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1 Baseline Architecture

Firstly, we elaborate on the baseline architectures such as VAE-GAN and CSNet.
The base networks generally sample input videos by 2 fps, and it becomes a
sequence of T images with a size of H ×W . Note that the T is determined by
the length of the video ranging from 200 frames to 1000 frames when using 2
fps. We extract the 1024 sized feature of every single image by GoogLeNet pre-
trained on ImageNet. The features are stacked along the temporal dimension
and become T × 1024. Next, the feature is embedded to T × 256 using a fully
connected (FC) layer followed by the bidirectional LSTM with a hidden size of
256. The output features from both directions are concatenated to T × 512 and
reduced to T × 1 using FC and sigmoid function to predict a score per image.

The VAE-GAN framework enables the network to learn a video summariza-
tion without ground truth labels. The main idea of unsupervised video sum-
marization is generating original features of a video by giving summarized fea-
tures through the reconstruction network. The discriminator then distinguishes
whether it is from the original feature or the generated feature. If the generator
performs enough well to deceive the discriminator, the selected features might
have represented the video content successfully, and these frames are considered
as keyframes.

The CSNet tackles with mode collapse of the unsupervised framework (i.e.,
VAE-GAN) and enables more discriminative feature learning. In addition to
the feature reconstructing framework of VAE-GAN, they give a constraint that
penalizes the low discrepancy of output scores by maximizing a variance of the
scores. To ease the temporal dependency problem, they split the features into
several temporal segments. Also, a temporal difference in the feature space is
utilized to highlight fast scene changes.

2 In-depth Analysis of Network Design

In this section, we present the experimental results which are detailed but less
essential to write on the main paper. It can be regarded as a design choice for
our global-and-local relative position embedding (GL-RPE).
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2 ECCV-20 submission ID 4920

Internal size Kendall’s τ Spearman’s ρ

1 0.065 0.085
2 0.065 0.085
4 0.065 0.085
8 0.065 0.085
16 0.066 0.086
32 0.064 0.083
64 0.070 0.091
128 0.061 0.080
256 0.064 0.084

Table 1: The experiment by varying the feature dimension of RPE. The TVSum
dataset is used in this table.

2.1 Relational matrix in self-attention embedding

We discover the optimal value of the feature dimension in the relative position
embedding in this experiment. As shown in Table 1, the metrics using rank order
statistics are measured by varying the feature dimension. The size of 64 shows
the best result. Note that RPE + GL8 is used in this experiment.

(a) (b)

Fig. 1: (a) The output of LSTM is passed through the GL-RPE in a serial manner.
(b) The output of LSTM is added to the output of GL-RPE in a parallel manner.

2.2 Parallel relative position embedding

In the main paper, the feature obtained from long short-term memory (LSTM)
is passed to our GL-RPE in a serial manner as shown in Fig. 1-(a). We also
tested the parallel case of adding each output of LSTM and RPE as illustrated
in Fig. 1-(b), and the corresponding results are shown in Table 2. The serial case
shows a better result and is adopted to our main submission.

3 Visualization for Keyframes

In our main submission, only a few selected frames are visualized. Here, we
present a dense visualization of the predicted summary. As shown in Fig. 2, the
representative frames are well selected.
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Method Kendall’s τ Spearman’s ρ

RPEs +GL2 0.039 0.051

RPEs +GL4 0.058 0.076

RPEs +GL6 0.062 0.081

RPEs +GL8 0.070 0.091

(a) Serial

Method Kendall’s τ Spearman’s ρ

RPEp +GL2 0.039 0.052

RPEp +GL4 0.042 0.056

RPEp +GL6 0.043 0.056

RPEp +GL8 0.047 0.062

(b) Parallel

Table 2: Results for the parallel RPE. The TVSum dataset is used in this table.

Fig. 2: A video is densely sampled, and keyframes are highlighted with blue.


