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Abstract. Numerous learning-based approaches to single image deblur-
ring for camera and object motion blurs have recently been proposed.
To generalize such approaches to real-world blurs, large datasets of real
blurred images and their ground truth sharp images are essential. How-
ever, there are still no such datasets, thus all the existing approaches
resort to synthetic ones, which leads to the failure of deblurring real-
world images. In this work, we present a large-scale dataset of real-world
blurred images and ground truth sharp images for learning and bench-
marking single image deblurring methods. To collect our dataset, we
build an image acquisition system to simultaneously capture geometri-
cally aligned pairs of blurred and sharp images, and develop a postpro-
cessing method to produce high-quality ground truth images. We analyze
the effect of our postprocessing method and the performance of existing
deblurring methods. Our analysis shows that our dataset significantly
improves deblurring quality for real-world blurred images.

1 Introduction

Images captured in low-light environments such as at night or in a dark room
often suffer from motion blur caused by camera shakes or object motions as the
camera requires a long exposure time. Such motion blur severely degrades the
image quality, and the performance of other computer vision tasks such as object
recognition. Thus, image deblurring, a problem to restore a sharp image from a
blurred one, has been extensively studied for decades [12, 38, 7, 45, 46, 33, 40, 6].

Recently, several deep learning-based approaches [31, 42, 21, 22] have been
proposed and shown a significant improvement. To learn deblurring of real-world
blurred images, they require a large-scale dataset of real-world blurred images
and their corresponding ground truth sharp images. However, there exist no such
datasets so far due to difficulties involved with acquisition of real-world data,
which forces the existing approaches to resort to synthetic datasets, e.g., the
GoPro dataset [31]. As a result, they do not generalize well to real-world blurred
images as will be shown in our experiments.

The main challenge in developing a real-world blur dataset is that the con-
tents of a blurred image and its ground truth sharp image should be geometri-
cally aligned under the presence of blur. This means that the two images should
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be taken at the same camera position, which is difficult as the camera must
be shaken to take a blurred image. Besides, a real-world blur dataset for image
deblurring should satisfy the following requirements. First, the dataset should
cover the most common scenarios for camera shakes, i.e., low-light environments
where motion blurs most frequently occur. Second, the ground truth sharp im-
ages should have as little noise as possible. Lastly, the blurred and ground truth
sharp images should be photometrically aligned.

In this paper, we present the first large-scale dataset of real-world blurred
images for learning and benchmarking single image deblurring methods, which
is dubbed RealBlur. Our dataset consists of two subsets sharing the same image
contents, one of which is generated from camera raw images, and the other from
JPEG images processed by the camera ISP. Each subset provides 4,556 pairs
of blurred and ground truth sharp images of 232 low-light static scenes. The
blurred images in the dataset are blurred by camera shakes, and captured in
low-light environments such as streets at night, and indoor rooms to cover the
most common scenarios for motion blurs. To tackle the challenge of geometric
alignment, we build an image acquisition system that can simultaneously cap-
ture a pair of blurred and sharp images that are geometrically aligned. We also
develop a postprocessing method to produce high-quality ground truth images.

With the RealBlur dataset, we provide various analyses. We analyze the ac-
curacy of our geometric alignment and its effect on learning of image deblurring.
We evaluate existing synthetic datasets as well as ours and seek for the best
strategy for training. We also benchmark existing deblurring methods and an-
alyze their performance. Our analysis shows that the RealBlur dataset greatly
improves the performance of deep learning-based deblurring methods on real-
world blurred images. The analysis also shows that networks trained with our
dataset can generalize well to dynamic scenes with moving objects.

2 Related Work

Single-image deblurring. Traditional deblurring approaches [12, 38, 7, 45, 46,
33, 40, 6, 24, 25] often model image blur using a convolution operation as:

b = k ∗ l + n (1)

where b, l, and n denote a blurry image, a latent image, and additive noise,
respectively. ∗ is a convolution operator, and k is a blur kernel. Based on this
model, previous approaches solve an inverse problem to find k and l from b.
Unfortunately, they often fail to handle real-world blurred images because of
their restrictive blur model and the ill-posedness of the inverse problem. To deal
with more realistic blur, several approaches with extended blur models have been
proposed, but their performance is still limited due to the inherent ill-posedness
of the inverse problem [18, 44, 8, 14, 17, 19].

Recent deep learning-based approaches [31, 42, 21, 22] overcome such limita-
tions by learning a mapping from a blurry image to its corresponding sharp image
from a large collection of data. However, their performance is limited due to the
lack of real-world blur datasets. Recently, a few unsupervised learning-based ap-
proaches have been proposed, which do not require geometrically-aligned blurred
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view of (a)

(c) GoPro dataset (d) Magnified 
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(e) Real-world low-
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Fig. 1. The synthetically blurred images in (a) and (c) in the GoPro dataset [31] are
captured in well-lit environments and have unrealistic discontinuous blurs. Blending
sharp images cannot mimic saturated light streaks often observed in real-world blurred
images like (e) due to the limited dynamic range of sharp images.

and sharp images for learning [28, 27]. However, they are limited to specific do-
mains, e.g., faces and texts, as they rely on generative adversarial networks [13].

Deblurring datasets. Several datasets have been proposed along with deblur-
ring methods. However, most of them are designed not for learning but for evalu-
ation of deblurring algorithms. Levin et al. [24] proposed a dataset of 32 images
blurred by real camera shakes. Sun et al. [40] introduced a synthetic dataset
generated from 80 natural images and the eight blur kernels. Köhler et al. [20]
introduced a dataset of 48 blurred images with spatially-varying blur caused by
real camera shakes. All these datasets are too small to train neural networks, and
unrealistic as they are either synthetically generated or captured in controlled
lab environments. Lai et al. [23] introduced a dataset of 100 real blurred images
for benchmarking deblurring methods. However, their dataset does not provide
ground truth sharp images, which are essential for learning image deblurring.

Recently, several synthetic datasets for learning image deblurring have been
proposed [31, 30, 32, 39, 51]. To synthetically generate blurred images, they cap-
ture sharp video frames using a high-speed camera, and blend them. The re-
sulting images have blurs caused by both spatially-varying camera shakes and
object motions. However, due to the extremely short exposure times of the high-
speed camera, all the sharp frames were captured in well-lit environments, which
are unrealistic for motion blurs to occur. Also, blending sharp frames cannot
perfectly mimic the long exposure time of real blurry images because of tempo-
ral gaps between adjacent video frames and the limited dynamic range. Thus,
networks trained with them do not generalize well to real-world blurry images
captured in low-light environments as will be shown in Sec. 5.

Hybrid imaging. Our image acquisition system is inspired by previous hybrid
imaging approaches. Ben-Ezra and Nayar [2] proposed an hybrid camera sys-
tem equipped with an additional high-speed low-resolution camera to capture
the camera motion. Tai et al. [41] extended the approach for spatially-varying
blur. Li et al. [26] proposed a hybrid camera system for motion deblurring and
depth map super-resolution. Yuan et al. [47] and Šorel et al. [52] capture a pair
of noisy and blurred images using exposure bracketing for accurate blur kernel
estimation. However, all these approaches are designed for blur kernel estima-
tion, and provide neither high-quality ground-truth images nor sophisticated
postprocessing methods like ours.
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(a) A diagram of our image acquisition system (b) Our image acquisition system

Fig. 2. Our image acquisition system and its diagram.

3 Image Acquisition System and Process

3.1 Image Acquisition System

To capture blurred and sharp images simultaneously, we built a dual camera
system (Fig. 2). Our system consists of a beam splitter and two cameras so that
the cameras can capture the same scene. The cameras and beam splitter are
installed in an optical enclosure to protect them from light coming from outside
the viewing direction. One camera captures a blurry image with a low shutter
speed, while the other captures a sharp image with a high shutter speed. The
two cameras and their lenses are of the same models (Sony A7RM3, Samyang
14mm F2.8 MF). The cameras are synchronized by a multi-camera trigger to
capture images simultaneously. Our system is designed to use high-end mirror-
less cameras with full-frame sensors and wide-angle lenses based on the following
reasons. First, we want to reflect the in-camera processing of conventional cam-
eras into our dataset because blurry JPEG images processed by camera ISPs
are more common than raw images. Second, full-frame sensors and wide-angle
lenses can gather a larger amount of light than small sensors and narrow-angle
lenses so they can more effectively suppress noise. Wide-angle lenses also help
avoid defocus blur that may adversely affect learning of motion deblurring.

The cameras are physically aligned as much as possible. To evaluate the
alignment of the cameras, we conducted stereo calibration [50, 15] and estimated
the baseline between the cameras. The estimated baseline is 8.22 mm, which
corresponds to disparity of less than four pixels for objects more than 7.8 meters
away in the full resolution, and less than one pixel in our final dataset, which
contains images downsampled by 1/4.

3.2 Image Acquisition Process

Using our image acquisition system, we captured blurred images of various indoor
and outdoor scenes. For each scene, we first captured a pair of two sharp images,
referred to as a reference pair, which will be used for geometric and photometric
alignment of sharp and blurred images in the postprocessing step. We then
captured 20 pairs of blurred and sharp images of the same scene to increase
the amount of images and the diversity of camera shakes. For reference pairs,
we set the shutter speed to 1/80 sec. and adjusted ISO and the aperture size
to avoid blur caused by camera shakes. Then, we used the same camera setting
for one camera to capture sharp images, while we set the shutter speed of the
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Fig. 3. Blurred images in the RealBlur dataset. Our dataset consists of both dim-lit
indoor and outdoor scenes where motion blur commonly occurs.
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Fig. 4. Overall procedure of our postprocessing.

other camera to 1/2 sec. and the ISO value 40 times lower than the reference
ISO value to capture blurred images of the same brightness. To capture diverse
camera shakes, we simply held our system still for some images, and randomly
moved the system for the others. In both cases, blurred images are obtained due
to the long exposure time. We captured 4,738 pairs of images of 232 different
scenes including reference pairs. We captured all images both in the camera
raw and JPEG formats, and generated two datasets: RealBlur-R from the raw
images, and RealBlur-J from the JPEG images. Fig. 3 shows samples of the
blurred images in the RealBlur dataset.

4 Postprocessing

The captured image pairs are postprocessed for noise reduction, and geometric
and photometric alignment. Fig. 4 shows an overview of our postprocessing. We
first briefly explain the postprocessing procedure for RealBlur-R. For each pair
of sharp and blurred images, we first apply white balance and demosaicing. For
white balance, we use the white balance parameters obtained from the cameras.
For demosaicing, we use the adaptive homogeneity-directed demosaicing [16]3.
As we use a beam splitter and an optical enclosure as well as wide-angle lenses,
images have invalid areas along the boundaries that capture outside the beam
splitter or inside the optical enclosure. Thus, we crop out such regions. We
then correct lens distortions in the cropped images using distortion parameters
estimated in a separate calibration step [15]. Then, we downsample the images,
and perform denoising to the downsampled sharp image. Finally, we perform
geometric and photometric alignment. The sizes of the images from the cameras,
after cropping, and after downsampling are 7952× 5304, 2721× 3094, and 680×
3 We used the libraw library for decoding and demosaicing raw images.
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(a) Before geometric 
alignment

(b) After alignment using 
a reference homography

(c) After phase-correlation 
based alignment

(d) After blur kernel-
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Fig. 5. Geometric alignment. Each alignment result is shown as a stereo-anaglyph
image, where the sharp and blurred images are visualized in red and cyan, respectively,
and overlaid to each other. The blurred image has slightly non-uniform blur due to
camera shakes so the shapes of cyan light streaks differ across different regions.

773, respectively. For RealBlur-J, we follow the same procedure except for white
balance, demosaicing, and denoising, as they are performed by camera ISPs.
In the following, we explain the downsampling, denoising, and geometric and
photometric alignment steps in more detail.

4.1 Downsampling & Denoising

In the downsampling step, we downsample images by 1/4 for each axis. The
downsampling has three purposes. First, while the image resolutions of recent
cameras are very high, even the latest deep learning-based deblurring methods
cannot handle such high-resolution images. Second, as we use high ISO values
to capture sharp images, they have amplified noise, which can adversely affect
training and evaluation of deblurring methods using the sharp images. Down-
sampling can reduce such noise as it averages nearby pixel intensities. Third,
as the alignment of the cameras in our image acquisition system is not perfect,
there can exist a small amount of parallax between sharp and blurred images,
which can also be effectively reduced by downsampling.

While we reduce noise by downsampling, the downsampled images may still
have remaining noise. To further reduce noise, we apply denoising to the sharp
images in the denoising step. For each sharp image, we estimate the amount
of noise using Chen et al.’s method [5]. We then apply the BM3D denoising
method [10] setting the noise level parameter to 1.5 times the estimated noise
level. We denoise only sharp images. Regarding blurred images, noise is not an
issue because it is natural for them to have noise as they are supposed to be
captured in low-light conditions, and also because networks trained with noisy
blurred images will simply learn both denoising and deblurring.

4.2 Geometric Alignment

Although our image acquisition system has physically well-aligned cameras, there
still exists some amount of geometric misalignment (Fig. 5(a)). Furthermore, the
positions of the cameras may slightly change over time due to camera shakes. To
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address this issue, we conduct a carefully designed geometric alignment process
consisting of three steps.

In the first step, we roughly align each blurred and sharp image pair using
a homography. As estimating a homography from a blurred and sharp image
pair is difficult due to blur, we use a homography estimated from the reference
pair corresponding to the target blurred and sharp image pair. For homography
estimation, we use the enhanced correlation coefficients method [11] as it is
robust to photometric misalignment. Note that geometric alignment using a
single homography is possible thanks to the short baseline of our system and the
downsampling step, which makes parallax between two images mostly negligible.

Even after alignment using a homography, there can still exist minuscule
misalignment between blurred and sharp images due to their different shutter
speeds. Specifically, while the multi-camera trigger in our system synchronizes
the shutters to open at the same time, they still close at different moments due to
their different shutter speeds. Thus, after the shutter of one camera is closed, the
other camera still captures incoming lights while moving, causing misalignment
between blurred and sharp images. As a result, simply applying the homography
of a reference pair results in objects in the sharp image aligned to corners of their
corresponding blurry objects in the blurred image, not the centers (Fig. 5(b)).

Thus, in the second step, we estimate the remaining misalignment between
each pair of blurred and sharp images, and align them. To this end, we use a
phase correlation-based approach [35] that can robustly estimate a similarity
transform under the presence of blur (see our supplementary material for the
analysis about its robustness to camera shakes). Fig. 5(c) shows an example of
the phase correlation-based alignment, where the red and cyan light reflections
are better aligned so that they appear brighter.

The phase correlation-based alignment, however, cannot align the contents
in the blurred and sharp images with respect to their centers. Thus, in the third
step, we align the blurred and sharp images to match their centers. Our third step
is inspired by traditional blur model-based deblurring approaches. Traditional
blur model-based approaches such as [37, 4, 9] often align images or blur kernels
with respect to the centers of mass, or centroids, of blur kernels to align their
deblurring results with blurry input images. Following such approaches, we align
images to match the center of an object in a sharp image with the center of its
corresponding object in a blurred image in an additional alignment step for each
pair of blurry and sharp images. To this end, we estimate a blur kernel of the
blurred image using its corresponding sharp image assuming that the scene is
static and camera shake is nearly spatially-invariant. Following conventional blur
kernel estimation methods [7, 46, 6], we estimate a blur kernel k by minimizing
the following energy function:

E(k) = ‖k ∗ ∇s−∇b‖2 + λ‖∇k‖2 (2)

where s and b are sharp and blurred images, respectively, and ∇ is a gradient
operator. λ is the regularization weight, which we set λ = 103 in our experiment.
Then, we compute the centroid of the estimated blur kernel k, and align the sharp
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image by shifting it according to the centroid (Fig. 5(d)). As will be shown in
Sec. 5.1, the centroid-based alignment effectively reduces the receptive field size
required for deblurring, and enables effective learning of deblurring.

Note that each step in our geometric alignment is essential for accurate align-
ment as they provide different characteristics. The first step based on the refer-
ence pair can align images using a homography but is less accurate. The second
step improves the accuracy of alignment in the presence of blur, but is restricted
to a similarity transform. The third step can accurately align images based on
the centroid while being restricted to translation. The effect of each step will be
analyzed in Sec. 5.1.

4.3 Photometric Alignment

Although we use cameras and lenses of the same models, their images may have
slight intensity difference. To resolve this, we perform photometric alignment
based on a linear model following [3, 34, 1]. Specifically, for geometrically aligned
sharp and blurred images s and b, we photometrically align s to b by applying a
linear transform αs+β so that αs+β ≈ b. The coefficients α and β are difficult
to estimate from s and b due to the blur in b. Thus, we estimate them from the
reference pair corresponding to s and b. Specifically, α and β are estimated as
α = σ1/σ2 and β = µ1 − αµ2 where σ1 and σ2 are the standard deviations of
the reference images, and µ1 and µ2 are their means. To process color images,
we apply the photometric alignment to each color channel independently.

5 Experiments

In this section, we analyze our dataset and verify its effect on image deblurring.
We also benchmark existing deblurring algorithms on real-world blurry images,
and study the effect of our dataset. Additional examples and analyses, e.g., the
distribution of blur sizes in our dataset, and the generalization ability to images
captured by other cameras, can be found in the supplementary material. All
data including the dataset is available on our project webpage4.
Datasets and evaluation measure. For the benchmark, we randomly select
182 scenes from RealBlur-R and RealBlur-J as our training sets and the remain-
ing 50 scenes as our test sets. Each training set consists of 3,758 image pairs
including 182 reference pairs, while each test set consists of 980 image pairs
without reference pairs. We include reference pairs in our training sets so that
networks can learn the identity mapping for sharp images. Besides RealBlur,
we also consider two existing deblurring datasets: GoPro [31], and Köhler et
al.’s [20]. The GoPro dataset, which is the most widely used by recent deep
learning-based approaches, is a synthetic dataset generated by blending sharp
video frames captured by a high-speed camera. The GoPro dataset provides 2,103
and 1,111 pairs of blurred and sharp images for its training and test sets. Köhler
et al.’s dataset is a small-scale set of images with real camera shakes, which are
captured in a controlled lab environment. We also consider another purely syn-
thetic dataset, which is generated from the BSD500 segmentation dataset [29] as

4 http://cg.postech.ac.kr/research/realblur/
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Fig. 6. Training losses of different alignment methods.

follows. For each image in BSD500, we randomly generate 40 synthetic uniform
motion blur kernels using Schmidt et al.’s method [36] and convolve the image
with them to obtain 20,000 blurred images. The sharp images and the blurred
images are then aligned with respect to the centroid of the blur kernels. We refer
to this dataset as BSD-B in the remainder of this section.

Deblurring may produce misaligned results even when blur is successfully
removed. To deal with such misalignment when measuring the quality of deblur-
ring results against ground truth images, we adopt a similar approach to Köhler
et al. [20] in all the experiments. We first aligns a deblurring result to its ground
truth sharp image using a homography estimated by the enhanced correlation
coefficients method [11], and computes PSNRs or SSIMs [43].

5.1 Analysis on Geometric Alignment

Effect of geometric alignment. We analyze the effect of geometric align-
ment with respect to the centroids of blur kernels on the learning of deblurring.
Restoring a sharp pixel requires information from nearby pixels in a blurred im-
age, which sets a lower bound for the receptive field size required for deblurring.
Alignment using the centroid of a blur kernel can effectively reduce the required
receptive field size and ease the training of networks while visually matching the
centers of blurry image contents and their corresponding sharp contents. An-
other possibly more optimal approach to reducing the required receptive field
size is to align an image to the center of the non-zero elements of its blur kernel
as it is the closest point to all non-zero kernel elements (Fig. 6(a)). We refer to
the center of non-zero elements as the non-zero center for brevity. However, we
found that this approach is less effective than using the centroids as discussed
below. While it is unclear why, we conjecture that it is because the centroid is
the most central position in terms of information amount where we can utilize
information of nearby pixels most effectively.

To verify the effectiveness of the centroid-based alignment, we conduct a sim-
ple experiment. We generate three differently aligned sets from BSD-B: aligned
using translation estimated by the phase correlation [35], aligned to the non-zero
centers, and aligned to the centroids. We train SRN-DeblurNet [42], which is a
state-of-the-art deep learning-based approach, with the three sets separately, and
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Table 1. Displacement error of variants of our geometric alignment process.

Geometric alignment methods Error (pixels)

Reference homography 4.9454
Reference homography+blur kernel 0.8701

Reference homography+phase correlation+blur kernel (ours) 0.8058

compare their performance on Köhler et al.’s dataset [20]. The average PSNR
values of the phase correlation-, non-zero center-, and centroid-based datasets
are 26.48, 27.80, and 28.07 dBs, respectively. Moreover, the centroid-based align-
ment also results in the most efficient training as shown in Fig. 6(b). This result
proves that the alignment based on the centroids of blur kernels in our postpro-
cesing is essential for effective learning of image deblurring.
Geometric alignment accuracy. Our geometric alignment assumes a couple
of assumptions. First, a pair of blurred and sharp images can be aligned with
a single homography. Second, blurred images have nearly uniform blur so that
images can be aligned using a single blur kernel. As violation of either of them
can degrade the accuracy of our geometric alignment, we verify whether the
resulting dataset is accurately aligned. As there are no ground truth alignment,
we indirectly compute the average displacement error for each image pair as
follows. For each pair of blurred and sharp images that are aligned, we first
divide them into a 2 × 2 regular grid. For each grid cell, we estimate a local
blur kernel solving Eq. (2). Then, we compute the centroid of the estimated
blur kernel. If the blurred and sharp images cannot be aligned using a single
homography, or the blurred image has spatially-varying blur, the centroid will
be off center of the blur kernel. Thus, we compute the displacement between the
centroid and the image center of the local blur kernel as displacement error.

Table 1 shows that the average displacement error of our dataset after our
geometric alignment is only less than 1 pixel. The table also shows the aver-
age displacement error of other variants of our geometric alignment process to
verify the effect of each component. As shown in the table, image pairs aligned
using homographies from reference pairs have large displacement error due to
the different shutter speeds (1st row). It also shows that the blur kernel-based
alignment significantly reduces error (2nd row), and that phase correlation-based
alignment further improves the accuracy (3rd row).

As we can estimate local blur kernels, we may directly use them for geomet-
ric alignment. For example, we can compute the centroids of local blur kernels
estimated from a 2 × 2 grid, then derive a homography from them instead of
global translation to align images. However, we found that this approach is less
reliable for our dataset and causes larger error because blur kernel estimation is
unreliable on textureless image regions or image regions with saturated pixels.
Thus, we designed our geometric alignment process to estimate a single global
blur kernel that can be more reliably estimated.

5.2 Benchmark

Dataset comparison and training strategy. Before benchmarking existing
deblurring approaches, we first compare the performance of our datasets with
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Table 2. Performance comparison of different datasets. We trained a deblurring net-
work of Tao et al. [42] using different training sets and measured its performance.

Training sets Test sets (PSNR/SSIM)

RealBlur-R GoPro BSD-B Pre-trained RealBlur-R Köhler GoPro

X 35.66/0.9472 26.79/0.7963 30.72/0.9074
X 34.96/0.9132 28.07/0.8259 29.01/0.8768

X 36.47/0.9515 24.72/0.7422 23.99/0.7675
X X 38.47/0.9632 26.96/0.7991 30.02/0.8946
X X 38.62/0.9649 27.99/0.8249 29.02/0.8774
X X X 38.58/0.9646 28.00/0.8241 29.93/0.8931
X X 38.73/0.9646 26.38/0.7942 26.56/0.8422
X X X 38.65/0.9646 27.04/0.8017 30.53/0.9045
X X X 38.71/0.9657 28.18/0.8294 29.22/0.8824
X X X X 38.65/0.9652 28.14/0.8311 30.30/0.9006

Table 3. Performance comparison of different datasets. We trained a deblurring net-
work of Tao et al. [42] using different training sets and measured its performance.

Training sets Test sets (PSNR/SSIM)

RealBlur-J GoPro BSD-B Pre-trained RealBlur-J Köhler GoPro

X 28.56/0.8674 26.79/0.7963 30.72/0.9074
X 28.68/0.8675 28.07/0.8259 29.01/0.8768

X 31.02/0.8987 26.57/0.7986 26.68/0.8403
X X 31.21/0.9018 26.94/0.8044 29.91/0.8923
X X 31.30/0.9058 27.88/0.8249 28.97/0.8785
X X X 31.37/0.9063 27.74/0.8229 29.90/0.8926
X X 31.32/0.9070 26.77/0.8044 27.18/0.8603
X X X 31.40/0.9078 27.13/0.8113 30.46/0.9034
X X X 31.44/0.9105 28.06/0.8319 29.21/0.8842
X X X X 31.38/0.9091 27.82/0.8260 30.30/0.9004

other datasets, and seek for the best strategy for training deblurring networks.
Specifically, we prepare differently trained models of a deblurring network using
several possible combinations of different training sets including ours. Then, we
investigate their performance on different test sets. For evaluation, we use SRN-
DeblurNet [42]. As a pre-trained version of SRN-DeblurNet trained with the
GoPro dataset is already available, we also include it in our experiment. We
refer the readers to the supplementary material for details about training.

Tables 2 and 3 show the performance of different combinations of the train-
ing sets on different test sets. The column ‘Pre-trained’ indicates whether the
network is trained from the pre-trained weights using the GoPro dataset or from
scratch. The tables show that the GoPro dataset (1st rows in Tables 2 and 3)
achieves lower performance on the RealBlur test sets compared to the other
combinations in general, which proves that the GoPro dataset is not realistic
enough to cover real-world blurred images. The BSD-B dataset (2nd rows in
Tables 2 and 3) also achieves low performance on the RealBlur test sets, but
high performance on Köhler et al.’s test set, which is possibly because Köhler
et al.’s dataset is close to synthetic as its images are captured in a controlled
lab environment. On the other hand, our training sets (3rd rows in Tables 2
and 3) achieve higher performance on the RealBlur test sets, which validates the
necessity of real-world blur training data.
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Table 4. Benchmark of state-of-the-art deblurring methods on real-world blurred im-
ages. Purple: traditional optimization-based methods. Black: deep learning-based meth-
ods. Blue*: models trained with our dataset. Methods are sorted in the descending order
with respect to PSNR.

RealBlur-J RealBlur-R

Methods PSNR/SSIM Methods PSNR/SSIM

SRN-DeblurNet* [42] 31.38/0.9091 SRN-DeblurNet* [42] 38.65/0.9652
DeblurGAN-v2* [22] 29.69/0.8703 DeblurGAN-v2* [22] 36.44/0.9347
DeblurGAN-v2 [22] 28.70/0.8662 Zhang et al. [49] 35.70/0.9481
SRN-DeblurNet [42] 28.56/0.8674 SRN-DeblurNet [42] 35.66/0.9472

Zhang et al. [49] 28.42/0.8596 Zhang et al. [48] 35.48/0.9466
DeblurGAN [21] 27.97/0.8343 DeblurGAN-v2 [22] 35.26/0.9440
Nah et al. [31] 27.87/0.8274 Xu et al. [46] 34.46/0.9368

Zhang et al. [48] 27.80/0.8472 Pan et al. [33] 34.01/0.9162
Pan et al. [33] 27.22/0.7901 DeblurGAN [21] 33.79/0.9034
Xu et al. [46] 27.14/0.8303 Hu et al. [18] 33.67/0.9158
Hu et al. [18] 26.41/0.8028 Nah et al. [31] 32.51/0.8406

The tables also show that using multiple training sets together tends to
achieve higher performance on multiple test sets, as it increases the amount of
training data and the range of image contents. Among different combinations, we
found that training with all datasets and pre-trained weights achieves relatively
good performance on all test sets. Thus, we use it as our default training strategy
in the rest of this section.

Benchmarking deblurring methods. We then benchmark state-of-the-art
deblurring methods including both traditional optimization-based [46, 33, 18]
and recent deep learning-based approaches [31, 49, 48, 21, 22, 42] using our test
sets. For all the deep learning-based approaches, we use pre-trained models pro-
vided by the authors. For DeblurGAN-v2 [22] and SRN-DeblurNet [42], we also
include models trained with our training strategy.

Table 4 shows a summary of the benchmark. In the benchmark, the tra-
ditional methods achieve relatively low PSNR and SSIM values both for the
RealBlur-R and RealBlur-J test sets, often failing to estimate correct blur ker-
nels. Such traditional approaches are known to vulnerable to noise, saturated
pixels, and non-uniform blur, which are common in real low-light images. On
the other hand, the deep learning-based methods are more successful in terms of
both PSNR and SSIM, as they are more robust to noise and non-uniform blur.
The deep learning-based approaches trained with our training sets show the best
performance proving the benefits of training with real low-light blurred images.

Fig. 7 shows a qualitative comparison of the deep learning-based methods in
Table 4. All the models trained without real-world blurred images fail to restore
light streaks as well as other image details. On the other hand, the models trained
with our datasets show better restored results. The results of SRN-DeblurNet [42]
trained with our dataset in Fig. 7(i) and (s) show accurately restored image
details. The results of DeblurGAN-v2 [22] trained with our dataset in Fig. 7(g)
and (q) also show better restored details than the others, while slightly worse
than those of SRN-DeblurNet trained with our datasets.
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(k) Blurred image
PSNR/SSIM

(l) Nah et al. [31]
23.37/0.8136

(m) Zhang et al. [49]
23.46/0.8354

(n) Zhang et al. [48]
23.36/0.8155

(t) Ground truth(s) SRN-DeblurNet* [42]
29.42/0.9321

(r) SRN-DeblurNet[42]
23.56/0.8507

(q) DeblurGAN-v2* [22]
26.68/0.8988

(p) DeblurGAN-v2  [22]
23.47/0.8453

(o) DeblurGAN [21]
23.18/0.7997

(a) Blurred image
PSNR/SSIM

(b) Nah et al. [31]
24.61/0.7824

(c) Zhang et al. [49]
24.90/0.8448

(d) Zhang et al. [48]
24.76/0.8447

(j) Ground truth(i) SRN-DeblurNet* [42]
31.12/0.9089

(h) SRN-DeblurNet[42]
24.79/0.8478

(g) DeblurGAN-v2* [22]
28.53/0.8707

(f) DeblurGAN-v2 [22]
24.76/0.8381

(e) DeblurGAN [21]
24.33/0.8000

Fig. 7. Qualitative comparison of different deblurring methods on the RealBlur-J and
RealBlur-R test sets. (a)-(j) Deblurring results using RealBlur-J. (k)-(t) Deblurring
results using RealBlur-R. For visualization, the examples of RealBlur-R are gamma-
corrected. Methods marked with ‘*’ in blue are trained with our datasets.

Dynamic scenes. Our dataset consists of static scenes without moving objects.
Thus, one natural question that follows is whether networks trained with our
dataset can handle dynamic scenes with moving objects. To answer the question,
we investigate the performance of our dataset on dynamic scenes. To this end,
we collected a set of real blurred images with moving objects without ground
truth sharp images. We used a camera of a different model (Sony A7M2) and
different lenses (SEL85F18, SEL1635Z) instead of our image acquisition system
to collect images. Then, we perform qualitative evaluation of the performance
of deep learning-based methods trained with different training sets.

Fig. 8 shows results of deep learning-based methods with different training
sets. The blurred images in Fig. 8 have spatially-varying blurs caused by ob-
ject motions. For all the methods in this experiment, we use pre-trained models
provided by the authors unless specified. While RealBlur-J does not have any
moving objects, the results in Fig. 8(g) and (o) show that the networks trained
only with RealBlur-J can successfully restore sharp images. Moreover, the net-
works trained with RealBlur-J can produce better results than the networks
trained only with the GoPro dataset, even though the GoPro dataset includes
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(a) Blurred Image (b) Nah et al. [31] (d) SRN-DeblurNet [42]

(g) SRN-DeblurNet [42]
RealBlur-J

(h) SRN-DeblurNet [42]
RealBlur-J+GoPro+BSD-B

(c) Zhang et al. [48]

(e) DeblurGAN [21] (f) DeblurGAN-v2 [22]

(i) Blurred Image (j) Nah et al. [31] (l) SRN-DeblurNet [42]

(o) SRN-DeblurNet [42]
RealBlur-J

(p) SRN-DeblurNet [42]
RealBlur-J+GoPro+BSD-B

(k) Zhang et al. [48]

(m) DeblurGAN [21] (n) DeblurGAN-v2 [22]

Fig. 8. Qualitative comparison of different methods on images of dynamic scenes.

a large number of dynamic scenes. We refer the readers to the supplementary
material for more examples.

6 Conclusion

In this paper, we presented the RealBlur dataset, which is the first large-scale
real-world blur dataset for learning image deblurring. To collect dataset, we
built an image acquisition system that can simultaneously capture a pair of
blurred and sharp images. We developed a postprocessing method to produce
high-quality ground truth images, and analyzed the effect and accuracy of its
geometric alignment. Our experiments showed that the RealBlur dataset can
greatly improve the performance of deep learning-based deblurring approaches
on real-world blurred images by camera shakes and moving objects.
Limitations and future work. Our RealBlur dataset consists of static scenes
without moving objects. While we demonstrated that neural networks trained
with RealBlur can deal with dynamic scenes qualitatively, a dataset of dynamic
scenes is essential for quantitative evaluation of dynamic scene deblurring. Al-
though we used high-end mirrorless cameras to collect real-world blurred im-
ages, a much larger number of users use smartphone cameras. Thus, collecting a
dataset for such low-end cameras would be an interesting future work. Our work
can provide a basis for developing deblurring methods for real-world blurred
images. It would also be interesting future work to develop a more realistic gen-
erative model for synthesizing blurry images, which can be used for learning
image deblurring, and the RealBlur dataset can be used as a basis for it.
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