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Abstract. Data augmentation methods are indispensable heuristics to
boost the performance of deep neural networks, especially in image recog-
nition tasks. Recently, several studies have shown that augmentation
strategies found by search algorithms outperform hand-made strategies.
Such methods employ black-box search algorithms over image transfor-
mations with continuous or discrete parameters and require a long time
to obtain better strategies. In this paper, we propose a differentiable
policy search pipeline for data augmentation, which is much faster than
previous methods. We introduce approximate gradients for several trans-
formation operations with discrete parameters as well as a differentiable
mechanism for selecting operations. As the objective of training, we min-
imize the distance between the distributions of augmented and original
data, which can be differentiated. We show that our method, Faster Au-
toAugment, achieves significantly faster searching than prior methods
without a performance drop.

1 Introduction

Data augmentation is a powerful technique for machine learning to virtually
increase the amount and diversity of data, which improves performance espe-
cially in image recognition tasks. Conventional data augmentation methods in-
clude geometric transformations such as rotation and color enhancement such
as auto-contrast. Similarly to selecting other hyperparameters, the designers of
data augmentation strategies usually select transformation operations based on
their prior knowledge (e.g., required invariance). For example, horizontal flip-
ping is expected to be effective for general object recognition but probably not
for digit recognition. In addition to the selection, the designers need to combine
several operations and set their magnitudes (e.g., degree of rotation). Therefore,
designing of data augmentation strategies is a complex combinatorial problem.

When designing data augmentation strategies in a data-driven manner, one
can regard the problem as searching for optimal hyperparameters in a search
space, which becomes prohibitively large as the number of combinations in-
creases. Therefore, efficient methods are required to find optimal strategies. If
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Fig. 1. Overview of our proposed model. We propose to use a differentiable data
augmentation pipeline to achieve a faster policy search by using adversarial learning.

Table 1. Faster AutoAugment (Faster AA) is much faster than the other
methods without a significant performance drop (see Section 5). GPU hours
comparison of Faster AA, AutoAugment (AA) [5], PBA [12] and Fast AutoAugment
(Fast AA) [18].

Dataset AA PBA Fast AA Faster AA (ours)

CIFAR-10 5,000 5.0 3.5 0.23

SVHN 1,000 1.0 1.5 0.061

ImageNet 15,000 - 450 2.3

gradient information of these hyperparameters is available, they can be effi-
ciently optimized by gradient descent [20]. However, the gradient information is
usually difficult to obtain because some magnitude parameters are discrete and
the selection of operations is non-differentiable. Therefore, previous research on
automatically designing data augmentation policies has used black-box optimiza-
tion methods that require no gradient information. For example, AutoAugment
[5] used reinforcement learning.

In this paper, we propose to solve the problem by approximating gradient in-
formation and thus enabling gradient-based optimization for data augmentation
policies. To this end, we approximate the gradients of discrete image opera-
tions using a straight-through estimator [3] and make the selection of opera-
tions differentiable by incorporating a recent differentiable neural architecture
search method [19]. As the objective, we minimize the distance between the
distributions of the original and augmented images, because we want the data
augmentation pipeline to transform images so that it fills sparsely populated
data points in the training data [18] (see Figure 2). To make the transformed
images match the distribution of original images, we use adversarial learning (see
Figure 1). As a result, the search process becomes end-to-end differentiable and
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Fig. 2. We regard data augmentation as a process that fills missing data points
of the original training data; therefore, our objective is to minimize the distance
between the distributions of augmented and original data using adversarial learning.

significantly faster than prior methods such as AutoAugment, PBA and Fast
AutoAugment (see Table 1 3).

We empirically show that our method, which we call Faster AutoAugment,
enables a much faster policy search while achieving performance comparable to
that of prior methods on the standard benchmarks of CIFAR-10, CIFAR-100
[16], SVHN [21] and ImageNet [27].

In summary, our contributions are threefold:

1. We introduce gradient approximations for several non-differentiable data
augmentation operations.

2. We make the searching of data augmentation policies end-to-end differen-
tiable by gradient approximations, a differentiable selection of operations
and a differentiable objective that measures the distance between the origi-
nal and augmented image distributions.

3. We show that our proposed method, Faster AutoAugment, significantly re-
duces the search time compared with prior methods without a crucial per-
formance drop.

2 Related Work

Neural Architecture Search (NAS) NAS aims to automatically design ar-
chitectures of neural networks to achieve a higher performance than manually
designed ones. To this end, NAS algorithms are required to select better combi-
nations of components (e.g., convolution with a 3x3 kernel) from discrete search
spaces using search algorithms such as reinforcement learning [38] and evolu-
tion strategy [25]. Recently, DARTS [19] achieved a faster search by relaxing
the discrete search space to a continuous one which allowed the use of gradient-
based optimization. While AutoAugment [5] was inspired by [38], our method is
influenced by DARTS [19].

3 Note that [18] and our study estimated the GPU hours with an NVIDIA V100 GPU
while [5] did with an NVIDIA P100 GPU.
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Data Augmentation Data augmentation methods improve the performance
of learnable models by increasing the virtual size and diversity of training data
without collecting additional data samples. Traditionally, geometric and color-
enhancing transformations have been used in image recognition tasks. For ex-
ample, [17,11] randomly applied horizontal flipping and cropping as well as the
alternation of image hues. In recent years, other image manipulation methods
have been shown to be effective. [37,6] cut out a random patch from an image
and replaced it with random noise or a constant value. Another strategy is to
mix multiple images of different classes either by convex combinations [36,30]
or by creating a patchwork from them [34]. In these studies, the selection of
operations, their magnitudes and the probabilities to be applied were carefully
manually designed.

Automating Data Augmentation Similar to NAS, it is a natural direction
to aim to automate data augmentation. One direction is to search for better
combinations of symbolic operations using black-box optimization techniques
such as reinforcement learning [5,24], evolution strategy [32], Bayesian optimiza-
tion [18] and population-based training [12]. As the objective, [5,32,12] directly
aimed to minimize the error rate, or equivalently to maximize accuracy, while
[24,18] attempted to match the densities of augmented and original images. An-
other direction is to use generative adversarial networks (GANs) [9]. [31,1] used
conditional GANs to generate images that promote the performance of image
classifiers. [28,29] used GANs to modify the outputs of simulators to look like
real objects. Automating data augmentation can also be applied to representa-
tion learning such as semi-supervised learning [4,33] and domain generalization
[32].

3 Preliminaries

In this section, we describe the common basis of AutoAugment [5], PBA [12] and
Fast AutoAugment [18] (see also Figure 3). Faster AutoAugment also follows this
problem setting.

In these methods, input images are augmented by a policy that consists
of L different subpolicies S(l) (l = 1, 2, . . . , L). A randomly selected subpolicy
transforms each image X. A single subpolicy consists of K consecutive image

processing operations O
(l)
1 , . . . , O

(l)
K , which are applied to the image one by one.

We refer to the number of consecutive operations K as the operation count. In
the rest of this paper, we focus on subpolicies; therefore, we omit the superscript
l. Each method first searches for better policies. After the search phase, the
obtained policy is used as a data augmentation pipeline to train neural networks.

3.1 Operations

Operations used in each subpolicy include affine transformations such as shear x

and color-enhancing operations such as solarize. Additionaly, we use cutout [6]
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Fig. 3. Schematic view of the problem setting. Each image is augmented by a subpol-
icy randomly selected from the policy. A single subpolicy is composed ofK consecutive
operations (O1, . . . , OK), such as shear x and solarize. An operation Ok operates
a given image with the probability pk and magnitude µk.

and sample pairing [13] following [5,12,18]. We show all 16 operations used in
these methods in Table 2. Let the set of operations beO = {shear x, solarize, . . .}.

Some operations have magnitude parameters that are free variables, e.g., the
angle in rotate. On the other hand, some operations, such as invert, have
no magnitude parameters. For simplicity, we use the following expressions as
if every operation has a magnitude parameter µO(∈ [0, 1]). Each operation is
applied with the probability pO(∈ [0, 1]). Therefore, each image X is augmented
as

X →

{
O(X;µO) (with probability pO)

X (with probability 1− pO).
(1)

Rewriting this mapping as O(·;µO, pO), each subpolicy S consisting of oper-
ations O1, O2, . . . , OK can be written as

S(X;µS ,pS) = (OK ◦ · · · ◦O1)(X;µS ,pS), (2)

where µS = (µO1
, . . . , µOK

) and pS = (pO1
, . . . , pOK

). In the rest of this paper,
we represent an image operation as O, O(·;µ) and O(·;µ, p) interchangeably
according to the context.

3.2 Search Space

The goal of searching is to find the best operation combination O1, . . . , OK and
parameter sets (µS ,pS) for L subpolicies. Therefore, the size of the total search
space is roughly (#O × [0, 1] × [0, 1])KL. Using multiple subpolicies results in
a prohibitively large search space for brute-force searching. [18] used Bayesian
optimization in this search space. [5,12] discretized the continuous part [0, 1]
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Table 2. Operations used in AutoAugment, PBA, Fast AutoAugment and Faster
AutoAugment. Some operations have discrete magnitude parameters µ, while others
have no or continuous magnitude parameters. Different from previous methods, we
approximate gradients of operations w.r.t. discrete magnitude µ, which we describe in
Section 4.1.

Operation Magnitude µ

Affine
transformation

shear x continuous
shear y continuous
translate x continuous
translate y continuous
rotate continuous
flip none

Color
enhancing
operations

solarize discrete
posterize discrete
invert none
contrast continuous
color continuous
brightness continuous
sharpness none
auto contrast none
equalize none

Other operations
cutout discrete
sample pairing continuous

into 10 or 11 values and searched the space using reinforcement learning and
population-based training. Nevertheless, the problem is still difficult to solve
naively even after discretizing the search space. For instance, if the number of
subpolicies L is 10 with K = 2 consecutive operations, the discretized space size
becomes (16× 10× 11)2×10 ≈ 8.1× 1064.

Previous methods [5,12,18] used black-box optimization. Therefore, they needed
to train CNNs with candidate policies and obtain their validation accuracy. The
repetition of this process requires a long time. In contrast, Faster AutoAugment
achieves a faster search with gradient-based optimization to avoid repetitive eval-
uations, even though the search space is the same as that in Fast AutoAugment.
We describe the details of Faster AutoAugment in the next section.

4 Faster AutoAugment

Faster AutoAugment explores the search space to find better policies in a gradient-
based manner, which distinguishes our method. In Section 4.1, we describe
the details of the gradient approximation for policy searching. To accomplish
gradient-based training, we adopt distance minimization between the distribu-
tions of the augmented and original images as the learning objective, which we
present in Section 4.2.
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4.1 Differentiable Data Augmentation Pipeline

Previous search methods [5,12,18] have used image processing libraries (e.g., Pil-
low) that do not support backpropagation through the operations in Table 2.
Contrary to previous methods, we modify these operations to be differentiable
with respect to the probability p and magnitude µ. Thanks to this modifica-
tion, the search problem becomes an optimization problem. The sequence of
operations in each subpolicy also needs to be optimized in the same manner.

Probability parameter p First, we regard equation 1 as bO(X;µ)+(1−b)X,
where b ∈ {0, 1} is sampled from the Bernoulli distribution Bern(b; p), i.e., b = 1
with the probability p. Since this distribution is non-differentiable, we instead
use the relaxed Bernoulli distribution [14]

ReBern(b; p, λ) = ς(
1

λ
{log

p

1− p
+ log

u

1− u
}). (3)

Here, ς(x) =
1

1 + exp(−x)
is a sigmoid function that keeps the range of the

function in (0, 1) and u is a value sampled from a uniform distribution on [0, 1].
At a low temperature λ, this relaxed distribution behaves similarly to a Bernoulli
distribution. Using this reparameterization, each operation O(·;µO, pO) can be
differentiable w.r.t. its probability parameter p.

Magnitude parameter µ For some operations, such as rotate or translate x,
their gradients w.r.t. their magnitude parameter µ can be obtained easily. How-
ever, some operations such as posterize and solarize discretize magnitude
values. In such cases, gradients w.r.t. µ cannot backpropagate through these
operations. Thus, we approximate their gradient in a similar manner to the
straight-through estimator [3,22]. More precisely, we approximate the (i, j)th
element of an augmented image by an operator O as

Õ(X;µ)i,j = StopGrad(O(X;µ)i,j − µ) + µ, (4)

where StopGrad is a stop gradient operation, which treats its operand as a con-
stant. During the forward computation, the augmentation is exactly operated:
Õ(X;µ)i,j = O(X;µ)i,j . However, during the backward computation, the first
term of the right-hand side of equation 4 is ignored because it is constant, and
then we obtain an approximated gradient:

∂O(X)i,j
∂µ

≈ ∂Õ(X)i,j
∂µ

= 1. (5)

Despite its simplicity, we find that this method works well in our experiments.
Using this approximation, each operation O(·;µO, pO) can be differentiable w.r.t.
its magnitude parameter µ.
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Fig. 4. Schematic view of the selection of operations in a single subpolicy when K = 2.
During the search, we apply all operations to an image and take the weighted sum of
the results as an augmented image. The weights w1 and w2 are also updated as other
parameters. After the search, we sample operations according to the trained weights.

Selecting operations in subpolicies Each subpolicy S consists of K consecu-
tive operations. To select the appropriate operation Ok where k ∈ {1, 2, . . . ,K},
we use a strategy similar to the one used in NAS [19] (see also Algorithm 1 and
Figure 4 for details). To be specific, selecting the nth operation in O is equal to

applying all operations O
(1)
k , O

(2)
k , . . . , O

(#O)
k and selecting a result by multiply-

ing a one-hot vector whose nth element is 1. We approximate this onehot vector
by weighted sum of the outputs of all operations:

Ok(X;µk, pk) ≈
#O∑
m=1

[ση(wk)]mO
(m)
k (X;µ

(m)
k , p

(m)
k ). (6)

Here, O
(m)
k is an operation in O, and O

(m)
k and O

(m′)
k are different opera-

tions if m 6= m′. wk is a learnable parameter and ση is the softmax function

ση(z) =
exp(z/η)∑
j exp(zi/η)

with a temperature parameter η > 0. At a low temper-

ature η, ση(wk) becomes a onehot-like vector. During inference, we sample the
kth operation according to the categorical distribution Cat(σk(wk)).

4.2 Data Augmentation as Density Matching

Using the techniques described above, we can backpropagate through the data
augmentation process. In this section, we describe the objective of policy learn-
ing.
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Algorithm 1 Selection of operations in a single subpolicy during a search. Refer
to Figure 4 for the case of K = 2.

X: input image, {w1, . . . ,wK}: learnable weights,
ση: softmax function with temperature η
for k in {1, 2, . . . ,K} :

Augment X by the kth stage operations: X ←
#O∑
n=1

[ση(wk)]nO
(n)
k (X;µ

(n)
k , p

(n)
k )

return X

One possible objective is the minimization of the validation loss as in DARTS
[19]. Such formulation requires a nested optimization with an inner loop for
parameter optimization and an outer loop for hyperparameter or architecture
optimization. Unfortunately, this optimization takes a long time and requires a
large memory footprint [7], which makes it impossible to apply it to training
on large-scale datasets such as ImageNet. Moreover, data augmentation is not
applied during the outer loop, i.e., validation, which differs from NAS that uses
a searched architecture during the outer loop. Thus, we adopt a different of
adversarial learning to avoid the nested loop.

Data augmentation can be seen as a process that fills missing data points
in training data [18,24,31]. Therefore, we minimize the distance between dis-
tributions of the original and augmented images. This goal can be achieved by
minimizing the Wasserstein distance between these distributions dθ using a sta-
ble Wasserstein GAN with a gradient penalty [2,10]. Here, θ is the parameters of
its critic. Unlike typical GANs for image modification, our model does not have a
typical generator that learns to transform images using conventional neural net-
work layers. Instead, a policy — explained in previous sections — is trained and
transforms images using predefined operations. Following prior work [5,12,18], we
use WideResNet-40-2 [35] (for CIFAR-10, CIFAR-100 and SVHN) or ResNet-50
[11] (for ImageNet) and add a two-layer perceptron that serves as a critic along-
side the original classifier. The classification loss is used to prevent images of a
certain class from being transformed into images of another class. Algorithm 2
depicts the detailed procedure. Importantly, we match different minibatches B
and B′ and randomly initialize M ,P ,W , which are expected to prevent policies
from being trapped into “no-op” solutions, as shown in Figure 5.

5 Experiments and Results

In this section, we show the empirical results of our approach on CIFAR-10,
CIFAR-100 [16], SVHN [21] and ImageNet [27] datasets and compare the results
with those of AutoAugment [5], PBA [12] and Fast AutoAugment [18]. Except
for ImageNet, we run all experiments three times and report the average results.
Details of the datasets are presented in Table 3.
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Algorithm 2 Training of Faster AutoAugment

M ,P ,W : learnable parameters of a subpolicy corresponding to µ,p,w, respectively
dθ(·, ·): distance between two densities with learnable parameters θ, f : image classi-
fier, L: cross entropy loss, ε: coefficient of classification loss, D: training set
while not converge :

Sample a pair of batches B,B′ from D
Augment data A = {S(X;M ,P ,W ); (X, ·) ∈ B}
Measure distance d = dθ(A,B′)
Obtain classification loss l = E(X,y)∼AL(f(X), y) + E(X′,y′)∼B′L(f(X ′), y′)
Update parameters M ,P ,W ,θ to minimize d+ εl using SGD (e.g., Adam)

5.1 Experimental Details

Implementation Details Prior methods [5,12,18] employed Python’s Pillow
4 as the image processing library. We transplant the operations described in
Section 3.1 to PyTorch [23], a tensor computation library with automatic dif-
ferentiation. For geometric operations, we extend functions in kornia [26]. We
implement color-enhancing operations, sample pairing [13] and cutout [6] using
PyTorch. Operations with discrete magnitude parameters are implemented as
described in Section 4.1 with additional CUDA kernels.

We use CNN models and baseline preprocessing procedures available from
Fast AutoAugment’s repository 5 and follow their settings and hyperparameters
for CNN training such as the initial learning rate and learning rate scheduling.

Experimental Settings To compare our results with those of previous stud-
ies [5,18,12], we follow their experimental settings on each dataset. We train
the policy on randomly selected subsets of each dataset presented in Table 3.
In the evaluation phase, we train CNN models from scratch on each dataset
with learned Faster AutoAugment policies. For SVHN, we use both training and
additional datasets.

Similar to Fast AutoAugment [18], our policies are composed of 10 subpoli-
cies, each of which has operation count K = 2 as described in Section 3.2. We
train the policies for 20 epochs using ResNet-50 for ImageNet and WideResNet-
40-2 for other datasets. In all experiments, we set the temperature parameters
λ and η to 0.05. We use Adam optimizer [15] with a learning rate of 1.0−3,
coefficients for running averages (betas) of (0, 0.999), the coefficient for the clas-
sification loss ε of 0.1 and the coefficient for the gradient penalty of 10. Because
GPUs are optimized for batched tensor computation, we apply subpolicies to
chunks of images. The number of chunks determines the balance between speed
and diversity. We set the chunk size to 16 for ImageNet and 8 for the other
datasets during search. For evaluation, we use chunk sizes of 32 for ImageNet
and 16 for other datasets.

4 https://python-pillow.org/
5 https://github.com/kakaobrain/fast-autoaugment/tree/master/

FastAutoAugment/networks

https://python-pillow.org/
https://github.com/kakaobrain/fast-autoaugment/tree/master/FastAutoAugment/networks
https://github.com/kakaobrain/fast-autoaugment/tree/master/FastAutoAugment/networks
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Table 3. Summary of datasets used in the experiments. For the policy training on
ImageNet, we use only 6,000 images from the 120 selected classes following [5,18].

Dataset Training set size Subset size for policy training

CIFAR-10 [16] 50,000 4,000
CIFAR-100 [16] 50,000 4,000
SVHN [21] 603,000 1,000
ImageNet [27] 1,200,000 6,000

Table 4. Faster AutoAugment yields performance comparable to prior
methods. Test error rates on CIFAR-10, CIFAR-100 and SVHN. We report aver-
age rates over three runs. For CIFAR-100, we report results obtained with policies
trained on CIFAR-10 / CIFAR-100.

Dataset Model Baseline Cutout [6] AA [5] PBA [12] Fast AA [18] Faster AA (ours)

CIFAR-10

WideResNet-40-2 [35] 5.3 4.1 3.7 - 3.6 3.7
WideResNet-28-10 [35] 3.9 3.1 2.6 2.6 2.7 2.6
Shake-Shake (26 2× 32d) [8] 3.6 3.0 2.5 2.5 2.7 2.7
Shake-Shake (26 2× 96d) [8] 2.9 2.6 1.9 2.0 2.0 2.0
Shake-Shake (26 2× 112d) [8] 2.8 2.6 1.9 2.0 2.0 2.0

CIFAR-100
WideResNet-40-2 [35] 26.0 25.2 20.7 - 20.7 22.1 / 21.4
WideResNet-28-10 [35] 18.8 18.4 17.1 16.7 17.3 17.8 / 17.3
Shake-Shake (26 2× 96d) [8] 17.1 16.0 14.3 15.3 14.9 15.6 / 15.0

SVHN WideResNet-28-10 [35] 1.5 1.3 1.1 1.2 1.1 1.2

5.2 Results

CIFAR-10 and CIFAR-100 In Table 4, we show test error rates on CIFAR-10
and CIFAR-100 with various CNN models: WideResNet-40-2, WideResNet-28-
10 [35] and Shake-Shake (26 2×{32, 96, 112}d) [8]. We train WideResNets for 200
epochs and Shake-Shakes for 1,800 epochs as in [5], and report averaged values
over three runs for Faster AutoAugment. The results of the baseline and Cutout
are from [5,18]. Faster AutoAugment not only shows competitive results with
prior methods, but is also significantly faster to train (see Table 1). For CIFAR-
100, we report results with policies trained on reduced CIFAR-10 following [5]
as well as policies trained on reduced CIFAR-100. The latter results are better
than the former ones, which suggests the importance of training policy on the
target dataset.

We also show several examples of augmented images in Figure 5. The policy
seems often to use color-enhancing operations as reported in AutoAugment [5].

In Table 56, we report error rates on reduced CIFAR-10 to show the effect of
Faster AutoAugment in the low-resource scenario. In this experiment, we ran-
domly sample 4,000 images from the training dataset. We train the policy using
the subset and evaluate the policy with WideResNet-28-10 on the same subset
for 200 epochs. As can be seen, Faster AutoAugment improves the performance
7.7% over Cutout and achieves a similar error rate to AutoAugment. This result
implies that data augmentation can moderately reduce the difficulty in learning
from small data.

6 [5] reported better baseline and Cutout performance than us (18.8% and 16.5%
respectively), but we could not reproduce the results in [5]
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SamplePairing(p=0.805, μ=0.669)
Invert(p=0.157)

TranslateY(p=0.746, μ=0.591)
SamplePairing(p=0.601, μ=0.578)

Contrast(p=0.386, μ=0.344)
AutoContrast(p=0.582)

Posterize(p=0.792, μ=0.415)
Rotate(p=0.260, μ=0.201)

Color(p=0.809, μ=0.766)
TranslateY(p=0.876, μ=0.756)

CutOut(p=0.450, μ=0.572)
Equalize(p=0.283)

Brightness(p=0.973, μ=0.829)
AutoContrast(p=0.220)

CutOut(p=0.513, μ=0.489)
AutoContrast(p=0.739)

original images augmented images subpolicies used

Fig. 5. Original and augmented images of CIFAR-10 (upper) and SVHN (lower). As can
been seen, Faster AutoAugment can transform original images into diverse augmented
images with subpolicies as shown on the right-hand side.

Table 5. Test error rates with models trained on reduced CIFAR-10, which consists
of 4,000 images randomly sampled from the training set. We show that the policy
obtained by Faster AutoAugment is useful for a low-resource scenario.

Baseline Cutout [6] AA [5] Faster AA (ours)

24.3 22.5 14.1 14.8

SVHN In Table 4, we show test error rates on SVHN with WideResNet-28-10
trained for 200 epochs. For Faster AutoAugment, we report the average value of
three runs. Faster AutoAugment achieves an error rate of 1.2%, which is a 0.1%
improvement over Cutout and on a par with PBA. The augmented images are
shown in Figure 5. We also show the augmented images in Figure 5 with the
obtained subpolicies, which seem to select more geometric transformations than
CIFAR-10’s policy as reported in [5].

ImageNet In Table 6, we compare the top-1 and top-5 validation error rates
on ImageNet with those of [5,18]. To align our results with [5], we also train
ResNet-50 for 200 epochs. [5,18] reported top-1/top-5 error rates of 23.1%/6.5%.
Faster AutoAugment achieves a 0.6% improvement over the baseline for top-1
error rate. This gain verifies that Faster AutoAugment has an effect comparable
to prior methods on a large and complex dataset. The performance is slightly
worse than AutoAugment and Fast AutoAugment, which may be attributed to
the limited number of different subpolicies for each minibatch because of the
number of chunks, which we describe in Section 5.1.

6 Analysis

Changing the Number of subpolicies The number of subpolicies L is ar-
bitrary. Figure 6 shows the relationship between the number of subpolicies and
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Table 6. Top-1/Top-5 validation error rates on ImageNet [27] with ResNet-50 [11].
Faster AutoAugment achieves comparable performance to AA and Fast AA.

Baseline AA [5] Fast AA [18] Faster AA (ours)

23.7/6.9 22.4/6.2 22.4/6.3 23.1/6.5

Fig. 6. The performance increases
with the number of sub-policies. Re-
lationship between the number of subpoli-
cies and the test error rate (CIFAR-10
with WideResNet-40-2). We plot test er-
ror rates and their standard deviations av-
eraged over three runs.

Fig. 7. The performance increases
with the operation count. Relation-
ship between the operation count of
each subpolicy and the average test er-
ror rate of three runs (CIFAR-10 with
WideResNet-40-2).

the final test error on CIFAR-10 dataset with WideResNet-40-2. As can be seen,
the more subpolicies we have, the lower the error rate is. This phenomenon is
straightforward because the number of subpolicies determines the diversity of
augmented images. Importantly, an increase in the number of subpolicies results
in the exponential growth of the search space, which is prohibitive for standard
search methods.

Changing the Operation Count The operation count K of each subpolicy is
also arbitrary. Similarly to the number of subpolicies L, increasing the operation
count of a subpolicy K also exponentially increases the search space. We change
K from 1 to 4 on CIFAR-10 dataset with WideResNet-40-2. We present the
resulting error rates in Figure 7. As can be seen, as the operation count in each
subpolicy grows, the performance increases, i.e., the error rate decreases. These
results show that Faster AutoAugment is scalable to a large search space.

Changing the Data Size In the main experiments in Section 5, we used a
subset of CIFAR-10 of 4,000 images for policy training. To validate the effect
of this sampling, we train a policy on the full CIFAR-10 of 50,000 images as
in [18] and evaluate the obtained policy with WideResNet-40-2. We find that
the increase of data size causes a significant performance drop (from 3.7% to
4.1%) with subpolicies of L = 10. We hypothesize that this drop is because of
lower capability of the policy when L = 10. Therefore, we train a policy with
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Table 7. Test error rates on CIFAR-10 using policies trained on reduced CIFAR-10
(4,000 images) and full CIFAR-10 (50,000 images) with WideResNet-40-2.

Data size Fast AA [18] Faster AA (ours)

4,000 3.6 3.7
50,000 3.7 3.8

L = 80 subpolicies and randomly sample 10 subpolicies to evaluate the policy,
which results in comparable error rates (3.8% and 3.7%). We present the results
in comparison with those of Fast AutoAugment [18] in Table 7, which shows the
effectiveness of using subsets for Fast AutoAugment and Faster AutoAugment.

Effect of Policy Training To confirm that trained policies are more effec-
tive than randomly initialized policies, we compare test error rates on CIFAR-
10 with and without policy training, as performed in AutoAugment [5]. Using
WideResNet-28-10, trained policies achieve an error rate of 2.6%, while ran-
domly initialized policies have a slightly higher error rate of 2.7% (both error
rates are an average of three runs). These results imply that data augmentation
policy searching is a meaningful research direction, but still has much room to
improve.

7 Conclusion

In this paper, we proposed Faster AutoAugment, which achieves faster policy
searching for data augmentation than previous methods [5,12,18]. To achieve
this, we introduced gradient approximation for several non-differentiable im-
age operations and made the policy search process end-to-end differentiable. We
verified our method on several standard benchmarks and showed that Faster Au-
toAugment could achieve competitive performance with other methods for au-
tomatic data augmentation. Moreover, our additional experiments suggest that
gradient-based policy optimization can be scaled to more complex scenarios.

We believe that faster policy searching will be beneficial for research on
representation learning such as semi-supervised learning [4,33] and domain gen-
eralization [32]. Additionally, learning from limited data using learnable policies
might be an interesting future direction.
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