
3x
3_
bn

_r
el
u

M
BC

on
v(
k:
5,
e3
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e3
)

M
BC

on
v(
k:
5,
e3
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e1
)

M
BC

on
v(
k:
5,
e6
)

co
nv
3x
3_
bn

_r
el
u

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

co
nv
3x
3_
bn

_r
el
u

M
BC

on
v(
k:
5,
e3
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
5,
e3
)

M
BC

on
v(
k:
5,
e6
)

M
BC

on
v(
k:
3,
e1
)

M
BC

on
v(
k:
3,
e6
)

M
BC

on
v(
k:
5,
e6
)

IC13
FLOPS: 255M
Params: 2.94M

IC15
FLOPS: 330M
Params: 3.92M

SVTP
FLOPS: 172M
Params: 2.07M

A B A B B

A B A B B

A A B B B

Fig. 4. Left: the searched architectures for AutoSTR in Tab.3. Right: all MB-
Conv(k:5,e:6) baseline architecture.

4.5 Comparison with Other NAS Approaches

Search algorithm comparison. From recent benchmarks and surveys [6, 22,
35], the random search algorithm is a very strong baseline, we perform a ran-
dom architecture search from the proposed search space. We choice 10 random
architectures, train them from scratch, then test these random architectures on
IIIT5K dataset. Random search takes about 15 × 4GPU days, while AutoSTR
only costs 1.7× 4GPU days in downsampling-path search step and 0.5× 4GPU
days in operation search step. The discovered architecture outperforms random
architectures in IIIT5K dataset by 0.5%-1.4% as in Fig.5, which demonstrates
AutoSTR is more effectiveness and efficiency.

Reusing other searched architectures. NAS has been extensive researched
on image classification task [5, 25, 45] and segmentation task [24], et al. We
study whether those searched architectures are applicable here or not. Since the



AutoSTR: Efficient Backbone Search for Scene Text Recognition 13

Fig. 5. Comparison to random search on IIIT5K dataset.

constraint in (1) cannot be directly satisfied, we manually tune the searched
cell (from DARTS [25] and AutoDeepLab [24]) in ASTER. As can be seen from
Tab.5, the performance of the backbone from DARTS and AutoDeepLab is much
worse. This further demonstrates direct reusing architecture searched from other
tasks is not good.

Table 5. Comparison with DARTS and AutoDeepLab.

backbones IIIT5K SVT SVT IC13 SVTP IC15

ASTER [38] 93.3 89.0 92.4 91.5 79.7 78.5

DARTS [25] 90.6 83.9 91.3 88.3 76.1 73.5

AutoDeepLab [24] 93.0 87.2 91.8 91.0 77.5 76.6

AutoSTR 94.7 90.9 93.3 94.2 81.7 81.8

4.6 Ablation Study

Downsampling path. In our proposed method, we decouple the searching
problem in (1) into a two-step optimization problem as (2) and (4). This is
based on an empirical assumption that a better feature downsampling path can
provide a better startup for the operation searching problem, thus can get better
architectures easier. We use two typical strategies in our downsampling path
search space, i.e., AABBB and ABABB to search operations on IIIT5K datasets.
As shown in Tab.6, the optimal downsampling path will not be affected by the
default operation (i.e. 3×3 residual convolution, MBConv(k:3,e:1)). Besides, a
better downsampling strategy (i.e. ABABB) helps AutoSTR to find a better
architecture in the operation search step, which confirms our assumption.



14 H. Zhang, Q. Yao, M. Yang, Y. Xu and X. Bai

Table 6. Comparison of different downsampling path on IIIT5K dataset.

Downsample Path Default Conv Search Step 1 Search Step 2

AABBB
3x3 residual conv 92.5

93.9
MBConv(k:3,e:1) 91.3

ABABB
3x3 residual onv 93.1

94.7
MBConv(k:3,e:1) 92.0

Impact of the regularizer. In (3), we introduce FLOPS into objective func-
tion as a regularization term. By adjusting β, we can achieve the trade off be-
tween the calculation complexity and accuracy, as shown in Tab.7.

Table 7. Impact of the regularization on IIIT5K dataset.

β 0.0 0.3 0.6 0.9

Accuracy (%) 94.6 94.5 94.7 93.5

FLOPS (M) 319 298 256 149

Params (M) 3.82 3.40 2.36 1.32

5 Conclusion

In this paper, we propose to use neural architecture search technology finding
data-dependent sequence feature extraction, i.e., the backbone, for the scene text
recognition (STR) task. We first design a novel search space for the STR problem,
which fully explore the prior from such a domain. Then, we propose a new two-
step algorithm, which can efficiently search the feature downsampling path and
operations separately. Experiments demonstrate that our searched backbone can
greatly improve the capability of the text recognition pipeline and achieve the
state-of-the-art results on STR benchmarks. As for the future work, we would
like to extend the search algorithm to the feature translator.

Acknowledgments

The work is performed when H. Zhang was an intern in 4Paradigm Inc. men-
tored by Dr. Q. Yao. This work was partially supported by National Key R&D
Program of China (No. 2018YFB1004600), to Dr. Xiang Bai by the National
Program for Support of Top-notch Young Professionals and the Program for
HUST Academic Frontier Youth Team 2017QYTD08.



AutoSTR: Efficient Backbone Search for Scene Text Recognition 15

References

1. Almazán, J., Gordo, A., Fornés, A., Valveny, E.: Word spotting and recognition
with embedded attributes. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2014)

2. Baek, J., Kim, G., Lee, J., Park, S., Han, D., Yun, S., Oh, S.J., Lee, H.: What is
wrong with scene text recognition model comparisons? dataset and model analysis.
In: International Conference on Computer Vision (2019)

3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. Tech. rep., arXiv preprint arXiv:1409.0473 (2014)

4. Bai, F., Cheng, Z., Niu, Y., Pu, S., Zhou, S.: Edit probability for scene text recog-
nition. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

5. Cai, H., Zhu, L., Han, S.: ProxylessNAS: Direct neural architecture search on tar-
get task and hardware. In: International Conference on Learning Representations
(2019)

6. Chen, Y., Yang, T., Zhang, X., Meng, G., Xiao, X., Sun, J.: DetNAS: Backbone
search for object detection. In: Advances in Neural Information Processing Systems
(2019)

7. Cheng, Z., Bai, F., Xu, Y., Zheng, G., Pu, S., Zhou, S.: Focusing attention: Towards
accurate text recognition in natural images. In: IEEE Conference on Computer
Vision and Pattern Recognition (2017)

8. Cheng, Z., Xu, Y., Bai, F., Niu, Y., Pu, S., Zhou, S.: Aon: Towards arbitrarily-
oriented text recognition. In: IEEE Conference on Computer Vision and Pattern
Recognition (2018)

9. Dutta, K., Mathew, M., Krishnan, P., Jawahar, C.: Localizing and recognizing
text in lecture videos. In: International Conference on Frontiers in Handwriting
Recognition (2018)

10. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey. Journal
of Machine Learning Research (2019)

11. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: International Conference on Machine learning (2006)

12. Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Single path one-
shot neural architecture search with uniform sampling. Tech. rep., arXiv preprint
arXiv:1904.00420 (2019)

13. Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in nat-
ural images. In: IEEE Conference on Computer Vision and Pattern Recognition.
pp. 2315–2324 (2016)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

15. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and arti-
ficial neural networks for natural scene text recognition. Tech. rep., arXiv preprint
arXiv:1406.2227 (2014)

16. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the
wild with convolutional neural networks. International Journal of Computer Vision
(2016)

17. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks.
In: Advances in Neural Information Processing Systems (2015)

18. Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanov, A., Iwa-
mura, M., Matas, J., Neumann, L., Chandrasekhar, V.R., Lu, S., et al.: Icdar 2015



16 H. Zhang, Q. Yao, M. Yang, Y. Xu and X. Bai

competition on robust reading. In: International Conference on Document Analysis
and Recognition (2015)

19. Karatzas, D., Shafait, F., Uchida, S., Iwamura, M., i Bigorda, L.G., Mestre, S.R.,
Mas, J., Mota, D.F., Almazan, J.A., De Las Heras, L.P.: Icdar 2013 robust reading
competition. In: International Conference on Document Analysis and Recognition
(2013)

20. Lee, C.Y., Osindero, S.: Recursive recurrent nets with attention modeling for OCR
in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition
(2016)

21. Li, H., Wang, P., Shen, C., Zhang, G.: Show, attend and read: A simple and
strong baseline for irregular text recognition. In: AAAI Conference on Artificial
Intelligence (2019)

22. Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture
search. In: Uncertainty in Artificial Intelligence (2019)

23. Liao, M., Zhang, J., Wan, Z., Xie, F., Liang, J., Lyu, P., Yao, C., Bai, X.: Scene text
recognition from two-dimensional perspective. In: AAAI Conference on Artificial
Intelligence (2019)

24. Liu, C., Chen, L.C., Schroff, F., Adam, H., Hua, W., Yuille, A.L., Fei-Fei, L.: Auto-
deeplab: Hierarchical neural architecture search for semantic image segmentation.
In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

25. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In:
International Conference on Learning Representations (2019)

26. Liu, W., Chen, C., Wong, K.Y.K.: Char-net: A character-aware neural network
for distorted scene text recognition. In: AAAI Conference on Artificial Intelligence
(2018)

27. Liu, Y., Wang, Z., Jin, H., Wassell, I.: Synthetically supervised feature learning for
scene text recognition. In: European Conference on Computer Vision (2018)

28. Long, S., He, X., Yao, C.: Scene text detection and recognition: The deep learning
era. Tech. rep., arXiv preprint arXiv:1811.04256 (2018)

29. Lucas, S.M., Panaretos, A., Sosa, L., Tang, A., Wong, S., Young, R., Ashida, K.,
Nagai, H., Okamoto, M., Yamamoto, H.: Icdar 2003 robust reading competitions:
entries, results, and future directions. International Journal of Document Analysis
and Recognition (2005)

30. Luo, C., Jin, L., Sun, Z.: MORAN: A multi-object rectified attention network for
scene text recognition. Pattern Recognition (2019)

31. Mishra, A., Alahari, K., Jawahar, C.: Top-down and bottom-up cues for scene text
recognition. In: IEEE Conference on Computer Vision and Pattern Recognition
(2012)

32. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture
search via parameter sharing. In: International Conference on Machine Learning
(2018)

33. Quy Phan, T., Shivakumara, P., Tian, S., Lim Tan, C.: Recognizing text with
perspective distortion in natural scenes. In: IEEE Conference on Computer Vision
and Pattern Recognition (2013)

34. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision
and Pattern Recognition (2018)

35. Sciuto, C., Yu, K., Jaggi, M., Musat, C., Salzmann, M.: Evaluating the search
phase of neural architecture search. In: International Conference on Learning Rep-
resentations (2020)



AutoSTR: Efficient Backbone Search for Scene Text Recognition 17

36. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2017)

37. Shi, B., Wang, X., Lyu, P., Yao, C., Bai, X.: Robust scene text recognition with
automatic rectification. In: IEEE Conference on Computer Vision and Pattern
Recognition (2016)

38. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: Aster: An attentional scene
text recognizer with flexible rectification. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2019)

39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. Tech. rep., arXiv preprint arXiv:1409.1556 (2014)

40. Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: Inter-
national Conference on Computer Vision (2011)

41. Xie, F., Zhang, M., Zhao, J., Yang, J., Liu, Y., Yuan, X.: A robust license plate de-
tection and character recognition algorithm based on a combined feature extraction
model and bpnn. Journal of Advanced Transportation (2018)

42. Xie, L., Yuille, A.: Genetic CNN. In: IEEE International Conference on Computer
Vision (2017)

43. Yang, M., Guan, Y., Liao, M., He, X., Bian, K., Bai, S., Yao, C., Bai, X.: Symmetry-
constrained rectification network for scene text recognition. In: IEEE International
Conference on Computer Vision (2019)

44. Yang, X., He, D., Zhou, Z., Kifer, D., Giles, C.L.: Learning to read irregular text
with attention mechanisms. In: International Joint Conferences on Artificial Intel-
ligence (2017)

45. Yao, Q., Xu, J., Tu, W.W., Zhu, Z.: Efficient neural architecture search via proximal
iterations. In: AAAI Conference on Artificial Intelligence (2020)

46. Yao, Q., Wang, M.: Taking human out of learning applications: A survey on auto-
mated machine learning. Tech. rep., arXiv preprint arXiv:1810.13306 (2018)

47. Zeiler, M.: Adadelta: an adaptive learning rate method. Tech. rep., arXiv preprint
arXiv:1212.5701 (2012)

48. Zhan, F., Lu, S.: ESIR: End-to-end scene text recognition via iterative image recti-
fication. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

49. Zhu, Y., Yao, C., Bai, X.: Scene text detection and recognition: Recent advances
and future trends. Frontiers of Computer Science (2016)

50. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
International Conference on Learning Representations (2017)


