
18 Z. Wang et al.

A Appendix

A.1 Loss functions of SC

For completeness, we present in detail how we adjust the loss functions of SC
from baseline’s.
MS-TCN’s Loss function. In vanilla MS-TCN [3], the author adopted a com-
bination of classification loss and a smoothing loss:

(1) A cross entropy loss as classification loss

Lcls = − 1

T

∑
t

log (yt,c) , (5)

where yt,c is the the predicted probability for the ground truth label at time t.
(2) A truncated mean squared error loss over the frame-wise log-probabilities

as smoothing loss

LT−MSE =
1

TC

∑
t,c

∆̃2
t,c, (6)

∆̃t,c =

{
∆t,c : ∆t,c ≤ τ
τ : otherwise

, (7)

∆t,c = |log yt,c − log yt−1,c| . (8)

where T is the video length, C is the number of classes, and yt,c is the probability
of class c at time t. Then the final loss function of MS-TCN is

Ls = Lcls + λLT−MSE (9)

SC’s Loss function. In our stage cascade, we use the original form of loss func-
tion for fusion stage. For cascade stage i, we keep the smoothing loss LT−MSE

the same and change the distribution of cross entropy loss as classification loss
as described in main paper

Lsci = −
∑
t w

i
t · log (yt,c)∑
t w

i
t

(10)

where wit is the weight for cascade stage i and frame t, and it follows our cascade
strategy (shown in equation (1)).

A.2 Detailed architecture of BGM

The detailed description of BGM will be given here for better reproducibility.
A temporal convolutional layer can be simply denoted as Conv(cf , ck, cd, Act),
where cf , ck, cd and Act are filter numbers, kernel size, dilation factor and activa-
tion function of temporal convolutional layer. To operate on full temporal resolu-
tion, we use two version of barrier generation module here: (1) ‘resized’ version:
resized temporal scale and conv(512, 3, 1, ReLU) → conv(512, 3, 1, ReLU) →
conv(1, 1, 0, Sigmoid); (2) ‘full-length’ version: full temporal scale and
conv(256, 3, 2l, ReLU) with l ∈ {2, 3, 4} → conv(1, 1, 0, Sigmoid) following the
setting of the baseline [3] to exponentially increase receptive field. The last layer
with sigmoid activation will generate boundary probability.

Boundary-Aware Cascade Networks 19

BGM’s Loss function. As mentioned in main paper, we construct ground-
truth of BGM from segmentation ground-truth following BSN [19]: We denote
Φω and Ψω as feature sequence and annotations within the window respectively.
For ground truth action instance ϕg = (ts, te) in Ψω, we denote both starting
region rsg = [ts−dg/10, ts+dg/10] and ending region reg = [te−dg/10, te+dg/10]
as boundary regions rg, where dg = te− ts. Taking Φω as input, BGM generates
probabilities sequence Pω with length lw, just to be consistent to [19] here). For
each temporal location tn, we denote its region as rtn = [tn−ds/2, tn+ds/2] and
get the probability scores ptn from Pω, where ds = tn− tn−1 is temporal interval
between two snippets. Then for each rtn , we calculate its IoP ratio with all
boundary region rg, where IoP is defined as the overlap ratio with ground-truth
(boundary region here) proportional to the duration (assigned temporal interval
of location tn here). Thus we can represent information of tn as φn = (ptn , gtn),
where gtn is maximum matching overlap IoP of all boundary regions.

We use the same binary logistic regression loss as BSN [19] for classify the
action boundary, denoted as:

Lbd =
1

lw

lw∑
tn=1

(
α+ · btn · log (ptn) + α− · (1− btn) · log (1− ptn)

)
(11)

where lw is the length of feature sequence, gtn is temporal intersection over union
(tIoU) of location tn and boundary region, and btn = I(gtn > 0.5) is a indicator
function to select location tn where gtn > 0.5 as positive sample (in practice,
local maximal strategy is also used to remove repeated btn). Let l+ =

∑
gt and

l− = lw − l+, then we set α+ = lw
l+ and α− = lw

l− .

A.3 Additional ablation studies of LBP

By more ablation study, we show that our LBP is insensitive to most of hyper-
parameters except for pooling window size illustrated in our main paper, thus
we believe that LBP is robust for temporal action segmentation task.

Note that we use the same hyper-parameters as BSN [19] to construct our
BGM, except the architecture of ‘full-length’ BGM and threshold 0.5 for selecting
barriers (0.9 in [19]) mentioned in main paper. Although we may get better
performance by carefully adjusting the hyper-parameters because of the data
distribution gap between datasets of temporal action segmentation task (ours)
and temporal action detection task ([19]’s), our LBP’s superior performance over
baseline’s smoothing loss and two heuristic smoothing operator also shows the
robustness of our novel LBP.

In our Local Barrier Pooling, we use the following weighted sum to smooth
the prediction:

y′t,c =

yt,c+
∑

s∈{−1,+1}

L∑
β=1

yt+s·β,c exp(−α
β∑
j=1

bt+s·j)

1+
∑

s∈{−1,+1}

L∑
β=1

exp(−α
β∑
j=1

bt+s·j)

(12)

20 Z. Wang et al.

Fig. 7: Metrics as functions of α in ‘resized’ LBP on 50Salads (mid).

Fig. 8: Metrics as functions of number of LBP on 50Salads (mid).

where yt,c is segmentation confidence score in location t and class c predicted
by frame-wise classification network (i.e., Stage Cascade), bt is barrier strength,
α controls the decay rate of weights when passing through a barrier and the
pooling window size is 2L+ 1.

Study on LBP’s α. In LBP, α controls the decay rate of weights when passing
through a barrier. Fig. 7 illustrates that the change of α will only cause very
little influence on the performance. In our experiments we set α = 1 for ‘resized’
LBP and α = 0.2 for ‘full-length’ LBP as default.

Study on the Number of LBP. We can use multiple LBPs on the output of
Stage Cascade. Fig. 8 illustrates that the performance tends to increase a little
before 4 LBPs are performed and starts to decrease a little when the number
of LBP is beyond 5. Our proposed LBP in ideal condition should have precise
boundaries and infinity barrier strength, where multiple LBPs will generate the

Boundary-Aware Cascade Networks 21

Table 6: Study on LBP’s location on 50Salads (mid) dataset.
50 Salads (mid) F1@{10,25,50} Edit Acc

BCN w/o inner LBP 82.3 81.1 73.7 74.3 84.4
BCN w/ inner LBP 82.3 81.3 74.0 74.3 84.4

Table 7: Comparison of LBP and λ in [3] on 50Salads (mid) dataset. (∗ reported
in [3])

50 Salads (mid) F1@{10,25,50} Edit Acc

MS-TCN (λ = 0.05)∗ 74.1 71.7 62.4 66.6 80.0
MS-TCN (λ = 0.15)∗ 76.3 74.0 64.5 67.9 80.7
MS-TCN (λ = 0.25)∗ 74.7 72.4 63.7 68.1 78.9

MS-TCN w/ LBP 78.3 75.9 66.1 68.1 81.5

same result as single LBP. However, although LBP in practice is indeed sensitive
to action boundaries, the strength of barriers can not be unlimited high. As a
result, too many times of LBP may cause over-smooth and affects the perfor-
mance a little, but we want to emphasize that all of results in this experiment
outperforms the performance without LBP by large margin. We believe that
number of LBP does not affect our performance a lot and we use 4 LBPs in
other experiments.

Study on the Location of LBP. Except for placing LBP after the output
of fusion stage in Stage Cascade, we can also put LBP in other locations if the
semantic information is continuous among neighborhood. We use a ‘full-length’
LBP of α = 1 and pooling window size as 7 on the collection of all cascade stages’
output (i.e., input of fusion stage) as comparison, denoted as inner LBP. Table 6
shows additional LBP will only cause very little increase of F1 score while other
metrics only vary less than 0.1. We conclude that the location of LBP does not
affect our BCN’s performance a lot either. We also find that inner LBP helps to
reduce the fluctuation of performance when the model converges to final result
in training process. In our other experiments, we use an inner LBP as default.

Comparison between LBP and weight of smoothing loss in [3]. In the
main paper, we have compared LBP and two heuristic smoothing operator: gaus-
sian smoothing and average pooling. To further justify our LBP’s performance,
we compare LBP and the weight of smoothing loss in [3] based on the vanilla
MS-TCN architecture, shown in Table.7. By giving more weight λ for smooth-
ing loss (show in equation (2)), we can enforce the output of network being
more temporally consistent by penalizing the difference of confidence score in
adjacent locations. MS-TCN achieves best performance in λ = 0.15 and can
not get further improvement when λ = 0.25 except the edit score. In contrast,
LBP consistently improves all the metrics. Note that our LBP will have more
improvement on the results when we introduce our SC into action segmentation

22 Z. Wang et al.

task for their complementary effects on improving segmentation performance
based on the analysis in main paper.

Based on the above analysis, we see that our proposed novel LBP is insensi-
tive to most of hyper-parameters, thus robust for temporal action segmentation
task. LBP significantly improves the smoothness of predictions, which is reflected
in F1 score and edit score.

A.4 Qualitative result of GTEA dataset

Fig. 9: Qualitative result of S1 Tea C1 from GTEA dataset. There are sev-
eral rows: (1) entropy of SC vs. baseline; (2) action segmentation results of
groundtruth, BCN, SC and baseline [3]; (3) SC’s improvement (red) and decline
(green) over baseline, and baseline’s error (purple); (4) The cascade stage among
stage 1,2 or 3 which dominates the weight is in blue.

