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Abstract. Recovering realistic textures from a largely down-sampled
low resolution (LR) image with complicated patterns is a challenging
problem in image super-resolution. This work investigates a novel multi-
reference based super-resolution problem by proposing a Content Inde-
pendent Multi-Reference Super-Resolution (CIMR-SR) model, which is
able to adaptively match the visual pattern between references and target
image in the low resolution and enhance the feature representation of the
target image in the higher resolution. CIMR-SR significantly improves
the flexibility of the recently proposed reference-based super-resolution
(RefSR), which needs to select the specific high-resolution reference (e.g.,
content similarity, camera view and relative scale) for each target image.
In practice, a universal reference pool (RP) is built up for recovering
all LR targets by searching the local matched patterns. By exploiting
feature-based patch searching and attentive reference feature aggrega-
tion, the proposed CIMR-SR generates realistic images with much better
perceptual quality and richer fine-details. Extensive experiments demon-
strate the proposed CIMR-SR outperforms state-of-the-art methods in
both qualitative and quantitative reconstructions.

Keywords: Super-Resolution, Content-Independent Multi-Reference,
Universal Reference Pool, Local Feature Enhancement

1 Introduction

As one of the fundamental low-level vision problems, image super-resolution [4],
which aims to reconstruct the high-resolution (HR) image from its low-resolution
(LR) observation, has attracted increasing attention in both academic and in-
dustry. As shown in Fig. 1, the previous methods can be roughly divided into
two categories, termed single image super-resolution (SISR) [3,31,34,27], and
reference-based super-resolution (RefSR) [35,21,20,36]. For SISR, since the fine
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(a) Single image super-resolution (b) Reference-based super-resolution (c) Content-independent multi-reference super-resolution

Fig. 1. Comparison between single image super-resolution (SISR), reference-based
super-resolution (RefSR) and our proposed content-independent multi-reference super-
resolution (CIMR-SR). Within (c), the patches marked in the same color stand for the
similar patterns in feature space.

texture presented in original HR is usually lost in the LR, it becomes extremely
difficult to recover fine textures when handling large up-scaling factors tasks.
Therefore, RefSR [36,33] is meticulously proposed to address such issues by fea-
ture transferring between the HR reference images and the LR image. Although
state-of-the-art RefSR significantly improves the quality of the reconstructed
HR image, it is still suffering from the following problems to further improve the
perceptual quality and generate richer fine-details.

— To get similar content or homogeneous patterns for LR images, most of
the previous RefSR methods impose strict restrictions on the correlation
between HR references and LR images, e.g., content similarity, camera view,
and relative scale. However, such constraints are usually impractical in a lot
of real applications.

— Different local regions within the LR image usually exhibit different recon-
struction proprieties. The existing deep architectures lack the ability to adap-
tively enhance the feature representation from various patterns.

To address the above issues, in this work, we investigate a novel reference-
based SR problem, that is, a universal multi-reference oriented image super-
resolution, by proposing a Content-Independent Multi-Reference Super Resolu-
tion (CIMR-SR) model. As shown in Fig. 1, CIMR-SR breaks the restrictions
of the previous RefSR methods on HR reference images by applying multiple
arbitrary reference images. It could adaptively match local patterns from these
content-independent reference images and aggregate them in the feature space
to remarkably promote an ultimate representation ability of LR image.

Specifically, CIMR-SR consists of two major components, i.e., a universal
reference pool (RP) and a local feature enhancement (LFE) module. The former
is used to store various local patches (i.e., represented by the high-level feature
representations) from the reference image to adaptively compensate for the in-
formation loss of the LR. In practice, the proposed CIMR-SR adaptively matches
the visual patterns between the local patches in RP and target LR image. Then,
it returns several groups of reference feature maps for further enhancement. The
later is designed to aggregate the above-assembled feature maps and original fea-
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ture representation of LR images. Unlike directly swapping the closest feature
point on one single image [35], the LFE module achieves to aggregate similar
feature points from multiple reference patches, making the network suitable for
generating complex local details.

The contributions of this work are three folds. (1) To our best knowledge,
this is the first work to address the multi-reference based image super-resolution
by using deep learning with an end-to-end training mechanism. A novel CIMR-
SR scheme is proposed to adaptively search the similar local visual patterns to
enhance the feature representation of the target LR image. (2) A universal Ref-
erence Pool (RP) is constructed as a container for general local feature patterns
and its memory burden is alleviated in conjunction with the diversity-insurance
sampling strategy. In addition, an effective LFE module is firstly proposed to
deal with feature aggregation for various patterns. (3) Extensive quantitative
and qualitative experiments have demonstrated that the proposed CIMR-SR
can generate realistic images with much better perceptual quality and richer
fine-details, outperforming state-of-the-art methods.

2 Related Work

Deep Learning in SISR. Dong et al. [5] firstly attempted to learn an end-to-
end mapping from HR-LR pairs by convolutional networks, various subsequent
works tend to design the network deeper or wider to enhance the model represen-
tation capacity and computational efficiency. For example, a VGG style network
VDSR [11] is proposed with a multi-scale training strategy to meet tasks at dif-
ferent scales. Furthermore, EDSR, [12] is proposed by stacking modified residual
blocks [8] to significantly improve the performance. As the depth of network
plays a vital role in SISR, RCAN [33] improves the inferior performance with a
very deep model by adopting attention mechanism and shared-source skip con-
nections to bypass redundant information. SAN [3] further use the second-order
attention mechanism, and implement a non-locally enhanced residual group for
long-distance dependency learning.

In general, the approaches mentioned above aim at minimizing reconstructed
loss with no prior included. In addition, some other works incorporate the prior
in perceptual-related constraints to recover more visually plausible SR images.
For instance, SRGAN [14] adds perceptual loss and generative adversarial strat-
egy to address the issue of over-smoothing in SISR. SFTGAN [23] incorporates
segmentation maps to induce categorical priors to generate offline transformation
parameters for spatial-wise feature modulation. In this way, perceptual-related
priors were implicitly incorporated to achieve better visual quality. However, al-
though using adversarial strategies increases plausible visual quality, it results
in the quantitative criteria (i.e., PSNR) reduction and fake textures generation.

Besides, there are some previous works focus on the LR images with a more
realistic degradation (called blind SR). Specifically, blind SR introduces the com-
plex blur kernels (e.g., motion blur in [27]) or DSLR camera’s degradation pro-
cess (e.g., zooming in [32], ISP pipeline in [28]) to produce the LR-HR paired
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training set instead of the fixed bicubic kernel. Thus, the assumption about the
degradation process limits it into specific scenarios (e.g., specific camera). On
the contrary, this paper focuses on how to transfer features between LR and
multiple external references with normal SISR training strategies.

Reference-based Super-Resolution. In contrast to SISR taking only a single
LR image as the input, recent works use additional images from different views
or scenes to assist the SR process, called RefSR. Traditional methods use sparse
signal representation and linear combination [29] or example-based method [7]
for reference utilization without data-driven training process. According to where
the additional images come from, RefSR could be divided into two categories:
internal and external RefSR. Compared with internal RefSR [21,20,6,9] utilizes
the self-similarity of images to refer patches from itself, references in external
RefSR could be acquired in multiple ways, such as from adjacent frames in a
video [16], from web retrieval and external database [30]. As for external RefSR
methods, a typical work is CrossNet [36], which learns the alignment parame-
ters from optical flow to warp the feature between input LR and the reference
image. However, this model highly depends on the assumption that the refer-
ences need to be well aligned with the LR images. To address the alignment
issue, SRNTT [35] refers to the work in style transfer and swap the most similar
feature in the neural space during the SR process, which enables the learning
of long-distance dependency and complicated feature transferring process. How-
ever, patch swap strategy limits itself to the closest feature with a narrow field
of view in feature space, thus hampering the feature transferring process.

3 Methods

Given the specified down-scale factor s, the proposed CIMR-SR. aims to estimate
the SR image I°F with the size H x W x 3 from its LR counterpart I“" with the
size H/s x W/s x 3 and the given M arbitrary content-independent reference
images If¢f = {IiR ef 1M . To achieve the above goal, we firstly construct a
reference pool (RP) in Sec. 3.1, which contains feature points converted from
the features of reference patches. It provides additional information for detailed
texture generation. And then we propose the local feature enhancement (LFE)
module in Sec. 3.2, which selects reference features and aggregates group features
by the effective feature searching and the feature aggregation mechanisms.

3.1 Reference Pool

Reference Pool (RP) is constructed for storing all reference information from
multiple HR-Refs. Therefore, it needs to satisfy the following criteria:

— C1: Universal content-independent references should be collected and there
is no restriction on pixel alignment with LR image;

— C2: Efficient and accurate feature searching and aggregation should be sup-
ported while exploiting such RP as external information.
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Fig. 2. (a) RP generation. Multiple HR-Refs (I7¢) and LR-Refs (I%°/11) images
are transferred from the RGB space to the feature space through a pre-trained CNN.
Within the RP, each 3 x 3 local patch on feature map conv3_2 is reshaped to a feature
point and acts as a query feature, which can be mapped to larger patches on conv2_2
or convl 2 stored as key features. (b) Farthest Point Sampling (FPS). The left
feature point set indicates the original feature distribution, while the right is uniformly
distributed over categories after FPS. Here different colors indicate different semantics.

C1. To satisfy condition C1, we map multiple reference images to a high-
dimensional feature space offline without any pixel alignment restriction. As
shown in Fig. 2 (a), for each reference image HR-Ref IiRef, the j-th patch Ifjef
is transferred to a feature point through a pre-trained CNN, where 7 and j de-
note the index of reference image and patches. Concretely, there are two different
kinds of features: which termed to the feature points generated from patches of
HR-Refs and blurred LR-Refs as key features and query features, respectively.
The key features are beneficial to restore high-resolution information and will be
saved for feature aggregation, while query features will be used in feature match-
ing with the LR image. Note that each LR-Ref is obtained by down-sampling
and up-sampling corresponding HR-Ref to match the frequency band of the I%7
through bicubic interpolation. Therefore, the key features F¥ and query features
F! for the i-th HR-Ref are obtained by,

Ff = F(If )y, B = F(I[IY), FE e RYDPT FE RN (1)

2 K2

where [, and [, are specified layers from a feature extractor F (e.g., conv3_2),
sign | and 1 denotes down-sample and up-sample operations. Besides, output
FF and F can also be seen as feature space point sets, which have point num-
bers N¥ and N7 with dimensions D* and D?. Here D* and D? are the product
of feature dimension of specified layers and the size of local patches on feature
maps. Therefore, we break the restriction of pixel alignment and transfer image
information into feature space. Furthermore, the constrains about the reference
images in previous methods can be solved by building a universal reference pool
(RP). Once arbitrary HR-Refs are offered, the RP would provide diverse pat-
terns with various semantics and textures for LR reconstruction.

C2. It is non-trivial to build a universal RP not only considering the memory
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limitation and time efficiency but also satisfying the constrain C2. Concretely,
the distribution in RP tends to be locally dense and uneven, easily dominated
by monotonous textures, which increases the computational cost and difficulty
for conventional feature searching and aggregation. To solve the issues, we ex-
ploit Farthest Point Sampling (FPS) algorithm [18] on query features for RP
construction.

Firstly, we collect multiple HR-Refs as I7¢/ = {IiR of M. and transfer them
into feature space point set F4 € RV*P? by Eq. (1). Here N is the total point
number of all query features, which will increase as the number of HR-Ref images
increases. After that, we sample a subset of N’ points (N’ < N) as F4 through
FPS sampling. In each iteration FPS selects a new feature point from original
features, it will choose the feature that has the farthest distance between all
existing sampled features. It can achieve an approximate uniform sampling in
feature space and has better coverage of the entire point set. Therefore, it is a
good manner to reduce redundancy in a certain space. As illustrated in Fig. 2 (b),
before the FPS, most of the pixels in the image belong to the sky and grass,
which share similar features without complex texture. It leads the SR network
dominated by monotonous textures and prone to a sub-optimal reconstruction.
With the assistance of FPS, we can keep the diversity of features while reducing
local redundancy, i.e., the distribution of feature points for each semantic and
texture remains appropriately uniform. This resolves the efficiency and accuracy
problems of RP, which benefits the subsequent LFE module.

3.2 Local Feature Enhancement Module

Be equipped with various features provided in RP; it is non-trivial to aggre-
gate the high-dimensional features for each local region of LR effectively and
efficiently. Especially, non-parametric operation, i.e., patch swapping [35], only
considering the most similar features, which undoubtedly damages the diversity
of features enhancement. To address the problems mentioned above, the Local
Feature Enhancement (LFE) module is introduced to effectively search usable
features and aggregate them for local regions of the LR image, thus producing
enhanced features for reconstruction. Specifically, LFE contains two parts:

— Feature Searching retrieves K most similar feature points from query features
F for each local patch of input LR (see Fig. 3);

— Feature Aggregation aligns and fuses the searched key features and generates
enhanced feature maps for HR reconstruction (see Fig. 4).

Feature Searching. Before matching most similar features, we firstly apply
bicubic up-sampling on the LR image I“" to get an up-scaled one I™%T with
the same spatial size as 7. Then, we use the same feature extractor F to gen-
erate LR features F' = F(IX1), with size N' x D4, where each feature point
fi € F represents a 3 x 3 patch on the LR feature map. Then, Vf; € F, we find
indices N'(f;) of K most similar features in Fa by ranking their normalized inner

product similarities [35]. After feature searching, index vectors {N'(f;)}Y, are
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Fig. 3. Feature searching and realignment with K = 5. It shows features of i-th
LR local patch (blue) corresponds to 5 points in query features (e.g., none-white points),
which will generate 5 selected reference feature maps by assembling the key features.
Besides, i-th position on reference feature maps can be obtained by multiplying the
selected key features with their corresponding similarity weights.

stacked by rows into a global index matrix N (F).

Feature Aggregation. After feature searching, we use global index matrix
N(F) to choose key features according to their corresponding query features
(see the mapping in Fig. 2 (a)). The overlaps of adjacent key features on the
rearranged feature map will be divided by their overlap number. Then, we ob-
tain K aligned reference feature maps F4 = {FA}X | . Besides, the normalized
similarity score of each query feature between LR features is also rearranged to
K aligned similarity matrix §4 = {S{}/£ . The i-th element of the k-th matrix
S,f records the inner product between the k-th query feature patch and the i-th
LR feature patch, which is corresponding to the i-th patch in F,j‘. Finally, we
generate reference feature maps by multiplying aligned reference feature maps
with corresponding element-wise similarity. Concretely, the i-th patch of the k-th
reference feature map is obtained by

PR = St k=1 K 2)

Therefore, the LFE module can be constructed as a general component for
any SR backbone (collectively called SRNet). Fig. 4 shows that conducting a LFE
module after the last pixel shuffle layer of SRNet (the feature map with original
scale). For input LR image I'% it obtains K reference feature maps FT¢f
through feature searching. After that, to obtain enhanced features, it aggregate
features by using hidden output of the SRNet (F¥) and K reference feature
maps,

FP =PI {R(FH|FE)), (3)

where (+||-) denotes concatenate operation and P, R denotes element-wise addi-
tion and passing through share-weighted residual blocks.

As shown in Fig. 4 and Eq. (3), the feature aggregation firstly concatenates
the hidden features of SRNet with each reference feature map respectively. Then
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Fig. 4. Inner structure of LFE module. Blue and grey part illustrate the SISR
network and the procedure of feature searching from RP detailed in Fig. 2 and 3.
Yellow part depicts the Local Feature Enhancement (LFE) module. LFE module can
be a general component embedded in any SRNet, which aggregates hidden output of
SRNet with reference feature maps to an enhanced feature map.

a set of share-weighted residual blocks is used for each combined feature map.
Finally, a fusion function aggregates information of all reference features to a
single fused feature map, which retains the most informative texture feature in
all reference feature maps and greatly facilitates the reconstruction of HR. Be-
sides, a skip-connection will be used between hidden features and fused features,
generating an enhanced feature map F¥ by conducting element-wise addition
between F¥ and F¥. After a convolution layer changes the channel dimension,
the output I°% can be obtained. It should be noted that here we just give a
simple case of the LFE module, which is a plug-and-play component and can be
used in other positions of SRNet (i.e., all of three scales in 4x upscaling).

3.3 Loss Function

To recover the mapping from LR to HR and leverage the natural texture from
references, [1-norm content loss L. is adopted to optimize weights of our model,

Lo=|| 157 — 17|y, (4)

where I°% and I""E denotes output and ground truth of single sample.

Furthermore, we modify texture matching loss [19] to multi-reference scenario
and take into account the texture difference between I°% and FT¢f. We require
the texture of neural feature space F(I°%) to be close to each aligned reference
feature maps, where F(-);, denotes the same feature extractor in key features
generation. Specifically, we define a texture loss L., as

K
1
Liew = 4= kz_l | Gr(F(I5%), - Si) = Gr(F - Si) Il ()

where Gr(-) computes the Gram matrix, and K normalized similarity matrix de-
fined in Eq. (2) are used to determine the effect of each position. Intuitively, tex-
tures dissimilar to I°7 will have lower weight, and thus receiving lower penalty
in texture learning.
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Apart from content loss and texture loss, generative adversarial loss [10] Laqy
will also be utilized upon the WGAN [1] with gradient penalty. This helps sta-
bilize the training process and improve the visual quality of synthesised images.
Furthermore, we adopt the perceptual loss [2] to motivate our model inclined to
the solutions in the manifold of natural images. The perceptual loss £, measures
the distance in the feature space and enforce the feature alignment. Combining
all together, the overall loss function of our model is finally designed as

L= ['c + 'Ytew['tew + ’Yadv['adv + ’Yp‘cpa (6)

where weights v, , Yadv and 7ye, are le — 4, le — 6 and le — 4, respectively.

3.4 Network Architecture

During the experiment, we use MDSR [15] as our SRNet. We set the residual
block number equal to 80 and hidden layer channel number equal to 64. Con-
sidering the efficiency and effeteness, we use K = 3 for feature searching. The
feature extractor VGG-19 is pre-trained on ImageNet, whose conv3_2 is used for
query feature while all of convl_2, conv2_2 and conv3_2 are responsible for key
feature representations. Therefore, for the 4x upscaling SR, we conduct three
LFE modules on different scales. On each scale feature map (i.e., 4x down-scale,
2x down-scale or original scale), we generate K reference feature maps according
to search results of query features. The architecture of share-weighted residue
blocks is the same as the neural texture transfer in [35].

For RP generation, we directly select 300 HR-Refs from Outdoor Scene
(OST) [23] as our reference, which is a dataset for scene images reconstruc-
tion. It contains seven categories, sky, mountain, plant, grass, water, animal,
and building. For each category, there are 1k to 2k images that only cover that
category. The total amount of the training set is 10,324. Here, we adopt a train-
ing set with explicit semantic prior for our RP construction. We firstly randomly
crop 1,000 HR candidates with size 128 x 128 in each category, then we use the
FPS algorithm to sample final 300 of them as our initial reference pool.

4 Experiment Results

4.1 Dataset

Following the setting in [35,306], we trained our model on CUFED5 dataset
and test with down-scale factor 4x on three standard benchmark datasets: Ur-
ban100 [9], Sun80 [22] and CUFEDS5 test set. Noted that CUFEDS5 only contains
13,761 160 x 160 input-reference pairs as the training set and 126 images with
different sizes as the test set. In CUFEDS5, most images have relatively low reso-
lution, and there are many moving people and complicated objects in each image,
which makes the training and testing on CUFEDS5 extremely challenging.
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4.2 Implementation Details

To further verify the rationality of our model, we test our model on both content-
independent and content-similar references. For the former, we use our RP as
extra information, which will be used in both training and evaluation processes.
As for content-similar references, we conduct a similar training strategy in [35]
and use reference images with different similarity levels during evaluation.

Content-independent references. Before the training, we use the pre-trained
VGG to collect key features and query features offline from the initial RP. Then
we use Farthest Point Sampling with the sample ratio factor » = 16 on both
query and key features to generate final RP and save key features for further us-
age. After that, we conduct feature searching and save the global indices N (F)
for each LR image. We adopt strategy mentioned in [35] to match K query
features with the largest inner product for each LR patch, which can be imple-
mented by a convolution operator using the LR patch as the kernel. During the
training, we feed input images and corresponding global indices into our model,
and the model selects features from preserved key features and synthesizes the
aligned reference feature maps. Unlike [35] uses offline storage for feature maps
of the entire training set, we only save entire key features and the mapping in-
dex of each local region. This strategy greatly reduces memory consumption and
achieves efficiency in data augmentation at the same time. Besides, calculating
indices offline will notably accelerate training speed and require almost no extra
time in data feeding. More detailed training protocol will be described in the
supplementary material.

Content-similar references. The overall strategy is consistent with the pro-
cess mentioned above, but here we use given reference images to generate and
save aligned reference feature maps offline rather than global indices. At the
same time, specific data augmentation (the ”warp” in the caption of Tab. 2) is
conducted on each reference image.

4.3 Quantitative Evaluation

Content-independent references. Following standard protocols, we obtain
all LR images by bicubic down-scaling (4x) from the HR images. For fair
comparison on PSNR/SSIM with those methods mainly minimizing MSE, e.g.,
MDSR [15] and SRNTT-¢; [35], we first train a PSNR-oriented model empha-
sizing on the f5 minimization, called CIMR-/5. Next, we train a GAN-based
model named CIMR, focusing on the aspect of visual quality compared with
other methods with GAN fine-tuning. Since [35] uses content-similar references
in their paper, we implement SRNTT*-/5 by using reference patches in initial
RP to compare their model in content-independent references scenario. Specifi-
cally, we use FPS to sample 80 patches from initial RP as their references (i.e.,
the maximum amount of references SRNTT could hold). At the same time, we
compare the result reported in their paper.

As shown in Tab. 1, it is obvious that our model gains higher scores on
all the benchmark datasets. We achieve better performance than SRNTT-/5
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Table 1. PSNR/SSIM comparison among different SR methods on four datasets: meth-
ods are grouped by SISR (top) and RefSR (bottom), and the best result is in bold.
All the SR results are evaluated by PSNR and SSIM metrics on the Y channel of
transformed YCbCr space.

Algorithm [ CUFED5 [ Urban100 [ Suns0

Bicubic 24.18 / 0.684 23.14 / 0.674 27.24 / 0.739
SRCNN [1] 25.33 / 0.745 24.41 / 0.738 28.26 / 0.781
SCN [26] 25.45 / 0.743 24.52 / 0.741 27.93 / 0.786
DRCN [12] 25.26 / 0.734 25.14 / 0.760 27.84 / 0.785
LapSRN [13] 24.92 / 0.730 24.26 / 0.735 27.70 / 0.783
MDSR [17] 25.93 / 0.777 25.51 / 0.783 28.52 / 0.792
EDSR [17] 25.90 / 0.776 25.50 / 0.783 28.49 / 0.789
SRGAN [14] 24.40 / 0.702 24.07 / 0.729 26.76 / 0.725
RCAN [33] 26.32 / 0.789 25.65 / 0.785 28.67 / 0.795
SAN [3] 26.29 / 0.789 25.63 / 0.783 28.66 / 0.795
LandMark [0] 24.91 /0.718 - 27.68 / 0.776
CrossNet [30] 25.48 / 0.764 25.11 / 0.764 28.52 / 0.793
SRNTT [3] 25.61 / 0.764 25.09 / 0.774 27.59 / 0.756
CIMR 26.16 / 0.781 25.24 / 0.778 29.67 / 0.806
SRNTT*- [37] 25.98 / 0.776 25.54 / 0.784 28.49 / 0.791
SRNTT-¢; [35] 26.24 / 0.784 25.50 / 0.783 28.54 / 0.793
CIMR-£, 26.35 / 0.789 25.77 / 0.792 30.07 / 0.813

on CUFEDS5 even if they use references with high similarity of input, which
is usually invalid and impractical in the real world. Despite the nonexistence
of references with high similarity, it is surprising to notice our performance is
much higher than previous methods on Sun80. This success may owe to that
many outdoor-related textures like the wave, sky and vegetation are adaptively
covered in our constructed RP, strengthening the applicability for outdoor sce-
narios. Furthermore, our method achieves a large improvement compared with

the baseline method MDSR [15].

Content-similar references. Although we achieve satisfactory performance
in content-independent references evaluation, to further investigate our perfor-
mance when meeting content-similar references, we designed the experiment us-
ing reference images with different similarity levels. Specifically, there are four
similar level HR-Refs in the CUFEDS5 test set, ranked by SIFT [17] feature
matching, which decline from L1 to L4. We also compare results using aug-
mented HR and all the four HR-Refs in Tab. 2.

As shown in Tab. 2, we compare CIMR, CrossNet, and SRNTT in both
PSNR-oriented and GAN implementation, where our results are much higher.
For the HR (warp) column in Tab. 2, the ability of our model for directly trans-
ferring information on HR itself is slightly worse than SRNTT. This is because
our model finds multiple reference patches for each LR local region, but it is
worthy note that there is no practical value in using HR itself for SR.
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Fig. 5. Upper part (content-independent references): visualization of 003, 032 and 065
in Urban100 and N00_17_0_34matches29 in CUFED [25]. Lower part (content-similar
references): visualization of 0470, 0440, 002_0 in CUFEDS5, where our CIMR-SR and
SRNTT both use content-similar references (i.e., 047_3, 044_3, 002_1).
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Table 2. PSNR/SSIM at different reference levels on CUFEDS5 dataset. The ”warp”
denotes the data augmentation with random translation (quarter to half width/height),
rotation (10~30 degree), and scaling (1.2~2.0x upscaling) from the original HR image.

Algorithm | HR (warp) L1 L2 L3 L4 All

CrossNet | 25.49/.764 25.48/.764 25.48/.764 25.47/.763 25.46/.763 -
SRNTT-l3| 29.29/.889 26.15/.781 26.04/.776 25.98/.775 25.95/.774 26.24/.784
CIMR-(, |29.82/.903 27.32/.805 27.05/.799 26.92/.796 26.86/.794 27.44/.810

SRNTT [33.87/.959 25.42/.758 25.32/.752 25.24/.751 25.23/.750 25.61/.764
CIMR 30.73/.918 26.50/.786 26.47/.784 26.45/.784 26.44/.784 26.63/.790

4.4 Qualitative Evaluation

Content-independent references. For the fair comparison, the state-of-the-
art SISR and RefSR methods we choose are MDSR [15], SRGAN [14], ESR-
GAN [24] and RCAN [33], among which RCAN and MDSR are the most powerful
SISR methods with the highest PSNR/SSIM scores. The SRGAN and ESRGAN
could achieve a satisfactory performance on visual quality because of adversar-
ial learning. SRNTT* with the same setting in the quantitative experiment is
included as the representative of state-of-the-art RefSR.

As shown in the upper part of Fig. 5, although PSNR-oriented methods like

RCAN and MDSR could present higher criteria, they tend to produce blurry
textures while preserving sharp edges. SRGAN and ESRGAN could largely im-
prove the high-frequency details since the generative adversarial learning strat-
egy. However, they tend to generate unnatural textures, like the noise around
the sculpture. SRNTT [35] is a powerful technique that could produce an ex-
tremely visually pleasing result and high criteria when the HR-Ref images and
the LR image share the same scene. However, due to the fact that our sampled
patches for SRNTT include some water wave patterns from the swimming pool,
the generated water waves in SRN'TT are a little bit brighter and tend to present
monotonous blue, which indicates the inferior feature transferring capability of
patch swapping in SRNTT. In contrast, our method employed with RP and LFE
module could lead to more natural and realistic textures when reconstructing
the head of the sculpture and boardwalk.
Content-similar references. We further compare qualitative evaluation with
similar references. We selected three samples from CUFED5 and compared SR-
CNN [4], SRGAN [14], SRNTT [35], and our baseline MDSR [15] in the lower
part of Fig. 5. We achieve better results in texture details and a huge improve-
ment over baseline. More visualization results will be provided in the supple-
mentary material.

4.5 Ablation Study

In this section, we investigate the effectiveness of utilizing multiple scales key
features as compared to using a single scale. We use the feature maps extracted
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Table 3. Comparison of adopting different conv layers for CIMR. Left part shows
PSNR at different reference levels on CUFEDS5 test set. Right part describes running
time, including offline feature searching and forward inference time.

Method-f, [ HR(warp) L1 L2 L3 L4 | FS  Forward
SRNTT 29.29 2615 26.04 2598 2595 | 2.726  0.351
convi 28.24 2697 26.89 2684 2679 | 2.045  0.783
conv2 28.77 27.06 2693 2692 26.85 | 1.551  0.535
conv3 27.31 26.26  26.06  26.02 26.03 | 1.020  0.361
conv2/3 27.87 27.27  27.01  26.89 26.82 | 2571 1.077
convi/2/3 | 29.82  27.32 27.05 26.92 26.86 | 4616  1.551

from convl_2, conv2_2 and conv3_2 to generate key features and feed them into
corresponding LFE modules. In addition to quantitative metrics, comparison
in the speed of feature searching (F'S, also represents patch swap in SRNTT)
(s/sample), model forwarding (s/batch) during the training process with batch
size 8 are applied to measure the efficiency of our model.

In Tab. 3, it shows that adding key features in 2x scale hidden layer of SR-
Net obtains the best improvement while using key features from conv3_2 perform
the worst. Furthermore, in our proposed CIMR-SR model, we also provide users
with more flexible options to achieve further improvement according to specific
requirements, at the cost of importing more LFE modules and more computa-
tions. It should be noted that even if we only use the key features from conv3_2,
we can achieve comparable results with SRNTT while increase the speed by
twice. These results fully demonstrate the effectiveness of our model to enhance
LR from multiple similar patches in feature space.

5 Conclusion

To our best knowledge, this is the first work to deal with arbitrary multiple ref-
erences oriented image super-resolution problem with deep learning. To achieve
this goal, we proposed a Content-Independent Multi-Reference Super-Resolution
(CIMR-SR) model. It can adaptively match local patterns from a universal ref-
erence pool and aggregate them in the feature space by the LFE module to
strengthen the discriminative learning ability on representing the LR image. Ex-
tensive experiments demonstrate that our proposed CIMR-SR model can achieve
better quantitative results and generate realistic images with more details as well,
outperforming the state-of-the-art methods.
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