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Abstract. Identifying human action segments in an untrimmed video
is still challenging due to boundary ambiguity and over-segmentation
issues. To address these problems, we present a new boundary-aware
cascade network by introducing two novel components. First, we devise
a new cascading paradigm, called Stage Cascade, to enable our model
to have adaptive receptive fields and more confident predictions for am-
biguous frames. Second, we design a general and principled smoothing
operation, termed as local barrier pooling, to aggregate local predic-
tions by leveraging semantic boundary information. Moreover, these two
components can be jointly fine-tuned in an end-to-end manner. We per-
form experiments on three challenging datasets: 50Salads, GTEA and
Breakfast dataset, demonstrating that our framework significantly out-
performs the current state-of-the-art methods. The code is available at
https://github.com/MCG-NJU/BCN.
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1 Introduction

Understanding human actions in videos is of great importance for many real-life
applications such as surveillance and interactive robotics. Recognizing actions
from short trimmed videos has achieved great performance 28,24, 31, 1, 29, 30].
However, densely labeling all the frames in a long untrimmed video is still chal-
lenging compared with action recognition. Recent works on temporal action seg-
mentation mainly focus on capturing complex temporal structure with enriched
temporal modeling. Typical methods include bi-directional LSTM networks |9,
25] and temporal convolution with encoder-decoder structure [16, 13] or dilated
convolution [13]. The recent state-of-the-art MS-TCN [3] stacks multiple dilated
convolutions to enlarge temporal modeling capacity and achieve extremely large
receptive field in order to operate on the full temporal resolution.

Although modeling complex temporal structures is vital for segmenting hard-
to-recoginze frames, simply increasing modeling capacity incurs overfitting prob-
lems for simple frames aside from more computation cost. Moreover, some frames
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Fig. 1: Tllustration of challenges: (a) the woman taking new lettuce in a long ‘cut
lettuce’ action leads to a short misclassified ‘place lettuce into bowl” result; (b)
visual similarity between cutting lettuce and holding lettuce with a knife and
a hand makes action boundary ambiguous. Our motivation is to tackle (b) by
our stage cascade (SC) which greatly improves accuracy near boundaries, while
(a) may exacerbate over-segmentation errors for the enhanced discrimination
ability of SC, which will be alleviated by our proposed boundary-aware temporal
regularizer: local barrier pooling.

temporal length wrong pred: cut_lettuce

are ambiguous other than difficult such as action boundaries (e.g., Fig. 1 (b))
due to sudden label changes but gradual transitions of visual features. Training a
single model on these inconsistent samples tend to output low confident or even
wrong predictions for ambiguous frames. Given the concurrent existence of in-
formative and ambiguous frames in a video, a more dynamic temporal modeling
method is desired to cope with these problems.

To tackle the challenge above, we design a new temporal action segmenta-
tion method, termed as Stage Cascade (SC), which leverages cascade strategy on
stage level and enable networks to predict frames through different and adap-
tive stages based on their complexities. Different from previous works on the
enlarged modeling capacity but fixed receptive field [13,16,3], SC provides a
new perspective for modeling adaptive temporal structure. Stages are allocated
for each frame on the criterion of accuracy to modulate the stage-wise effective
receptive fields. The unique design of SC enables to dynamically model sudden
label changes and progressively produce better and more confident predictions in
a simple-to-hard manner, where early stages focus on recognizing simple frames
and late stages pay more attention to ambiguous and difficult frames.

Another common challenge still exists in this task despite the dynamic tempo-
ral modeling of SC: the over-segmentation errors (e.g., Fig. 1 (a)). This problem
is probably even worse in SC because of noise sensitivity and fluctuating stage
assignment during inference. Thus, it is expected to devise a more adaptive
and effective temporal smoothing operation to suppress the exacerbated over-
segmentation issues. Previous methods commonly relieve this problem by prior
knowledge such as additional temporal smoothing loss function [3]. Instead, we
argue that action boundaries serve as powerful signals for temporally regulariz-
ing smooth predictions of action instances, as they naturally indicate intervals
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for semantic consistency inside and border-crossing discrepancy. Accordingly,
we present an adaptive temporal regularizer which leverages the boundary in-
formation to ensure temporal consistency of instances, termed as Local Barrier
Pooling (LBP). LBP predicts action boundaries from a binary classification net-
work, whose supervision signals are derived from the segmentation ground truth.
Then, LBP performs local aggregation of frame-level action predictions, where
the aggregating weights are video-specific and boundary-aware. In this sense,
LBP is able to greatly reduce unexpected over-segmentations by smoothing noisy
predictions with confident ones.

We evaluate our framework on three challenging datasets for action segmen-
tation: 50Salads [26], GTEA [5] and Breakfast dataset [11]. Experimental results
demonstrate that the combination of our SC and LBP yields a notable perfor-
mance gain against with the strong baseline [3], which is the current state-of-
the-art method. In particular, our method achieves about 4% gain in frame-wise
accuracy for all datasets and a consistent improvement about 4% for GTEA, 6%
for 50salads and 10% for Breakfast in F1 score as the scale of datasets increases.
In summary, our paper makes two main contributions:

— Our cascade design is the first attempt in the task of temporal action seg-
mentation by enabling temporal models to have dynamic temporal modeling
and achieve more confident results. This new cascade design provides a gen-
eral solution to improve frame-level recognition accuracy over the existing
multi-stage action segmentation methods.

— We explicitly improve the smoothness of frame-wise predictions by cooper-
ating action boundary information with them for the first time in action
segmentation task. To achieve this, we propose a novel temporal regularizer
Local Barrier Pooling (LBP) which alleviates over-segmentation problem
and meanwhile avoids reducing segmentation accuracy. Our LBP is differen-
tiable which enables end-to-end training of our framework.

2 Related Work

Temporal Action Segmentation. Segmentation methods typically use tem-
poral models for frame labeling upon extracted frame-level features. For example,
Fathi et al. [4] modeled actions by the change of objects’ states. Lea et al. [13]
presented a temporal convolutional network for action segmentation and detec-
tion using an encoder-decoder architecture to capture long-range dependencies.
Lei et al. [16] introduced deformable convolutions into [13] and added a residual
stream with high temporal resolution. Farha et al. [3] extended dilated temporal
convolution in speech synthesis [20] to action segmentation for capturing long-
term dependencies and operated it on the full temporal resolution. Gammulle et
al. [6] proposed a conditional GAN model to utilize multiple modalities for bet-
ter extraction of salient details from environmental context. These works mainly
focused on improving receptive field for modeling long-term dependency with
encoder-decoder structure [16,13], dilated convolution [3] or deformable convo-
lution [16]. Different from these methods, our framework tackles the problems
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of inaccurate boundaries and misclassified short actions caused by existing long-
term temporal modeling methods via adaptive receptive field, and provides a
general improvement on existing multi-stage temporal model. Our method also
provides a general smoothing operator to solve over-segmentation problem inside
long actions.

Temporal Action Detection. Many of action detection methods share sim-
ilar temporal modeling with our task. Singh et al. [25] used a multi-stream
bi-directional recurrent neural network for fine-grained action detection. Yeung
et al. [32] used reinforcement learning and RNNs to predict temporal intervals
of actions based on glimpses of a small portion of the video. Zhao et al. [33]
modeled temporal structure of actions by structured temporal pyramid. Gao et
al. [7] extended Faster R-CNN [21] to action detection by iteratively regressing
boundaries. Lin et al. [19] employed binary classification to predict boundaries
of action instances in a sequence of temporal locations and evaluate proposals
combined by these classified boundaries. Although two tasks are similar, their
methods can not be directly applied to the other task for both different goal of
output and different metrics.

Deep Learning Cascade. Cascade networks have been studied in detection [17],
pose estimation [27] and semantic segmentation [18]. Li et al. [17] adopted CNN
cascade for face detection, which quickly rejects false detections in early stages
and refines detections in later stages. DeepPose [27] employed a divide-and-
conquer strategy and designed a deep regression cascade framework for pose
estimation. Li et al. [18] reduced computational cost and improved accuracy
of semantic segmentation by distinguishing easy pixels from the hard ones and
only propagate pixels with low confidence to subsequent networks. Our cascade
framework differs from previous ones in adjusting weights of loss functions and
combining stages’ predictions for parts of a sample (i.e., frames of a video) sim-
ilar to attention mechanism, but not accept or reject the whole sample [17] or a
part of the sample [18] in each step.

3 Boundary-Aware Cascade Networks

As analyzed in Sec.1, we observe that temporal action segmentation is chal-
lenging mainly in two situations: (1) ambiguous frames near action boundary
or sudden actions; (2) ambiguous frames inside a long action. To address these
issues, as shown in Fig. 2, we present a unified framework by designing a new
stage cascade architecture and a novel local barrier pooling. The stage cascade
architecture focuses on learning a progressively weak-to-strong frame-level clas-
sifier, where early stage recognize informative frames with weak capacity and
later stage pay more attention to ambiguous frames with stronger capacity. The
local barrier pooling presents a new smoothing technique by leveraging explicit
action instance boundary with a attentive aggregation operation. These two new
modules are unified in our Boundary-aware Cascade Network (BCN) framework
with a two-branch architecture and the whole pipeline can be easily optimized
in an end-to-end manner.
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Fig.2: Overview of our framework. Given an untrimmed video, we first encode
it into a feature sequence @. Stage Cascade handles the video feature in cascade
manner: cascade stages receive ¢ and all previous stages’ outputs, then predict
frame-wise confidence scores, which will determine the weights of loss functions
over frames and aggregation of cascade stages’ outputs for fusion stage; Barrier
Generation Module evaluates the boundary probabilities of each temporal loca-
tion and selects barriers for our novel temporal regularizer: local barrier pooling.

Our BCN provides a general and adaptive framework to boost temporal ac-
tion segmentation performance in videos for any multi-stage models. To demon-
strate the effectiveness of BCN, we use the state-of-the-art MS-TCN [3] as the
backbone, and aim to improve action segmentation performance over a very
strong baseline. Sec. 3.2 illustrates how to adapt the existing action segmenta-
tion approach into our stage cascade. Sec. 3.3 shows how our proposed novel
Local Barrier Pooling is applied to action segmentation task using boundary
information. Sec. 3.4 introduces the training procedure of our framework.

3.1 Video Encoding

To save the memory consumption, we first extract visual features with an off-
the-shelf pre-trained video network. Given an untrimmed video with 7" frames
X1t = {xt}tT:l as the input, our goal is to predict the class label for frames
Cr.r = {ci}l.,. Video encoding aims to obtain a condensed video represen-
tation capturing appearance and motion patterns of video clips. In particu-
lar, following the baseline [3] for fair comparison, we use I3D [1] without fine-
tune as our video encoder ¢ to generate a sequence of feature vectors & =
{d(x1), p(x2), ..., p(x7)} € RT*P where D = 2048 is feature dimension. Then
extracted video features are fed into BCN for temporal action segmentation.

3.2 Stage Cascade

The goal of stage cascade is to generally boost the performance of frame-level
classification network by treating video frames with modules of different com-
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plexities. Specifically, for informative frames in long action segments, we can
use a weak model of low capacity yet still able to capture long-term tempo-
ral dependency in order to prevent over-fitting; and for ambiguous frames near
action boundaries or in sudden actions, we should devise a stronger model of
high capacity with adaptive receptive field and focus on ambiguous frames for
a more precise prediction. Our stage cascade adaptively process different frames
with different stages and obtain the frame-level prediction that mainly rely on
the corresponding stage. In practice, cascade strategy will automatically assign
a weight distribution to all the cascade stages for each frame. We initialize the
weights of first stage w;} with 1 for all frames and update the i*" (i > 1) cascade
stage’s weight w! for ! frame as follows:

e it g7l
w; =4 e wi! if Vi<i—l,dd<p (1)
wi™t if A7 <p oand G <i—1,¢] >p

where p is a parameter and ¢! is confidence score of " frame for i*" cascade
stage. In equation (1), we mainly adjust the weights for the next stage by the
factor e increasing weights by et " for less confident frames, and decreasing
weights by e~ for very confident frames. In addition, we enforce that exactly
one stage should dominate the weight among n stages for each frame, so we will
stop increasing weights again once any earlier stage shows enough confidence for
it. The prediction of all cascade stages will be aggregated as the input of fusion
stage according to the weight matrix w; ; as follows:
F 2w
Ct - i 0 (2)
2wy
The fused classification score c{ combine the outputs of different stages adap-
tively for each frame and it will be passed to the fusion stage to yield final
prediction of stage cascade. The fusion stage aims to smooth frame-wise clas-
sification results and generate more reasonable temporal segmentation result.
Following the common practice in action segmentation [3], we add loss functions
for all cascade stages and fusion stage to make training converge stably, which
are composed of a classification loss and a smoothing loss in [3]. For smooth-
ing loss, we use the same form as baseline for all cascade stages and the fusion
stage. For classification loss, we keep fusion stage’s loss the same with baseline
(equation (3), left) and adjust the distribution of loss for each cascade stage
over frames (equation (3), right) according to weight matrix w; ; get in equation
(1). Note that the weight matrix is aggregated in the direction of ¢ for fusing
classification score and ¢ for adjusting distribution of loss, respectively.

1 >, wh-log (yr.c)
Loascline = = ¥ —log (yre), L7¢ =St =200
aseline T ; C Zt wt

Based on the analysis above, over-segmentations are more likely to arise
for SC being more flexible than baseline and there are many stage switches,
which leads to the input of fusion stage being less smooth. Moreover, when
encountering the situation analyzed above (Fig. 1 (a)), all methods, even with

3)
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additional smoothing loss function in [3], can lead to over-segmentation errors,
which is a common challenge to this task. To generally improve smoothness of
action segmentation methods adaptively, we propose the following local barrier
pooling.

Implementation details. Our stage cascade is composed of several cascade
stages and a fusion stage, where each stage is a SS-TCN in [3]. In MS-TCN [3],
each stage only receives confidence score of the last stage as input except that
the first stage receives video feature. Different from MS-TCN, our cascade stages
take concatenation of video feature and all previous stages’ outputs (similar to
the structure of DenseNet [10]) as input and evaluates current frame-wise clas-
sification score. For the weight adjustment strategy, we use confidence score of
ground truth class to update weights in training and the maximum confidence
score among classes in testing. The confidence-score-selection gap between train-
ing and testing may also lead to more over-segmentation problems.

3.3 Local Barrier Pooling

To avoid over-segmentation risk with more powerful discriminative ability of the
proposed Stage Cascade, we need to ensure the temporal consistency of predic-
tions inside an action. Previous work has shown that auxiliary losses of temporal
consistency [3] might be beneficial for good segmentation result. However, we
find the help of auxiliary losses is limited and implicit, and temporal models
including recent state-of-the-art model [3] still tend to over-segment actions.

We resort to a more explicit approach, i.e., the smoothing operator inside
networks for consistent frame-wise predictions within the same action instance.
Heuristic smoothing operators like gaussian smoothing and average pooling with
fixed window sizes may be effective only when the action duration is much longer
than window sizes or there happens to be only one action instance in a video,
which is a tight restriction. Instead, we expect the smoothing operator to be
separative between different action instances and consistent inside one action in-
stance, meanwhile have adaptive smoothing window size with regard to different
action duration.

The action boundary gives us a good point to achieve both separative and
adaptive properties for expected smoothing procedure since a action boundary
naturally indicates a start or end of an action. Motivated by adaptive pooling op-
erator aware of spatial importance [8], we design the local barrier pooling (LBP),
a smoothing operator aware of action boundaries to ensure the consistency of
predictions within action instances. At a macro level, LBP regards action bound-
aries as barriers in the diffusion of each class’s actionness. LBP can be simply
decomposed into two steps after the prediction of existing models: First, train a
classification network to predict boundaries and then select temporal locations
with high confidence to be boundaries. Second, compute the weighted sum of
predictions in a local pooling window where weights are aware of and adaptive
on barriers across from the pooling center.

Local Barrier Pooling. LBP generates smoother predictions from the output
of temporal model by averaging predictions among neighborhood with adaptive
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Fig.3: (a) Visualization of our proposed Local Barrier Pooling in ”hard” ver-
sion. Given barriers (denoted as purple bar), for frame located in dash line, the
unnormalized weights of LBP in a local window is shown as shadow region. (b)
Architecture of LBP, in which I is frame-wise confidence scores, B is barriers
and O is output of LBP.

weights aware of action boundaries. For each frame, LBP utilizes a local pooling
window centering in current frame and from center calculates weights in two
directions. As shown in Fig. 3, LBP decreases the weight by an adaptive ratio
when it meets a barrier. The output of LBP y; . in temporal location ¢ and class
c is formulated as:

L s
Ytet D > Yirspeexp(—a Y biysg)
se{-1,+1} B=1 j=1

Yie = (4)

L B
1+ > > exp(—a 21 bits;)
5=

se{—1,+1} B=1

where y; . is the frame-wise confidence score predicted by networks, b; is barrier
strength, « controls decay rate of the weight and the pooling window’s length
is 2L + 1. The weighted sum in the pooling window is aggregated to two direc-
tions as s € {—1,+1} (temporally forward and backward). By setting barriers
heuristically, common smoothing methods such as gaussian smoothing and av-
erage pooling can be seen as special cases of LBP: i) if all barriers are set to
1, weights will decay at the speed of e™**, thus similar to gaussian smoothing

at e*%; ii) if there are no barriers, weights will be uniform distribution which
is identical to average pooling. Different from heuristic smoothing methods, our
LBP introduce the boundary information b; to parameterize its weights, which
is sample-dependent. Evaluation on LBP and two heuristic smoothing meth-
ods shows that our boundary-aware smoothing operator LBP achieves better
performance than its two special cases.

Barrier Generation Module. To provide input-dependent boundary infor-
mation for LBP, we use temporal evaluation module (TEM) of BSN [19] as
Barrier Generation Module (BGM) upon the extracted video feature sequence
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@ = {¢(x¢)}1_,, which is a binary classification model for boundaries. The orig-
inal form of TEM operates on a fixed-length feature sequence, yet it makes joint
training of SC and BGM unstable. So we adjust two version of BGM (1) ‘resized’
version: we resize input scale to fixed-length [,, by linear interpolation and use
identical network to TEM. We select temporal location ¢ according to confidence
score p; outputted by BGM where p; > 0.5 and is a local maximal (p: > pr—1
and p; > py11) as barriers, then resize back to original scale T' by nearest neigh-
bor interpolation. (2) ‘full-length’ version: we use original scale T' and replace
convolution layers of TEM with dilated convolution (dilation of 2, I € {2,3,4})
to be BGM, then we keep all the p; as barriers.

We keep all hyper-parameters the same as [19] except ‘p; > 0.5’ (0.9 in [19])
for the following reason: unlike TEM, BGM doesn’t seek for best precision of
detecting boundaries, but it hopes to provide complete barrier information for
LBP to smooth predictions inside action instances and meanwhile do not harm
accuracy among boundary regions. So we choose common practice as ‘p; > 0.5
since our LBP is insensitive to few false positives. Selecting local maximal is
used for removing repeated barriers near one boundary. We keep all the p; in
‘full-length’ version because of training stability and the same reason above.

3.4 Training BCN

Training our BCN has two parts: pre-training Barrier Generation Module (BGM)
and joint training Stage Cascade (SC) and BGM. We first construct action
boundary ground-truths on segmentation annotations following [19] and pre-
train our BGM by binary classification loss. The purpose of pre-training BGM
is to provide accurate boundary predictions at the start of joint training, and
to fully optimize BGM’s parameters because of different convergence rates of
SC and BGM. Then we train SC and BGM jointly on original ground-truths
only using frame-wise classification loss, where parameters of BGM can also be
fine-tuned by backward gradients because our LBP is differentiable.

Stage Cascade. Follow the baseline [3], our loss functions are (1) cross-entropy
loss for classification, which will be adaptively adjusted for each frame follow-
ing equation (3); (2) truncated mean squared error over the frame-wise log-
probabilities for smoothing. Please refer to [3] or our appendix for details.
Barrier Generation Module. Given a ground truth sequence ¥ with temporal
length [, we accumulate frame-wise annotations as segments ¢, = (ts,t.) (in
which dy = t. —t,) and use the starting region 75 = [ts — dy/10,ts +d,/10] and
ending region 7¢ = [te — dy/10,t. + dy/10] as boundary regions. We assign a
duration of % to each frame and calculate the temporal intersection over union
(tIOU) between each frame and boundary regions as the annotation. We use a
binary logistic regression loss for classifying boundaries following [19].
Training Details. For LBP, we use a pooling window of 39, 99 and 159 in
GTEA, 50Salads and Breakfast dataset respectively. We set @ = 1 in ‘resized’
version and a = 0.2 for ‘full-length’ version. Our experiment shows that « has
little influence on predictions because BGM will adaptively adjust the value of
barriers in joint training. We use threshold p = 0.8 to train SC and 4 stages in
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MS-TCN [3] as the backbone of SC for fair comparison. We set the number of
channels to 256, and then keep all other hyper-parameters the same with [3]. For
joint training, we use Adam optimizer with a learning rate 10~3 and multiply
it by 0.3 every 20 epoch for 50Salads and GTEA dataset and a learning rate
5-10~* and multiply it by 0.3 every 30 epochs for Breakfast dataset. For pre-
training BGM, we use learning rate 10~3 for 50Salads and GTEA, and 5 - 1074
for Breakfast, then multiply them by 0.3 every 100 epochs. Despite larger epochs
for training, the computational cost of BGM is much smaller compared to the
main network SC.

4 Experiments

Dataset. We evaluate our proposed BCN on three challenging action segmen-
tation datasets: 50Salads [26], GTEA [5] and the Breakfast dataset [11].

The 50Salads contains 50 videos of 25 people preparing salads in kitchen
environment with 17 action classes in the mid-level. Each video contains 9000 to
18000 frames and 20 action instances on average such as cut tomato.Although
this is a multi-modal dataset, we only use RGB data in videos. We perform
5-fold cross-validation and report the average results for evaluation.

The GTEA is composed of 28 egocentric and dynamic-view videos and in-
cludes four subjects performing seven daily activities. We utilize 11 action classes
including background class and perform 4-fold cross-validation for evaluation.

The Breakfast dataset is among the largest dataset for action segmentation

task, which has 1,712 videos of cooking breakfast in the kitchen environment
with a overall duration of 66.7h. Overall, there are 48 different actions where
each video contains 6 action instances on average. We use the standard 4-fold
cross-validation for evaluation.
Evaluation Metrics. For all the datasets, we report the following evaluation
metrics as in [13]: frame-wise accuracy, segmental edit score and the segmental
F1 score at temporal intersection over union (tIoU) thresholds 0.10, 0.25 and
0.5, denoted by F1@{10,25,50}. The commonly used accuracy fails to take the
temporal structure of the prediction into account and does not reflect over-
segmentation errors, so results with large amount of action segments against
temporal continuity in human actions can still score high. So we also adopt edit
score proposed by [13] which penalizes over-segmentation errors and F1 score
proposed by [15] which is similar to mean average precision (mAP) widely used
in detection task.

4.1 Study on SC and LBP

In this section, we demonstrate the ability of our proposed SC and LBP by
comparing to their variants and other counterparts. To justify our framework’s
ability, we specify the following baselines and BCN variants: (1) MS-TCN: back-
bone with 4 stages and 10 layers per stage; (2) MS-TCN w/ feature: video feature
passing into each stage, which provides the same information with BCN. Another
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Table 1: Comparison with baseline and s a0
BCN’s variants on 50Salads (mid). The 1st O

and 2nd of each criterion are boldfaced and s
underlined respectively. (* reported in [3])

Methods F1@{10,25,50} Edit Acc
MS-TCN~* 76.3 74.0 64.5 67.9 80.7 ©
MS-TCN w/ feature* 56.2 53.7 45.8 47.6 76.8 &
MS-TCN (5 stages)* 76.4 73.4 63.6 69.2 79.5 5
MS-TCN (12 layers)* 77.8 75.2 66.9 69.6 80.5 Ty T Y YT
Stage Cascade 56.4 54.3 48.9 52.6 83.4 Boundary ratio
MS-TCN w/ LBP 78.3 75.9 66.1 68.1 8L5 Fig. 4: Stage Cascade’s accuracy
MS-TCN w/ attention&LBP|78.9 77.2 68.5 71.3 82.7 _ . .
BCN (SC w/ LBP) 82.3 81.3 74.0 74.3 84.4 Sain over baseline.

Table 2: LBP and two heuristic smoothing operators on 50Salads (mid).
Smoothing Operators F1@{10,25,50} Edit  Acc
Average (all barriers set as ‘0’) 80.1 773 69.1 727 824
Gaussian-like (all barriers set as ‘1’) | 77.0 74.6 64.9 68.7 82.5
LBP (barriers from BGM) 82.3 81.3 74.0 74.3 844

two more stronger form of MS-TCN: (3) MS-TCN w/ 5 stages; (4) MS-TCN w/
12 layers per stage; (5) Stage Cascade: our SC with 3 cascade stage and 1 fusion
stage; (6) MS-TCN w/ LBP: (2) with LBP as post-processing; (7) MS-TCN
w/ attention&LBP: (6) with traditional attention mechanism where weights are
predicted from each stage itself (i.e., additional 1-dim of output).

Comparison between BCN and its important counterparts are summarized
in Table. 1. Baselines and variants (1) - (7) are placed in the first seven rows and
BCN is placed in the last row. In our experiment, BCN has SC, 1 embedding
‘full-length’ LBP in joint training and testing, and 4 times of ‘resized’ LBP as
post-processing as default based on our ablation study. We have some obser-
vation here from Table. 1. Firstly, MS-TCN with more information (i.e., video
feature) passing to higher stages will not lead to performance gain while our
SC will. Secondly, SC increases segmentation accuracy and damages F1 score in
the same time, implying that it tends to predict over-segment predictions with-
out LBP for challenges shown in Fig. 1 (a) because of enhanced discriminative
ability. Thirdly, LBP itself can improve both F1 score and accuracy without SC
by correcting over-segmentation errors, which is consistent with our analysis.
Furthermore, LBP can compensate the exacerbated over-segmentation problem
caused by SC. With the help of LBP, our cascade strategy is superior to com-
monly used attention mechanism which does not consider the relations between
stages and outputs weights by each stage separately.

To reveal the reason behind SC’s improvement, we collect the accuracy gain
over baseline about distances from boundaries. Similar to the construction of
groundtruth in BGM, we represent regions by the incremental part when the
boundary ratio increases. Comparison between accuracy of SC and the baseline
in Fig. 4 show that SC mainly improves accuracy near boundary regions, which
is consistent to our analysis in Sec. 3.2.
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Table 3: Study on probability thresholds for stage cascade on 50Salads (mid).
Threshold F1@{10,25,50} Edit  Acc

0.5 81.6 79.7 715 742 83.0
0.6 821 809 719 741 833
0.7 819 80.5 724 74.0 839
0.8 82.3 81.3 74.0 74.3 84.4
0.9 80.6 79.1 69.7 73.3 82.9
Table 4: Study on the the number of Cascade Stages on 50Salads dataset.
50Salads (mid) F1@{10,25,50} Edit Acc

MS-TCN (3 stages) 71.5 68.6 61.1 64.0 78.6
MS-TCN (4 stages) 76.3 74.0 64.5 679 80.7
BCN (2 cascade stages) 81.2 79.2 71.3 735 83.6
BCN (3 cascade stages) 82.3 81.3 74.0 74.3 84.4
BCN (4 cascade stages) 80.7 789 715 729 835

Comparison between LBP and two heuristic temporal regularizer in Table. 2
illustrates that our proposed boundary-aware and input-dependent temporal reg-
ularizer LBP is more effective than its special cases which are unable to utilize
boundary information thus unsuitable for temporal action segmentation task.

4.2 Ablation Study on Hyper-parameters

We also investigate the effects of threshold p, number of stages in SC and LBP’s
pooling window size. Our ablation studies strictly follows existing works and all
the comparisons are fair. Experiments show that both SC and LBP are insensi-
tive to most of the hyper-parameters, which proves our framework’s robustness.
Please refer to appendix for other less important hyper-parameters.

Study on Probability Thresholds. Based on frame-wise confidence score
of the previous cascade, SC can update weights adaptively, where threshold p
controls the frame distribution in SC: smaller p encourages more frames to be
handled in early stage while larger p tends to progressively classify most of frames
by the later stages. In extreme cases, weights in SC will monotonically increase
when p = 1 and decrease when p = 0. As shown in Table 3, BCN achieves the
best performance with p = 0.8, which lead to the distribution about 26:21:53 for
3 cascade stages of SC. Although the value of p is dataset-dependent which can
be chosen empirically using a validation set, our experiment shows that p has
little influence on our methods in Table 3 and our methods achieve good results
in GTEA and Breakfast datasets with the p = 0.8 obtained in 50Salads.
Study on the Number of Cascade Stages. Commonly we use 3 cascade
stages and 1 fusion stage in our experiments for fair comparison with baseline,
yet we construct a 2-stage BCN to justify that our performance gain is not
obtained from more computational cost or parameters. SC only updates the
weights for stage 2 w? and keep all w; to be 1 for 2-stage BCN. Table 4 shows
our framework with less capacity not only surpasses its baseline by large margin,
but also outperforms MS-TCN’s best result, which proves the effectiveness of
our method. Comparison between BCN with different stages shows that our
method’s behavior is similar to the backbone: the performance will not be better
if we add more stages, just like the result of Table.1 in [3].
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Fig. 5: Metrics as functions of LBP’s pooling window size on 50Salads (mid).

Study on LBP’s Pooling Window Size. As Fig. 5 shows, larger pooling
window size generally benefits all the metrics, which demonstrates that small
windows can not provide enough confident temporal neighborhood to correct
misclassified frames and a large window is necessary for smoothing predictions
due to the existence of long duration actions. We also observe that the perfor-
mance drops a little when we stretch the window too large. This may be because
pooling weights are lowered rather than being zeros across barriers in LBP and
then there might be unexpected long-term interactions between action instances.

4.3 Comparison with the State of the Art

In Table 5, we compare our BCN to the state-of-the-art methods on three chal-
lenging benchmarks: 50Salads, GTEA and Breakfast datasets with 13D features
(without fine-tune). Our model leads to notable gains compared to previous
competitive methods in all datasets, especially in the larger Breakfast dataset.
Qualitative results on two datasets are shown in Fig. 6 (please refer to ap-
pendix for GTEA dataset), visualizing that our predictions have high accuracy
and the weight assignment is consist to our analysis of BCN where hard frames
near boundaries are handled by later stages with higher capacity. Our model’s
frame-wise confidence score’s entropy is far below the baseline’s, indicating more
confident predictions. It’s worth noting that there is only a minor extra compu-
tational burden in our models compared to the baseline.

Table 5: Comparison with the state-of-the-art on 50Salads, GTEA and Breakfast
dataset. (* uses multi-modal data, T obtained from [2])

50Salads (mid) F1@{10,25,50} Edit Acc GTEA F1@{10,25,50} Edit Acc
Spatial CNN [14] 32.3 27.1 18.9 24.8 54.9 Bi-LSTM [25] 66.5 59.0 43.6 - 55.5
IDT+LM [22] 44.4 38.9 27.8 45.8 48.7 ED-TCN [13] 72.2 69.3 56.0 - 64.0
Dilated TCN [13] 52.2 47.6 37.4 43.1 59.3 TDRN ([16] 79.2 74.4 62.7 74.1 70.1
ST-CNN [14]  55.9 49.6 37.1 45.9 59.4 MS-TCN [3]  85.8 83.4 69.8 79.0 76.3
Bi-LSTM [25]  62.6 58.3 47.0 55.6 55.7
ED-TCN [13]  68.0 63.9 52.6 59.8 64.7 BCN 88.5 87.1 77.3 84.4 79.8
TDRN [16] 72.9 68.5 57.2 66.0 68.1 Breakfast F1@{10,25,50} Edit Acc
MS-TCN [3]  76.3 74.0 64.5 67.9 80.7 ED-TCN [13] - - - - 433
TCFPN [2] - - - - 520
BCN 82.3 81.3 74.0 74.3 84.4 HTK (64) [12] - - - - 563
GRU [23]" 60.6

MS-TCN (I3D) [3] 52.6 48.1 37.9 61.7 66.3
BCN 68.7 65.5 55.0 66.2 70.4
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Fig. 6: Qualitative results on 50Salads and Breakfast datasets. There are several
rows: (1) Frame-wise entropy of SC vs. baseline [3]; (2) Action segmentation
results of groundtruth, BCN, SC and baseline; (3) SC’s improvement (red) and
performance drop (green) over baseline, and baseline’s error (purple); (4) The
cascade stage among stage 1,2 or 3 which dominates the weight is in blue.

5 Conclusion

We have presented a new framework called boundary-aware cascade network
(BCN) for temporal action segmentation, which consists of two components: a
stage cascade module that adaptively adjusts weights to enable later stages to
focus on harder frames, and a local barrier pooling to improve the smoothness of
predictions by explicitly utilizing semantic boundary information. Our empirical
evaluation on the benchmark 50Salads, GTEA and Breakfast demonstrated that
BCN outperforms the state-of-the-art models by a large margin. The superior
performance of BCN is owe to the fact that it is able to predict more precise
action segments and greatly reduce over-segmentation artifacts. It implies merits
of our end-to-end learning of stage cascade and local barrier pooling over simply
stacking deeper layers of temporal convolutions.
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