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Abstract. Nowadays the description of detailed images helps users know
more about the commodities. With the help of OCR technology, the de-
scription text can be detected and recognized as auxiliary information
to remove the visually impaired users’ comprehension barriers. However,
for lack of proper logical structure among these OCR text blocks, it is
challenging to comprehend the detailed images accurately. To tackle the
above problems, we propose a novel end-to-end OCR text reorganizing
model. Specifically, we create a Graph Neural Network with an attention
map to encode the text blocks with visual layout features, with which an
attention-based sequence decoder inspired by the Pointer Network and
a Sinkhorn global optimization will reorder the OCR text into a proper
sequence. Experimental results illustrate that our model outperforms the
other baselines, and the real experiment of the blind users’ experience
shows that our model improves their comprehension.

Keywords: OCR Text Re-organization, Graph Neural Network, Pointer
Network

1 Introduction

The internet era has given rise to the development of E-commerce and a large
number of relevant platforms are springing up, such as Taobao, Jingdong and
Amazon. Nowadays people are apt to participate in these websites for communi-
cations with online sellers and transactions on diverse commodities. To attract
more consumers, these sellers take advantage of rich description text and com-
modity pictures to synthesize stylistic detail images, which help the consumers
know their products as intuitive as possible.
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(a) (b)

Fig. 1. Example of a detail image (a) and the right reading order in (b). The blue
boxes are the text blocks provided by OCR technology, the top-left red corner marks
are the indexes of the text blocks. The green arrow lines in (b) show the proper reading
route instead of reading from left to right and top to bottom simply.

Nevertheless, most detailed images are designed for healthy people who can
comprehend both the image and text information directly. They ignore the de-
mand of the visually impaired people who account for more than 27% of the
world’s population, such as the blind or the elderly. Since most existing screen
readers cannot recognize the image format information, an interaction barrier
between the visually impaired people and the e-commerce world has emerged.
As the text is an essential tool for humankind’s communication, it is an alterna-
tive to choose the description text in these detailed images for comprehension.
Optical Character Recognition (OCR) technology devotes to mining the text
information from several images, with its full application in scene text under-
standing[34], such as PhotoOCR [4], DocumentOCR [16]. Most classical and
prevalent works on OCR concentrate on text detection [8, 13, 32] and recogni-
tion [1, 5, 14, 20]. They extract the characters in images and organize them into
several text blocks according to semantic information, which performs well on
many scene-text images, and detailed images are no exception.

However, the text in detail images has a flexible layout. It uses diverse ty-
pography structures to convey the product information, which causes the com-
prehending problem as the text blocks from OCR technology are discrete and
lacking in context order without image structure. So it is often confusing for
the visually impaired consumers when the screen reader reads the text blocks
at an arbitrary order. Figure 1(a) shows an example of a detailed image, the
blue boxes are the text blocks provided by OCR technology and the top-left red
corner marks are the indexes of the text blocks. If the screen reader reads these
text blocks from left to right and top to bottom, the visually impaired consumers
are doomed to misinterpret even hardly comprehend the detailed images. Only
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the reading order in Figure 1(b) shows the same information that the raw detail
image is expressed.

In this paper, we propose a novel end-to-end OCR text re-organization model
for detailed image comprehension to tackle the problem as mentioned above.
Based on the text detection feature extracted by a fully convolutional network
(FCN), we use the text blocks to construct a graph structure and cast the prob-
lem to a graph to sequence model. Specifically, under the assumption that all
the detailed images are probably be laid out regularly [15], we apply a graph
convolution network (GCN) model with an attention mask to encode the logical
layout information of the text blocks. A sequence decoder based on Pointer Net-
work (PN) is proposed to obtain the text blocks’ final order. We also introduce
the Sinkhorn layer to make optimal global normalization by transforming the
decoder predictions into doubly-stochastic matrices. Experiments on real-world
detail image datasets have been conducted and show our method outperforms
other sequence-oriented baselines both on local and global sequence evaluations.
A real user experience test on blind people is also launched and shows the im-
provement of their comprehension.

Our contributions are threefold. First, to our best knowledge, it is the first
time to propose the reading order problem for a rich-text detailed image based on
OCR text blocks. Second, we propose an end-to-end graph to sequence model to
solve the text blocks’ re-organization problem using graph convolution network
and pointer attention mechanism. Last, we design both quantitative sequence
evaluation and real user experience tests among the blind people to convince
our model’s rationality and feasibility.

2 Related Work

Since the reading order re-organization problem is rarely mentioned and similar
to the fields on sequence modeling, in this section, we briefly discuss related
works on it. We also discuss traditional research on document analysis to show
the similarities and differences with our work.

2.1 Sequence modeling

Sequence modeling has been widely researched in many fields. In computer vi-
sion, it aims to learn a proper order for a set of images according to some
predefined rules [22]. A typical variation of this task is the jigsaw puzzle prob-
lem [18, 24], which needs to recover an image from a tile of puzzle segments.
Jigsaw puzzle problems can be abstracted as ordering the image segments based
on their shape or texture, especially on the boundaries [11, 19]. It is similar when
regarding the OCR text blocks as sub-image regions and reconstructs their order.
However, these methods are not suitable because OCR text blocks are discrete
and isolated, with no joint boundary and continuous texture information.

Meanwhile, in natural language processing, RNN-based [21] Sequence-to-
Sequence model (Seq2Seq) [27] and Neural Turing Machines [12] can solve most
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generative sequence tasks. However, they cannot solve the permutation prob-
lem where the outputs’ size depends on the inputs directly. Vinyal et al. propose
Pointer Network [29] which uses an attention mechanism to find the proper units
from the input sequence and permute these as output. One of its application,
text summarization, show the similarities of our work as they select some key
information from the original text for summarization[7, 10]. Recently they are
prevalent with the dynamic decision whether generating new words or permuting
words from the original text inspired by the pointer mechanism[23, 33]. However,
it is not suitable to generate the summarization of complete text information be-
cause the description text is carefully selected by the sellers to show the selling
points [6], let alone the word deletion in extractive summarization. Meanwhile,
as there remain some mistakes during the OCR text detection and recognition
process, it is hard to guarantee the accuracy of the summarization under NLP
features. Finally, sellers may tend to use concise and isolated phrases or words
to describe their product, which has no grammar or syntax structure so that the
summarization will fail to get whole sentences.

Furthermore, another line of research for sequence modeling has been devoted
to converting other complex structures into sequences. Xu et al. [31] propose a
graph to sequence model (Graph2Seq) with a GCN encoder and an attention
Seq2Seq decoder to solve the bAbI artificial intelligence tasks [30]; Vinyals et
al. [28] apply the attention mechanisms on input sets and propose the set to
sequence model (Set2Seq) for language modeling and parsing tasks; Eriguchi et
al. [9] design a tree to sequence (Tree2Seq) structure for extracting syntactic in-
formation for sentences. The commonality of these models is that their sequence
decoders are all based on the Seq2Seq model, causing the limitation of output
dictionary dependence.

2.2 Document analysis

Document analysis mainly includes two steps: document layout analysis and
document understanding. The former process detects and annotates the phys-
ical structure of documents, and the latter process has several comprehension
applications such as document retrieval, content categorization, text recogni-
tion[3]. However, most layout structure extraction and comprehension tasks on
traditional documents are cast to a classification problem, which is different
from text ordering tasks on scene-text images. It is hard to find homogeneous
text regions and define semantic categories of the OCR text blocks with diverse
layouts and open designs. Furthermore, scene texts with unique layouts and de-
signs imply the visual cues and orders for comprehending the whole image, while
document content analysis scheme is not suited for obtaining the order context.

3 Re-organization Model Architecture

Since the traditional sequence modeling methods cannot directly apply to the
detailed image comprehension problem. This section sheds light on an end-to-
end model to re-organize the OCR text block image regions for comprehension
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based on layout analysis. Specifically, we first define the re-organization task and
then introduce the graph-based encoding method with an attention mask to get
the layout embedding, finally we introduce a pointer-based attention decoder to
solve the ordering problem.

3.1 Task definition

Given a set of text block images generated by OCR text detection and recognition
from an original detail image, we need to generate a proper permutation of
these blocks under which its text sequence can be comprehend. Formally, let us
define an detail image with its OCR text block set T = {t1, t2, · · · , tn} where
ti refers to the ith text block. Meanwhile, we also define an target permutation
PT =< P1,P2, · · · ,Pm(T ) > where m(T ) is the indices of each unit in the text
block set T between 1 and n. We are suggested to train an ordering model with
the parameters w by maximizing the conditional probabilities for the training
set as follows:

w∗ = arg max
w

∑
T ,PT

log p
(
PT |T ;w

)
(1)

where the sum operation means the sum of the total training examples. Actually,
we cast the discrete image block re-organization process to a supervised sequence
ordering problem.

3.2 Graph construction

We model each detail image as a graph of text blocks in which each indepen-
dent text block are regarded as nodes with the image feature comprised for
their attributes. We also take advantage of the geometric information (e.g. po-
sition) of the text blocks and construct edges to represent the original relations
among them. Mathematically, we cast a detail image to a directed weighted
graph structure G = (N , E), where N = {f (t1) , f (t2) , · · · , f (tn)} is the set
of n text blocks (i.e. nodes) and f (ti) stands for the attributes of the ith text
block, while E = {r (ei,1) , r (ei,2) , · · · , r (ei,n−1)} is the set of edges and ei,j is
the direct edge from node i to node j and r (ei,j) stands for the attributes of the
ei,j direct edge. In fact, we construct the fully connected graph for text blocks
in a detail image primarily.

In order to obtain the attribute f (ti) for the ith node, we consider the image
feature which is related to the layout and image semantic feature instead of the
text feature because the detail images do not have strict morphology and syntax
structures. Given a detail image, we apply the Fully Convolutional Network
(FCN) [17] model on detecting the text regions, then we extract its backbone
and use the pretrained parameters from text detection to get the feature map of
the total image. Combined with the text region bounding box, we get the text
block feature as the node attributes with bi-linear interpolation technique.

As for the directed edge attributes, we consider the geometric information and
take advantage of the position coordinates of the text blocks. Since the rectangle
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text regions are in difference size, we apply the relative position inspired by [16]
to represent the edge attribute between node ti and tj as follows:

r (ei,j) =

[
∆i,jX,∆i,jY,

li
hi
,
lj
hi
,
hj
hi
,
hj
li
,
lj
li

]
(2)

where ∆i,jX and ∆i,jY stand for the horizontal and vertical euclidean distance
of two text blocks based on their top-left coordinates, while li and hi stand for
the width and height of the ith text block respectively. The third to eighth values
of the attributes are the shape ratio of the node ti, with four relative height and
width of node tj . Because the text blocks are not single points and have different
region shapes, it is necessary to consider the impact of the shape instead of only
using the euclidean distance of vertexes.

To summarize, we construct the graph of text blocks in a detail image with its
node embedded the image textual features and its edge embedded the geometric
features primarily, as Figure 2 depicts.

Graph Construction

FCN

Image

Graph

Embedding

Classification

Text Block Feature

Feature Map Text Border

Join

Weighted
Directed Graph

Node 

Embedding

Edge 

Embedding

Z
V

Z
E

Mean 

Pooling

Link 

Prediction

Z
G

Z
L

Graph Convolutional Encoder

Fig. 2. The framework of graph construction and graph convolutional encoder module

f(ti) r(ei,j)

r(ej,i)
f(tj)

CONCAT(f(ti),r(ei,j),f(tj))

CONCAT(f(tj),r(ej,i),f(ti))

Fig. 3. The transformation of the directed weighted graph. The new feature contains
the concatenation of two node feature vectors with the edge feature vector of their
directed link.
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3.3 Graph convolutional encoder

Compared to the traditional convolutional network, graph convolution is applied
to the discrete data structure and learn the embeddings of nodes through the
aggregation of their local neighbors. In this paper, we simultaneously perform the
convolution operation on both nodes and edges. Because two directed edges link
every two nodes, we deal with the node feature vector with the concatenation of
two-node feature vectors and an edge feature vector that links them, as Figure
3 depicts. That is, for two text blocks’ nodes ti and tj with two edges ei and ej
between them, we define a new compound node ci,j with its feature vector h0

i,j

at 0th layer as follows:

h0
i,j = CONCAT

(
f0 (ti) , r

0 (ei,j) , f
0 (tj)

)
(3)

then we can iteratively compute the lth layer feature hli,j as follows:

hl
i,j = σ

((
W l

v

)T
· hl−1

i,j

)
(4)

where σ refers to the nonlinear activation function, and W l
v refers to the node

weight parameters of the lth layer. However, to get the hidden representation of
node ti instead of compound node ci,j , we also need to analyze and aggregate the
proper local neighbors of the node ti. Instead of using the traditional aggregator
architectures like mean or LSTM aggregators, we use the self-attention mecha-
nism on different hidden layers. Mathematically, the attention output embedding
f l (ti) for the node ti at lth layer can be calculated as follows:

f l (ti) = σ

 ∑
j∈{k|∀k∈NB(i)}

αl
i,jh

l
i,j

 (5)

where σ is a nonlinear activation function. Since we will mask the node with very
low attention value and do not regard them as a proper local neighbor, NB(i)
refers to the local neighbors of the node ti. Likewise, αl

i,j refers to the attention
coefficient between node ti and tj . Based on the [2], the attention coefficient can
be defined as follows:

αl
i,j =

exp

(
σ
((

wl
a

)T
hi,j

))
∑

u∈{k|∀k∈NB(i)} exp

(
σ
(

(wl
a)

T
hi,u

)) (6)

where the σ refers to the LeakyReLU activation function, wl
a is a attention

weight vector of the lth layer.

Meanwhile, we perform the edge embedding with more easier operation as
we find that the compound node ci,j represents the edge link information of two
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nodes, so we define the convolution output embedding rl (ei,j) for the edge ei,j
at lth layer as follows:

rl (ei,j) = σ

((
W l

e

)T
· hl−1

i,j

)
(7)

where σ is a nonlinear activation function, and W l
e refers to the edge weight

parameters of the lth layer.
The intermediate output f l (ti), r

l (ei,j) and f l (tj) can be send to the next
graph convolution layer as inputs according to Eq. 3. After K graph convolution
operations, we can obtain the final node embedding feature matrix ZV which
combined by fK (ti) ,∀ti ∈ N and edge embedding feature matrix ZE which
combined by rK (ei,j) ,∀ei,j ∈ E . Finally, we perform mean pooling operation on

the node embedding to obtain the final graph representation ZG as sequence,
which is fed to the downstream pointer-based sequence decoder for the result
order. Meanwhile, we use a fully-connected neural network to perform link pre-
diction task for obtaining the relation features ZL of the text blocks, which
implies the layout constraints for the downstream decoder task. In Section 3.5
we will illustrate more about the layout constraints. The right blocks of Fig 2
shows the process of the encoder.

3.4 Pointer-based attention decoder

As for a sequence problem, the decoder of the text block re-organization task
happens sequentially. That is, at each time step s, the decoder will output the
node ts according to the embeddings of the encoder and the previous output ts′

which s′ < s. In this task, we have no output vocabulary and the nodes in the
output sequence are just from the inputs. Therefore we apply a pointer-based
decoder with a single-head attention mechanism. Figure 4 depicts the decoding
process.

The information considered by the decoder at each time step s includes three
embeddings, the graph embeddings from the encoder including node embeddings
and layout constraints, and the previous (last) node embedding. Hence that at
the first step we will use a special start label and learn the first node vinput

as input placeholder. Formally, we define this information as a concatenating
context vector hc and compute as follows:

hc =

{
[ZG,ZL,hts−1 ], s > 1

[ZG,ZL,vinput], s = 1
(8)

where [·, ·, ·] is the horizontal concatenation. With the context vector, we will
decode the corresponding node and use the result to update itself for the next
prediction. Under the attention mechanism, we can compute a single query qc
from the context vector as follows:

qc = WQhc,ki = WKhi,vi = WV hi (9)
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where WQ,WK ,WV are the learning parameters and hi is the node embedding,
from which we get its key ki and value vi. After that, we can compute the relation
score of the query with all nodes, and mask the already visited nodes. the score
ac,i is defined as follows:

ac,i =


qT
c ki√
dh

, if i 6= s′,∀s′ < s

− inf, otherwise

(10)

where dh is the node embedding dimentionality. Then we can compute the output
softmax probability pi of node ti as follows:

pi =
exp(ac,i)∑
j exp(ac,j)

(11)

the decoder will choose the node with max probability as the output of each
time step.

Decoder s = 2

Zv1 Zv2 Zv4

qv

Decoder s = 1

Zv1 Zv2 Zv3 Zv4

qv

ATT

Decoder s = 3

Zv2 Zv4

qv

Decoder s = 4

Zv4

qv

v v v v

Z
G
Z
L
v

input

Query
p1 p2 p3 p4

Zv2

p1 p2 p4 p2 p4 p4

Zv3 Zv1 Zv2

Fig. 4. The framework of pointer-based attention decoder. The decoder takes the graph
embeddings including node embeddings and layout constraints. At each time step s, the
decoder takes advantage of the graph embeddings and the last output node embedding
where the learned placeholder is used at the first step. Once a node has been output,
it will be masked and cannot be considered anymore. The example depicts that the
output sequence < t3, t1, t2, t4 > is decoded sequentially.

3.5 Sinkhorn global optimization

To improve the efficiency and make the max probability more significant, Sinkhorn
normalization algorithm can be applied in the attention matrix. Because each
text block has unique link to the next one, we can cast the attention matrix
into a double-stochastic matrix with rows and columns summing to one. In
Sinkhorn theory, any non-negative square matrix can be transformed into a
double-stochastic matrix via iteratively scaling its rows and columns to one al-
ternatively [25, 26]. Consider the attention matrix An×n before the final predic-
tion, and it can be transformed to a double-stochastic matrix by alternatively
performing row and column normalization until its rows and columns summing
to one. the row R and column C normalizing operations are defined as follows:

Ri,j(A) =
Ai,j∑n
k=1Ai,k

;Ci,j(A) =
Ai,j∑n

k=1Ak,j
. (12)
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And the Sinkhorn normalization SH for the l-th iteration is operated recursively
by the following rules:

SHn(A) =

{
A, if n = 0
C
(
R
(
SHn−1(A)

))
, otherwise

(13)

Then we can add Sinkhorn normalization for global optimal max probability of
the output text block at each time step.

4 Experiments

In this section, we apply our model on real Detailed Image (DI) datasets with
several types of products and use both global and local sequence evaluation
methods to compare our model with other baselines. Furthermore, we launch a
real user experience test on blind people and analyze their feedbacks.

4.1 Dataset

Since there is no work on re-organizing OCR text blocks for proper reading order
on detail image, we first collect and label detail images from e-commerce plat-
forms to construct the DI datasets. DI consists of about 10k detail images with
more than 130k text blocks from several product types such as cosmetics, daily
necessities, detergents, and the number of text block ranges from 5 to 50 for
each detailed image. Due to some bad OCR results, redundant information, and
irrelevant descriptions, we ignore these text blocks during the reordering process
to guarantee that each text block’s content is valid and necessary for compre-
hension. The layout of text blocks in DI includes horizontally text, multi-column
text, ring, star and single key-value structural text, which implies different logical
reading order. We communicate with real users including the visually impaired
and the designers of the text images to understand how to comprehend the image
only by the texts contained, then we induct and define the proper text order as
all the text blocks from OCR are in the order of visual information acquisition,
and keep the semantically related text blocks as close as possible in the ordering
sequence. For our model, we assign 80% of the dataset for training, 15% for
validation and 15% for the test.

4.2 Baselines

We compare the performance of our model with the following designed baselines.
Position-greedy (POS-Greedy) This method considers the position of

the text blocks and under the row-major order to scan the OCR text blocks. It
will select the nearest text block of the current one as its next linked one. Under
the statistics, more than 98% detail images satisfy the rule that its first text
block is relatively close to the top or left region, so we use it to decide the first
block of the sequence.



An End-to-End OCR Text Re-organization Sequence Learning Method 11

Position-hierarchy (POS-Hier) This method considers the global mini-
mum distance among all the pairs of OCR text blocks, then merge the pair into
a new block iteratively and row-major order rules order the two text blocks.

Position-MLP (POS-MLP) This model only considers the geometrical
feature with an MLP to predict the partial order of each pair. It solves the text
block re-organization task according to the partial order pairs.

4.3 Evaluation metrics

Since it is a sequence order problem, we first use the total order accuracy
of the detail image as the global sequence evaluation metric. We compare the
ground truth sequence with our model’s predict sequence by single block position
matching, if there exist two blocks mismatching, the prediction of the detail
image fails. The total order accuracy can be computed as the ratio of the number
of detail images whose OCR text blocks are perfectly matched.

Other than the global sequence evaluation, we are inspired by the evaluation
for discrete words in machine translation and apply the BLEU score for evalu-
ating the local continuous coverage rate of the discrete OCR text blocks. Hence
that we re-organize the text blocks from the input, it is meaningless to compute
one block coverage (BLEU-1) as they always show the same value.

4.4 Results and Analysis

We first resize all the detailed images for 768×768 resolution as normalized input
for feature extraction from the pretrained backbone, then we feed them into a
two-layer graph convolution encoder for obtaining the graph embeddings, then
the attention decoder will predict the sequence of the text blocks. We perform
the last three models ten times within 300 epochs on NVIDIA Tesla P100 until
convergence and choose the best one on the validation set. The main results are
depicts in Table 1. As we can see, our proposed model GCN-PN and GCN-PN-
Sinkhorn outperform among the baselines on global sequence prediction, which
seems that the image feature from FCN is beneficial to predict more accurate
re-organized sequence, because it is reasonable that the layout is related to the
image feature and can help to infer the reading order. Meanwhile, the GCN
encoder and PN decoder provide a more powerful order relation analysis than
the rule-based method. Besides, adding Sinkhorn normalizing operation into
the decoder is beneficial for total order prediction. It considers the total links
among the text blocks and can weaken some potential wrong links that maybe
only locally optimal.

Furthermore, we make a deep analysis on the local sub-sequence coverage.
Intuitively, we use the BLEU score which is usually evaluated for machine trans-
lation tasks. Since we can consider each of the text blocks in the result sequence
as a separate unit like word, we can compute the BLEU-2 and BLEU-4 for eval-
uating the coverage rate on 2 and 4 subsequent text blocks. Table 2 depicts the
results. Hence, we use the NLTK package to compute the BLEU score, which
adds a normalization to it and maps it into a value at [0, 1] intervals. When the
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Table 1. Total order accuracy of these models on DI test data

Method Total Order Acc

POS-Greedy 0.41 ± 0.008
POS-Hier 0.70 ± 0.010
POS-MLP 0.75 ± 0.010
GCN-PN 0.79 ± 0.009
GCN-PN-Sinkhorn 0.86 ± 0.005

perfect matching happens, the value goes to 1, otherwise it goes to zero, and the
large the value is, the higher the coverage rate is. From the table we can find
that our GCN-PN-Sinkhorn model gets the highest coverage rate both on 2 and
4 subsequent text blocks, which implies the global order optimization also bene-
fits the local order optimization. Hence that we also find the POS-Hier methods
get high BLEU-2 score but low BLEU-4 score because this method merges two
nearest blocks at each ordering step, it pays more attention to the 2-neighboring
text blocks or text block groups. Furthermore, normal MLP may be more easily
confused by some wrong sub links than attention-based GCN-PN models and
are inferior to them on local evaluation. The greedy method shows the worst
results on global and local evaluation because reading order on many complex
layouts does not simply depend on position, such as multi-column, which has
the rule that is reading the total column context one by one.

Table 2. The BLEU scores of these models on DI test data

Method BLEU-2 BLEU-4

POS-Greedy 0.76 0.40
POS-Hier 0.89 0.66
POS-MLP 0.82 0.62
GCN-PN 0.90 0.71
GCN-PN-Sinkhorn 0.92 0.74

Fig 5 and Fig 6 show more details of the visual results. Fig 5 shows a multi-
column structure example and we can find the POS-Hier (5(b)) and our GCN-
PN-Sinkhorn model (5(f)) perform well as the ground truth, which also implies
their ability for ordering local text blocks. Sinkhorn based model performs well
than GCN-PN (5(e)) and POS-MLP because of the global optimizing to reduce
the probability of some wrong links. Meanwhile, the Greedy method is easy
to make a mistake and causes many inverse reading order links because it is
highly sensitive to a variation on the text blocks’ coordinates. Fig 6 shows a KV-
table structure example and we find that POS-Hier (6(b)) cannot deal with this
structure well because some keys in the table are more closed than keys to their
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(a) Ground Truth (b) POS-Greedy (c) POS-Hier

(d) POS-MLP (e) GCN-PN (f) GCN-PN-Sinkhorn

Fig. 5. An example of visualized reading order results. (a) is the ground truth order
with orange arrow lines and (b)-(f) are the results of the methods with green arrow
lines indicating the reading order.

values, resulting in a wrong merge operation. POS-MLP (6(c)) can order part of
the former text blocks but failed at the latter ones, which implies the shortage of
long order sequences. Our two model shows the same good results (6(d)) because
the encoder-decoder structure can keep and use more global layout information
to order the sequence.

4.5 Real user experience

We also design a real user experience in which the real blind people will par-
ticipate in our test and check the predicted text block sequence that can be
comprehended fluently. In this test, we use our model to generate the text block
sequence from 113 detail images as a test group and use the untreated text block
sequence (ordered by the reading scheme from top to bottom and left to right)
as a control group. Meanwhile, three blind people who all receive compulsory
education and often participate in online shopping are invited to our experi-
ment. Their task is to hear both of the sequences and decide which one is better
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(a) Ground Truth (b) POS-Hier (c) POS-MLP (d) Ours

Fig. 6. A KV-table structure example of visualized reading order results for analyzing
row-major locality. (a) is the ground truth order with orange arrow lines and (b)-(d)
are the results of the methods with green arrow lines indicating the reading order.

to comprehend. There is no other comprehension assistance during the experi-
ment, and three of them do not know the corresponding model of the sequence
beforehand. It takes them a week to complete the task and submit their choices
and feedbacks. The result shows that all the subjects believe that our model
outperforms more than 70% detailed images to help them comprehend well.

5 Conclusion

In this paper, we focus on the OCR text reordering problems. An end-to-end
re-organization sequence learning structure is first proposed in the e-commerce
scene. With a pretrained text detection network FCN, we extract the image
feature and incorporate it with the geometric feature to build a weighted di-
rected graph structure. Then a graph convolution encoder with a self-attention
mechanism is considered to obtain the graph embeddings. Then a pointer-based
attention decoder with a Sinkhorn global normalization is applied to predict
the permutation. Our model outperforms the baselines both on global and local
evaluations and will help get a more accurate and thorough comprehension of
detailed images, especially for the visually impaired.
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