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Abstract. The recently developed burst denoising approach, which re-
duces noise by using multiple frames captured in a short time, has demon-
strated much better denoising performance than its single-frame coun-
terparts. However, existing learning based burst denoising methods are
limited by two factors. On one hand, most of the models are trained
on video sequences with synthetic noise. When applied to real-world
raw image sequences, visual artifacts often appear due to the different
noise statistics. On the other hand, there lacks a real-world burst de-
noising benchmark of dynamic scenes because the generation of clean
ground-truth is very difficult due to the presence of object motions. In
this paper, a novel multi-frame CNN model is carefully designed, which
decouples the learning of motion from the learning of noise statistics.
Consequently, an alternating learning algorithm is developed to learn
how to align adjacent frames from a synthetic noisy video dataset, and
learn to adapt to the raw noise statistics from real-world noisy datasets
of static scenes. Finally, the trained model can be applied to real-world
dynamic sequences for burst denoising. Extensive experiments on both
synthetic video datasets and real-world dynamic sequences demonstrate
the leading burst denoising performance of our proposed method.

Keywords: Burst denoising, real-world image denoising, convolutional
neural networks, decoupled learning

1 Introduction

The imaging quality of smartphone cameras is much affected by the small aper-
ture and small CMOS sensor, which limit the amount of collected light and
result in heavy noise in the raw images. Denoising is a crucial step in the cam-
era image processing pipeline (ISP) to remove the noise and reveal the latent
image details. The denoising algorithms can be divided into single-frame denois-
ing methods [12, 39, 17, 3] and burst denoising methods [43, 18, 28, 15]. While the
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former ones take a single-frame image as input for processing and are easier to
implement, their denoising performance is limited, especially under the low-light
environment. The recently developed burst denoising methods capture multiple
frames in a short time as input, and thus they can leverage more redundant
information for noise removal, leading to much better denoising quality.

The burst denoising problem can be addressed by hand-crafted methods [18,
11, 25, 12, 43] or learning-based methods [28, 36, 15]. The traditional hand-crafted
algorithms are often manually designed to exploit the spatio-temporal similari-
ties. For example, the well-known VBM3D method [11] denoises an image patch
by finding and fusing its similar patches in the adjacent frames. In contrast, the
learning-based methods train a denoising model by using pairwise datasets with
a noisy image sequence as input and a clean image as ground-truth. In partic-
ular, the rapid development of deep convolutional neural networks (CNNs) [28,
36, 15] largely facilitate the research of learning based burst denoising. The CNN
model is powerful to learn a set of nonlinear transformations from the noisy in-
put to the clean output, including frame alignment, fusion and post processing,
achieving superior performance to traditional burst denoising methods.

Despite the great progress, the learning-based burst denoising methods are
limited by two factors. On one hand, the current multi-frame CNN models are
mostly trained on video datasets with synthetic noise, e.g., Gaussian or Poisson-
Gaussian noises. When the learned models are applied to real-world raw image
sequences, whose noise distribution and statistics are more complex, unpleasant
visual artifacts such as color shift and residual noise will appear. One the other
hand, there lacks a real-world dataset for learning burst denoising models of
dynamic sequence. This is mainly because in the presence of scene motion (e.g.,
hand shake motion and object motion), it is difficult to craft a clean ground-truth
frame by using existing ground-truth generation techniques, such as using low
ISO setting [9] or averaging multiple frames [1]. Misalignment problem will occur,
which significantly degrades the quality of ground-truth. It is highly desirable
to develop a burst denoising CNN model that can adapt to the real-world noise
statistics without the need of a real-world pairwise burst image dataset.

There are two key issues in designing such a burst denoising CNN model.
Firstly, to enable multi-frame processing, the CNN model should be able to
align input frames to compensate the scene motion caused by hand shake and
object movement in real scenarios. Second, the CNN model should be able to
adapt to real-world noise for better generalization to real-world burst images.
Based on the above considerations, in this paper we propose a decoupled learning
framework for real-world burst denoising. First, a novel multi-frame CNN model
is carefully designed with modular architecture which decouples the learning of
motion from the learning of noise adaption. Second, an alternative learning algo-
rithm is developed to leverage the complementary information from two datasets
we prepared. One is a video dataset with synthetic noise, where the model learns
to perform frame alignment, while the other is a real-world burst image dataset
of static scenes, from which the model learns to adapt to raw noise statistics.
With the designed CNN model and our decoupled learning algorithm, the learned
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CNN model achieves leading performance in real-world burst denoising without
the need of a pairwise real-world burst dataset for training.

The rest of the paper is organized as follows. Section 2 reviews some related
work. Section 3 describes in detail the proposed decoupled learning method.
Section 4 presents the experimental results and Section 5 concludes the paper.

2 Related Work

2.1 Synthetic Image Denoising

Many image denoising algorithms are developed and evaluated on the images
corrupted by synthetic noise. At early stage, prior knowledge of natural images
is exploited for denoising, including statistical prior [32, 30], sparsity prior [2,
14, 27] and non-local self-similarity [7, 12, 16, 35, 26]. The performance of these
traditional methods is limited because the hand-crafted priors are not strong
enough to characterize the complex structures of natural images. Recently, deep
learning-based approaches have been developed for denoising tasks with substan-
tial progress [39, 40, 21, 37, 3, 33, 24]. The DnCNN model showed that a CNN-
based method can outperform non-CNN denoising methods by a large margin
[39]. Recently, Anwar et al. introduced the feature attention operation into the
denoising CNN model, achieving state-of-the-art image quality [3]. Other repre-
sentative works include FFDNet [40], MemNet [33], MWCNN [24], etc.

2.2 Real-world Image Denoising

The research on real-world image restoration has not been fully conducted until
recently owe to the several real-world datasets constructed for this purpose [8,
41, 29, 1, 9]. For the task of real-world denoising, Plotz et al. established a bench-
mark [29], where a pairwise dataset is collected by taking high/low ISO images.
Abdelhamed et al. built a dataset of static scenes collected by smartphone cam-
eras [1]. Each data pair is composed of a sequence of noisy raw images and the
corresponding clean ground-truth image created by frame averaging. Chen et al.
collected an image dataset [9] and a video dataset [10] by using high/low ISO
settings to capture static noisy/clean raw images in low-light environment.

In addition to these real-world datasets, several works have been reported to
synthesize realistic data for denoising [5, 17, 28, 13]. Tim et al. [5] and Guo et al.
[17] proposed to reverse the ISP pipeline on the sRGB images and generate noisy
training images that are close to the camera raw data. However, these methods
are compromised schemes which cannot cope with the real-world scenes with
heavy noise corruption and object motion.

2.3 Burst Denoising

Burst denoising methods, an advantage over single-frame ones, take a noisy
image sequence as input, and perform a series of operations, including frame
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alignment, temporal fusion and post-processing, to reproduce the underlying
scene [43, 18, 11, 25, 23, 6]. The frame alignment operation aims to build the cor-
respondence between the dynamic contents of the target and reference frames.
Some works adopt block matching for alignment [18, 11, 25, 12, 43], while others
use optical flow methods [23, 6]. The fusion operation aims to merge the outputs
from multiple frames, which should be robust to alignment error. Representative
approaches include collaborative filtering [12], non-local means [6] and frequency
domain fusion [18].

Recently, a few works have been proposed to learn frame alignment and fu-
sion from the input sequences for burst denoising. The KPN model [28] predicts
the convolutional kernels to selectively fuse a burst of images with object mo-
tion. Xue et al. [36] designed a CNN model that explicitly consists of frame
alignment, fusion and post-processing modules. Godard et al. [15] proposed a
recurrent architecture for burst denoising, which can increase the image qual-
ity by accumulating noisy images. These learning-based methods achieve better
image quality than their non-learning counterparts.

3 Decoupled Learning Network for Burst Denoising

3.1 Problem Statement

Given a sequence of N noisy raw images (e.g., in the Bayer color filter array
(CFA) pattern [4]) captured by a handheld camera, denoted by I = {I1, I2, ..., IN},
our goal is to estimate a clean RGB image O from I, i.e., O = f(I; θ), where
f(·; θ) denotes the denoising model (e.g., a CNN model in our work) parameter-
ized by θ. We consider one frame from I as the reference frame, denoted by Ir,
and denoise it by aligning and fusing it with other frames Ii, i 6= r.

To denoise real-world burst image sequences of dynamic scenes, the CNN
model should learn to simultaneously align frames and adapt to real-world noise
from some training dataset. Considering the fact that there lacks a real-world
burst image dataset of dynamic scenes with ground-truth clean images, we pro-
pose to use two types of datasets for training, which can be generated by using
the publically accessible data. One is a synthetic noisy video dataset of dynamic
scenes, denoted by Dd (subscript “d” for dynamic). Each data pair (Id,Gd) in
Dd consists of a noisy video sequence Id and a clean ground-truth frame Gd.
The other is a real-world burst image dataset of static scenes, denoted by Ds
(subscript “s” for static). Each data pair (Is,Gs) in Ds consists of a noisy raw
image sequence Is and a ground-truth clean RGB image Gs.
Dd can be easily built by using the many high quality video sequences [36],

while Ds can be built by the existing frame averaging method [1]. These two
datasets have complementary information. The video dataset Dd contains rich
dynamic scene motions, but the noise is synthetic and not real. In contrast,
the static burst dataset Ds does not contain scene motion, but can provide
information of real noise statistics. In this paper, we investigate how to learn a
CNN model f(·; θ) from Dd and Ds, and present a decoupled learning scheme
to achieve this goal.
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3.2 Datasets Preparation

Before we present the CNN model architecture and the decoupled learning
scheme, the two required datasets, Dd and Ds, must be prepared. We present
how to use the existing data to build these two datasets in this section.

Preparation of Dd. We collect high quality video sequences from some
video dataset (e.g., Vimeo-90k dataset [36]) to prepare Dd. Specifically, every N
consecutive frames are extracted as a burst sequence from the videos. However,
directly adding noise to those sequences will make Dd deviate too much from
the real-world dynamic noisy image sequences. Inspired by the work of [5], we
propose to reverse the ISP pipeline and add noise to the reversed raw images so
that the synthesized noisy sequences can be more realistic.

Specifically, we reverse four key ISP operations, including gamma correction,
color space conversion, white balance and demosaicking, together with realistic
noise synthesis, for building Dd. A reverse gamma conversion with parameter γ
is applied on a video frame L, where γ is sampled from a uniform distribution
within range [2.0,2.6]. Then, a reverse color space conversion C is applied, with
the color matrix randomly interpolated by the color matrices given in static
real-world dataset Ds. Next, a reverse white balance gain of W = 1/(rg, 1, bg)
is applied with rg and bg matched to the statistics in Ds. Finally, we obtain the
synthetic clean RGB image of a frame as G = WCLγ .

To synthesize the noisy input, a mosaicking mask M is applied to G, yielding
a Bayer CFA pattern image, denoted by GM . Then Poisson-Gaussian noise which
is approximated by heteroscedastic Gaussian [28] is added to the CFA image to
synthesize noisy raw image I:

I = GM + n(GM ) (1)

where noise n is dependent on the signal intensity g at each location:

n(g) ∼ N (µ = g, σ2 = λshotg + λ2read) (2)

where N (µ, σ2) is Gaussian distribution. λshot and λread are the shot noise and
readout noise, which are uniformly sampled in the range (0.00001,0.01) and
(0,0.058), respectively.

By the above described process, we can synthesize a sequence of noisy raw
images I and take them as Id. The clean RGB image G of the center frame is
taken as the ground-truth Gd. A data pair (Id,Gd) is then constructed for Dd.

Preparation of Ds. We use the static burst image datasets in [9, 1] to
prepare dataset Ds. We extract 140 and 162 groups of data pairs in [9] and [1],
respectively. Each group contains a static noisy sequence of 5 raw images and a
clean RGB ground-truth. We propose to add simple motions to the static burst
sequences to facilitate the learning of frame alignment. Specifically, for a raw
noisy image sequence, we add vertical and horizontal global shifts to its frames
(except for its reference frame Ir):

Îi = Ii(x+ xi, y + yi), for i 6= r (3)
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Fig. 1: The decoupled learning framework for our burst denoising network (BD-
Net).

(a) PreP module

(c) PostP module (b) TemP module

Fig. 2: The structure of the PreP module Mp, TemP module Mt and PostP
module Mo of the proposed BDNet.

where the shift xi and yi are uniformly sampled from the range [-4,4].
The ground-truth image Gs is already available in the static noisy image

datasets [9, 1]. After adding simple motions to its adjacent noisy frames and
taking them as Is, a data pair (Is,Gs) for the dataset Ds can be generated.

3.3 Decoupled Network Design

To achieve the goal of decoupled learning with Dd and Ds, we design a modular
CNN which is explicitly divided into a pre-processing (PreP) module Mp, a
temporal processing module (TemP) Mt and a post-processing module (PostP)
Mo. We call the proposed CNN model BDNet (burst denoising network), whose
learning framework is illustrated in Fig. 1. The detailed structures of modules
Mp, Mt and Mo are illustrated in Fig. 2.

Pre-processing module. The PreP module Mp is constructed to perform
single-frame denoising on the noisy CFA sequence I = {I1, I2, ..., IN} and output
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pre-denoised features F = {F1, F2, ..., FN}. In addition, we add a noise level as
input, which is obtained by

√
λshot + λ2read. We adopt a multi-scale (three scales)

UNet [31] with 15 convolutional layers for single image denoising for its simplicity
and good performance. As shown in Fig. 2(a), the adopted UNet consists of a
contracting path which continuously downsamples the image features with stride
convolutions, and an expanding path that gradually upsamples the features to
the original resolution. Skip connections are added between the contracting and
expanding paths at the same scale level. The PreP module Mp not only helps
to reduce the noise but also increases the robustness in the subsequent frame
alignment operation.

Temporal processing module. The TemP module Mt is constructed to
align and fuse the pre-denoised features F = {F1, F2, ..., FN} and output a single
feature map Ft. It has been shown that accurate alignment can be obtained
with deformable convolutions [34]. Thus, we adopt the Pyramid, Cascading and
Deformable alignment (PCD) model and temporal attention methods in [34]
as the alignment and fusion components in our TemP module, respectively. As
shown in Fig. 1(b), the PCD takes a pair of reference and target features as
input, and progressively warps the target feature to the reference feature in a
multi-scale and cascading manner. The temporal attention component fuses all
the aligned features according to their similarities to the reference feature.

Post-processing module. The PostP module Mo takes the fused feature
Ft as input and conducts some refinement operations to reconstruct a clean
image. As shown in Fig. 1(c), we deploy 5 residual blocks to build Mo, each
containing two convolutional layers. Then a 1×1 convolutional and a sub-pixel
convolutional layer are applied to output the denoised RGB image O.

3.4 Decoupled Learning Process

Given the BDNet model in Section 3.3 and the two prepared datasets Dd and Ds
in Section 3.2, the remaining question is how to effectively learn frame alignment
and real-world noise adaptation for burst denoising. We propose a decoupled
learning method to this end, which is illustrated in Fig. 1.

First, considering that the noise statistics in the dynamic video dataset Dd
(synthetic noise) and static burst dataset Ds (real-world noise) are different,
different CNN modules should be deployed for each case to avoid mixed learning.
Therefore, we train and deploy two instances of the PreP module Mp with the
same architecture but different parameters. These two module instances, denoted
by Md

p and Ms
p , transform the synthetic noisy sequences Id (from Dd) and real-

world noisy sequences Is (from Ds) to pre-denoised feature sequences Fd and
Fs, respectively. We assign a pair of sub-losses, denoted by Ldp and Lsp, for the
pre-denoising modules {

minLdp
(
Gd, Recon1(Fd,r)

)
minLsp

(
Gs, Recon1(Fs,r))

) (4)

where Fd,r and Fs,r are the reference feature maps in the pre-denoised feature
sequences Fd and Fs, respectively. This pair of sub-losses Ldp and Lsp (e.g., `1
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loss) calculate the errors between the ground-truthsGd,Gs from the two datasets
and the images reconstructed from the pre-denoised reference features Fd,r, Fs,r,
respectively. The reconstruction operation Recon1 is performed by a shared 1×1
convolution that reduces the channel size, followed by a sub-pixel convolution
to expand to the original resolution. Since the features are initially denoised,
they are in a relatively clean signal space, which facilitate the subsequent frame
alignment learning.

Second, we deploy one TemP module Mt to receive the feature sequences Fd
and Fs, perform frame alignment and fusion, and output the fused features F dt
and F st , respectively. Since both Fd and Fs are in a relatively clean latent space,
the learned frame alignment capability of Fd can be transfered to Fs. A pair of
sub-losses, denoted by Ldt and Lst , are deployed on Mt:{

minLdt
(
Gd, Recon2(F dt )

)
minLst

(
Gs, Recon2(F st )

) (5)

The sub-losses compare the ground-truths Gd and Gs with the images recon-
structed from the fused features F dt and F st , respectively. The reconstruction
operation Recon2 consists of a shared 1×1 convolution followed by a sub-pixel
convolution.

Third, considering that the dataset Dd is generated by reversing the ISP,
while the images in dataset Ds are collected in the real raw image domain, the
ground-truth images of the two datasets may have some appearance differences.
In particular, the ground-truth images in Ds have genuine image structures,
whereas the ones in Dd may have artifacts caused by reversing ISP. Therefore,
different CNN modules should be deployed to learn different types of ground-
truths. We assign two instances of PostP module Mo, denoted by Md

o and Ms
o ,

to transform the fused features F dt and F st to the final denoised images Od and
Os, respectively. A pair of sub-losses, denoted by Ldo and Lso, are deployed to
compare Gd and Gs with the denoised images Od and Os, respectively:{

minLdo
(
Gd, Od)

)
minLso

(
Gs, Os)

) (6)

Finally, in the training process, we have two sets of loss functions Ld and Ls
to update the BDNet on Dd and Ds, respectively, which are as follows:{

Ld = wp(k) · Ldp + wt(k) · Ldt + wo(k) · Ldo
Ls = wp(k) · Lsp + wt(k) · Lst + wo(k) · Lso

(7)

where wp(k), wt(k) and wo(k) are the weights assigned on the sub-losses, which
are variables dependent on the global epochs k in the training. We adopt an
adaptive weighting scheme to train the modules progressively by setting:

wp(k) = 0.1
k
K , 1 ≤ k ≤ K, else 0.1

wt(k) = 0.1 · 10
k−K
K , K ≤ k ≤ 2K, else 0.1

wo(k) = 0.1 · 10
k−2K

K , 2K ≤ k ≤ 3K, else 0.1

(8)
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Under this weighting scheme, the three pairs of sub-losses in Eq. (7) dominate the
training process in turn. In the first K epochs, wp(k) gradually decreases from
1 to 0.1, while the others remain at 0.1. This setting emphasizes the sub-losses
Ldp and Lsp that optimize the PreP module. Then, during the epochs from K to
2K, the weight wt(k) gradually ascends from 0.1 to 1, with the others remain
at 0.1. At this stage, the sub-loss Ldt and Lst dominate the training, focusing on
the TemP module. Lastly, during the epoch from 2K to 3K, the weight wo(k)
on sub-losses Ldo and Lso ascends from 0.1 to 1, with the other weights remaining
at 0.1. This stage focuses on the training of the PostP module.

We adopt `1 loss for all the sub-losses involved in Eq. (7). An alternative
training scheme is adopted to assign J1 iterations for loss Ld and J2 iterations for
loss Ls in one cycle. In the testing stage, the modules Md

p and Md
o are removed,

and only the Ms
p , Mt and Ms

o modules are used to form the final BDNet model.

4 Experiments

In this section, we conduct experiments to verify the effectiveness of proposed
decoupled learning approach for burst denoising. We evaluate our BDNet on both
synthetic noisy video dataset and real-world noisy sequences quantitatively and
qualitatively. The peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) [42] are used as the quantitative metrics.

The kernel size of the convolutional layers of our BDNet is set to 3×3. Leaky
ReLU is used as the activation function. The number of input frames N of a
burst sequence is set to 5 for all multi-frame methods in the comparison. In
all experiments, we use the Adam optimizer (β1 = 0.9, β2 = 0.99) [19] to train
BDNet and other competing CNN models. The initial learning rate is set to 10−4,
and it exponentially decays by 0.1 at 3/4 of the total epochs. The parameter K
in Eq. (8) is set to 30. In the decoupled training, we update the model for J1 = 3
iterations on Dd and J2 = 1 on Ds in one cycle. In all training, the batch size
is set to 2 and the patch size is set to 128×128. Random rotations, vertical and
horizontal flippings are applied for data augmentation.

4.1 Datasets

Training set. For dynamic video dataset Dd, we extract 20,000 image sequences
from the Vimeo-90K video dataset [36], each containing 5 consecutive frames.
As for Ds, we leverage the SIDD [1] and SID datasets [9] to build it for multi-
camera training since none of the two datasets has enough training data for a
single camera. Specifically, we combine the Sony training set of SID (162 image
sequences) and 140 image sequences selected from SIDD training set as our static
burst dataset Ds.

Testing set. Our testing set consists of a synthetic test set and a real-world
test set. For the synthetic test set, we extract another 200 image sequences
(different from the training sequences in scene and content) from the Vimeo-90k
dataset [36], denoted by Vimeo-200. For the real-world test set, we build a static
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Table 1: Quantitative results (PSNR/SSIM) on the synthetic test sets. G25, G50
and PG indicates Gaussian σ=25, Gaussian σ=50 and Poisson-Gaussian noise,
respectively.

VBM4D DNCNN RIDNet KPN TOFlow BDNet

G25 28.30/0.735 32.60/0.870 34.74/0.908 34.84/0.907 34.99/0.902 36.78/0.937
G50 25.92/0.621 29.32/0.776 31.47/0.821 32.44/0.862 31.95/0.829 34.03/0.900
PG 30.48/0.845 35.79/0.934 38.34/0.954 37.77/0.940 37.90/0.951 39.45/0.965

test set, denoted by Real-static, for quantitative evaluation, as well as a dynamic
test set, denoted by Real-dynamic, for qualitative perceptual evaluation because
the ground-truths are hard to generate for dynamic scenes. The Real-static set
is composed of the Sony test set (50 image sequences) in SID dataset [9] and 20
image sequences selected from the SIDD dataset [1]. For the Real-dynamic test
set, we use iPhone 7 to capture 20 dynamic noisy image sequences in low-light
environment. All the images are stored in raw format.

4.2 Results on Synthetic Noisy Sequences

We firstly evaluate the burst denoising performance of our BDNet on synthetic
noisy data. We compare BDNet with several representative and state-of-the-art
methods which are popularly used for synthetic noisy video denoising, including
VBM4D [26], DnCNN [39], RIDNet [3], KPN [28] and TOFlow [36]. Among
them, VBM4D is a classical patch based video denoising method; DnCNN and
RIDNet are single-frame denoising CNN models; and KPN and TOFlow are
CNN based multi-frame denoising models. We train all the CNN based models,
including BDNet, until convergence on the dataset Dd. We add three types of
noises, including Gaussian noise with σ=25 (G25), Gaussian noise with σ=50
(G50) and Poisson-Gaussian noise (PG) defined in Eq. (2), to the Vimeo-200
test set, and apply the competing models to these synthetic noisy sequences.

Table 1 shows the PSNR/SSIM results of the compared methods. We can
see that the proposed BDNet achieves the highest PSNR and SSIM scores in
all cases. While TOFlow performs well in the cases of low noise levels, i.e., G25
and PG, its performance heavily degrades in the case of higher noise level, i.e.,
G50. This is because it performs frame alignment in the image domain, but
the alignment accuracy is affected by the heavy image noise. While the single-
frame models, DnCNN and RIDNet, have relatively lower PSNR/SSIM scores,
RIDNet performs well on PG noise, which may be attributed to its robust feature
attention modules. For the visual comparison of the denoising results, the reader
can refer to the supplementary file for details.

4.3 Results on Real-world Noisy Sequences

We use the ”Real-static” (for quantitative evaluation) and ”Real-dynamic” (for
qualitative evaluation) test sets to evaluate the performance of BDNet on real-
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(a) Noisy frame (b) UTR (c) M-UNet (d) M-RIDNet

(e) KPN (f) INN (g) BDNet (h) ground-truth

Fig. 3: Denoising Results of the compared methods on Real-static test set. White
balance gain and a gamma conversion with parameter 2.2 are applied for better
visualization.

Table 2: Quantitative evaluation on the Real-static test set.

VBM4D UTR UNet M-UNet RIDNet M-RIDNet KPN INN BDNet

PSNR 40.49 42.02 43.85 44.23 44.17 44.54 39.68 43.95 45.31
SSIM 0.901 0.897 0.954 0.964 0.960 0.968 0.867 0.964 0.971

world burst noisy sequences. We compare BDNet with those methods popularly
used for real-world image denoising in literature, including VBM4D [26], UNet
[9], RIDNet [3], Unprocess-to-raw (UTR) [5], KPN [28] and INN [20]. Both UTR
and KPN methods learn real-world denoising by synthesizing data that resemble
raw noisy images. In particular, UTR reverses the ISP pipeline, while KPN
adds motion and noise to clean images to synthesize a burst of noisy images. In
addition, the INN method use global affine transformation to align frames and
performs burst denoising by learning a trainable proximal operation. For fair
comparison, we make the following configurations.

1) First, for the single-frame denoising methods UNet and RIDNet, we build a
multi-frame version for them, denoted by M-UNet and M-RIDNet, respec-
tively. M-UNet and M-RIDNet first denoise each frame in the noisy sequence,
and then apply optical flow alignment [38] to fuse the denoised frames by
average fusion, resulting in the finally denoised sequences.

2) Second, the UTR method learns a single-frame CNN. For fair comparison
with UTR, we replace its single-frame CNN by our multi-frame BDNet struc-
ture and re-train it on Dd.



12 Z. Liang et al.

(a) (b) (c) (d) (e) (f)

Fig. 4: Denoising results of the compared methods on Real-dynamic test set. (a)
Noisy reference frame. (b) Noisy patches. (c) M-RIDNet. (d) KPN. (e) INN. (f)
BDNet. White balance gain and a gamma conversion with parameter 2.2 are
applied for better visualization. Best viewed on screen with zoom-in.

3) Third, we re-train KPN on dataset Dd using the same data synthesis set-
ting as the original paper [28], including ISP pipeline reversing and noise
generation.

4) At last, we train UNet, RIDNet and INN models on dataset Ds until con-
vergence, and use the models with the best testing performance.

Table 2 shows the quantitative evaluation results on the ”Real-static” test set.
It is clear that the proposed BDNet obtains the highest PSNR and SSIM scores.
UTR and KPN have low objective scores since they are not able to adapt to the
real-world static test data. The two multi-frame models, M-UNet and M-RIDNet,
obtain higher scores than their single-frame counterparts, which proves that the
multi-frame fusion helps for realistic noise removal. However, their PSNR/SSIM
results are still lower than the proposed BDNet. Fig. 3 compares visually the
denoising results of the compared methods on one image in the Real-static test
set. One can see that the proposed BDNet is able to remove the noise without
blurring the details, whereas the other methods tend to over-smooth the image
details. In addition, the UTR method leaves residual noise in the image (Fig.
3(b)) because it is not adapted to the real-world dataset.

We then compare the competing models on the Real-dynamic test set. Since
no ground-truths are available, we can only make qualitative comparisons on
them. Fig. 4 shows the results, where we can see that those competing methods



Decoupled Learning Scheme 13

(a) Train on Dd and fine-tune on on Ds (b) Direct alternating training

Fig. 5: Illustration of different learning schemes for real-world burst denoising
with dynamic scenes. Please refer to the text for detailed descriptions.

Table 3: Quantitative results (PSNR/SSIM) of different learning schemes on the
Real-static test set.

BDNet-ft BDNet-at Default setting

45.17/0.968 44.67/0.967 45.31/0.971

have residual noise or artifacts caused by scene motion. In particular, the KPN
method has severe color shift on image with large noise (the plant area in Fig.
4(d)). The M-RIDNet and INN methods encounter motion artifacts in the car
area in Fig. 4(c)(e)). This is because optical flow and global affine alignment
cannot effectively count for the local object motion. In contrast, the proposed
BDNet is able to compensate for scene motion and restore the clean details.
More visual comparison results can be found in the supplementary file.

4.4 Ablation Study

To better validate the effectiveness of our decoupled learning strategy, we make
some ablation studies here by comparing it with two other intuitive training
strategies using Dd and Ds, which are illustrated in Fig. 5. The first scheme,
denoted by BDNet-ft, trains BDNet on dataset Dd and fine-tunes it on Ds till
convergence. The second scheme, denoted by BDNet-at, directly alternates the
training on Dd and Ds without deploying two instances of the PreP module Mp

and the PostP module Mo.
Table 3 shows the quantitative results of the compared schemes on the Real-

static test set. It can be seen that BDNet-at has much lower PSNR/SSIM scores
than BDNet, which validates the importance of using two instances for Mp and
Mo. BDNet-ft achieves similar PSNR/SSIM scores to BDNet. This is mainly
because it utilizes Ds in the training while this quantitative test is also on static
scenes. However, the perceptual quality of BDNet-ft and BDNet-na is much
worse than BDNet for both Real-static and Real-dynamic scenarios. Fig. 6 shows
the denoising results of three schemes on a static low-light sequence. One can see
that BDNet-ft and BDNet-na generate visual artifacts in the street lamp area
due to insufficient adaption to real-world noise. Fig. 7 shows the denoising results
on dynamic scenes. It can be seen that BDNet-ft causes ghost artifacts in the
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(a) (b) (c) (d) (e)

Fig. 6: The results on a raw image sequence with large noise in Real-static test
set by different learning schemes. (a) Noisy patch. (b) BDNet-ft. (c) BDN-at.
(d) Default BDNet. (e) Ground-truth.

(a) (b) (c) (d) (e)

Fig. 7: The results on an raw image sequence in Real-dynamic test set by different
learning schemes. (a) Noisy reference frame. (b) Noisy patch. (c) BDNet-ft. (d)
BDN-at. (e) Default BDNet. Best viewed on screen with zoom-in.

car area with large motion, because its fine-tuning on static dataset corrupts the
learned alignment ability. In contrast, the decoupled learning scheme can achieve
both merits of aligning dynamic sequences and revealing fine details in real-world
scenes. More visual comparison results can be found in the supplementary file.

5 Conclusion

It is a challenging problem to learn a burst denoising network for real-world
dynamic noisy sequences because of the lack of a pairwise training dataset. In
this paper, we proposed to leverage two types of existing datasets, a synthetic
noisy video dataset and a static real-world burst dataset, to address this issue. We
designed a modular CNN model, and proposed a decoupled learning approach,
which learns to align adjacent frames from the synthetic video dataset and learns
to adapt to raw noise statistics from the static burst dataset. The trained CNN
model, namely BDNet, can be well applied to real-world dynamic noisy sequences
and it obtains compelling detail reconstruction quality with little motion blur.
BDNet achieves leading performance, both quantitatively and qualitatively, on
the task of burst image sequence denoising in real-world scenes.
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