
SPARK: Spatial-aware Online Incremental
Attack Against Visual Tracking

Qing Guo1,2
?
[0000−0003−0974−9299], Xiaofei Xie2

?
,

Felix Juefei-Xu3[0000−0002−0857−8611], Lei Ma4[0000−0002−8621−2420],

Zhongguo Li1, Wanli Xue5, Wei Feng1
??

[0000−0003−3809−1086], and
Yang Liu[0000−0001−7300−9215]2

1 College of Intelligence and Computing, Tianjin University, China
2 Nanyang Technological University, Singapore

3 Alibaba Group, USA
4 Kyushu University, Japan

5 Tianjin University of Technology, China
tsingqguo@gmail.com

Abstract. Adversarial attacks of deep neural networks have been inten-
sively studied on image, audio, and natural language classification tasks.
Nevertheless, as a typical while important real-world application, the ad-
versarial attacks of online video tracking that traces an object’s moving
trajectory instead of its category are rarely explored. In this paper, we
identify a new task for the adversarial attack to visual tracking: online
generating imperceptible perturbations that mislead trackers along with
an incorrect (Untargeted Attack, UA) or specified trajectory (Targeted
Attack, TA). To this end, we first propose a spatial-aware basic attack
by adapting existing attack methods, i.e., FGSM, BIM, and C&W, and
comprehensively analyze the attacking performance. We identify that on-
line object tracking poses two new challenges: 1) it is difficult to generate
imperceptible perturbations that can transfer across frames, and 2) real-
time trackers require the attack to satisfy a certain level of efficiency. To
address these challenges, we further propose the spatial-aware online
incremental attack (a.k.a. SPARK) that performs spatial-temporal
sparse incremental perturbations online and makes the adversarial attack
less perceptible. In addition, as an optimization-based method, SPARK
quickly converges to very small losses within several iterations by consid-
ering historical incremental perturbations, making it much more efficient
than basic attacks. The in-depth evaluation of the state-of-the-art track-
ers (i.e., SiamRPN++ with AlexNet, MobileNetv2, and ResNet-50, and
SiamDW) on OTB100, VOT2018, UAV123, and LaSOT demonstrates
the effectiveness and transferability of SPARK in misleading the track-
ers under both UA and TA with minor perturbations.
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1 Introduction

While deep learning achieves tremendous success over the past decade, the re-
cently intensive investigation on various tasks e.g ., image classification [48,15,38],
object detection [55], and semantic segmentation [36], reveal that the state-of-
the-art deep neural networks (DNNs) are still vulnerable from adversarial ex-
amples. The minor perturbations on an image, although often imperceptible by
human beings, can easily fool a DNN model resulting in incorrect decisions.
This leads to great concerns especially when a DNN is applied in the safety- and
security-critical scenarios. For a particular task, the domain-specific study and
the understanding of how adversarial attacks influence a DNN would be a key
to reduce such impacts towards further robustness enhancement [52].

Besides image processing tasks, recent studies also emerge to investigate
the adversarial attacks to other diverse types of tasks, e.g ., speech recogni-
tion [3,43,5], natural language processing [23,44,57], continuous states in re-
inforcement learning [46], action recognition and object detection [52,51]. Vi-
sual object tracking (VOT), which performs online object localization and mov-
ing trajectory identification, is a typical while important component in many
safety- and security-critical applications, with urgent industrial demands, e.g .,
autonomous driving, video surveillance, general-purpose cyber-physical systems.
For example, a VOT is often embedded into a self-driving car or unmanned aerial
vehicle (UAV) as a key perception component, that drives the system to follow
a target object (see Fig. 1). Adversarial examples could mislead the car or UAV
with incorrect perceptions, causing navigation into dangerous environments and
even resulting in severe accidents. Therefore, it is of great importance to per-
form a comprehensive study of adversarial attacks on visual object tracking. To
this date, however, there exist limited studies on the influence of the adversarial
attack on VOT relevant tasks, without which the deployed real-world systems
would be exposed to high potential safety risks.

Different from image, speech and natural language processing tasks, online
object tracking poses several new challenges to the adversarial attack techniques.
First, compared with existing sequential-input-relevant tasks, e.g ., audios [3],
natural languages [23] or videos [52] for classification that have access to the
complete sequential data, object tracking processes incoming frames one by one
in order. When a current frame t is under attack, all the previous frames (i.e.,
{1, 2 . . . t− 1}) are already analyzed and cannot be changed. At the same time,
the future frames (i.e., {t+ 1, . . .}) are still unavailable and cannot be immedi-
ately attacked as well. With limited temporal data segments and the dynamic
scene changes, it is even more difficult to generate imperceptible yet effective
adversarial perturbations that can transfer over time (i.e., multiple consecutive
frames). In addition, the object tracking often depends on a target designated
object template cropped from the first frame of a video [1,29] for further analysis.
The different initially designated object might lead to different tracking analysis,
which renders the universal adversarial perturbation [38] often ineffective.

Furthermore, object tracking usually functions at real-time speed. Thus, it
requires the attacks to be efficient enough so that the adversarial perturbation of
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Fig. 1. An example of our ad-
versarial attack to online VOT
that drives an UAV [40] to move
along the targeted trajectory
(the blue line), which causes di-
vergence from the object moving
path (the green line). The per-
turbations are enlarged by ×255
for better visualization.

the current frame can be completed before the next frame arrives. Although the
gradient descent-based methods (e.g ., FGSM [15], BIM [27]) are demonstrated to
be effective in attacking the image classifier, they still encounter efficiency issues
in fooling the state-of-the-art trackers when multiple frames quickly arrive.

To better understand the challenges and uniqueness in attacking the VOT,
we first propose a spatial-aware basic attack method by adapting the existing
state-of-the-art attacking techniques (i.e., FGSM, BIM, C&W) that are used
to attack each frame individually. Our empirical study confirms that the basic
attack is indeed ineffective for attacking the VOT, due to the consecutive tem-
poral frames in real-time. Based on this, we further propose the spatial-aware
online incremental attack (SPARK) method that can generate more impercepti-
ble perturbations online in terms of both effectiveness and efficiency. The main
contributions of this paper are as follows:

– We formalize the adversarial attack problem for the VOT, i.e., generating
imperceptible perturbations online to mislead visual trackers that traces an
object, into an incorrect (Untargeted Attack, UA) or specified (Targeted
Attack, TA) trajectory.

– We propose several basic attacks by adapting existing attacks (i.e., FGSM,
BIM, C&W) and further perform an empirical study for better understand-
ing challenges of adversarial attacks on real-time object tracking.

– We propose a new spatial-aware online incremental attack (SPARK) method
that can efficiently generate imperceptible perturbations for real-time VOT.

– Our in-depth evaluation demonstrates the effectiveness and efficiency of
SPARK in attacking the state-of-the-art SiamRPN++ trackers with AlexNet,
MobileNetv2, and ResNet-50 models [29,28] and SiamDW trackers [60] un-
der UA and TA. The generated attacks also exhibit strong transferability to
the online updating variants of SiamRPN trackers.

2 Related Work

Adversarial Examples. Extensive studies have shown the vulnerability of
DNNs from adversarial attacks [32]. [48] initially shown the existence of adver-
sarial examples, and [15] proposed the efficient FGSM that was later improved
via iterative method [27] and momentum term [9]. Similarly, [42] proposed the
Jacobian-based saliency map attack with high success rate, while [2] realized
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effective attack by optimization methods (C&W) under different norms. Fur-
ther adversarial attacks were extended to tasks like object detection [55,30,61],
semantic segmentation [55,37], and testing techniques for DNNs [35,56,10].

Recent works also confirmed the existence of adversarial examples in sequen-
tial data processing, e.g ., speech recognition [5,3,43], natural language [14,23],
and video processing [52]. Different from these works, our attack aims at mis-
leading trackers with limited online data access, i.e., the future frames are un-
available, the past frames cannot be attacked either. Among the most relevant
work to ours, [52] proposed the L2,1 norm-based attack to generate sparse per-
turbations for action recognition, under the condition that the whole video data
is available and the perturbations of multiple frames can be jointly tuned. [30]
attacked the region proposal network (RPN) that is also used in the SiamRPN
trackers [29]. However, this attack is to fool object detectors to predict inac-
curate bounding boxes, thus cannot be directly used to attack trackers aiming
to mislead to an incorrect trajectory. [51] proposed the video object detection
attack by addressing each frame independently, which is not suitable for online
tracking where the tracker often runs at real-time speed. Another related work
[31] studied when to attack an agent in the reinforcement learning context. In
contrast, this work mainly explores how to use temporal constraints to online
generate imperceptible and effective perturbations to mislead real-time trackers.

Visual Object Tracking Visual tracking is a fundamental computer vision
problem, estimating positions of an object (specified at the first frame) over
frames [54]. Existing trackers can be roughly summarized to three categories, in-
cluding correlation filter (CF)-based [7,34,4,58,13,18], classification & updating-
based [41,17,45] and Siamese network-based trackers [1,16,62,50,49,12]. Among
these works, Siamese network-based methods learn the matching models offline
and track objects without updating parameters, which well balances the effi-
ciency and accuracy. In particular, the SiamRPN can adapt objects’ aspect ratio
changing and run beyond real time [29]. In this paper, we choose SiamRPN++
[28] with AlexNet, MobileNetv2, and ResNet50 as subject models due to follow-
ing reasons: 1) SiamRPN++ trackers are widely adopted with high potential
to real-world applications [24,28]. The study of attacking to improve their ro-
bustness is crucial for industrial deployment with safety concerns. 2) Compared
with other frameworks (e.g ., CF), SiamRPN is a near end-to-end deep archi-
tecture with fewer hyper-parameters, making it more suitable to investigate the
attacks. In addition to SiamRPN++, we attack another state-of-the-art tracker,
i.e., SiamDW [60], to show the generalization of our method.

Difference to PAT [53]. To the best of our knowledge, until now, there
has been a limited study on attacking online object tracking. [53] generated
physical adversarial textures (PAT) via white-box attack to fool the GOTURN
tracker [21]. The main differences between our method and PAT are: (1) Their
attack objectives are distinctly and totally different. As shown in Fig. 2, PAT
is to generate perceptible texture and let the GOTURN tracker lock on it while
our method is to online produce imperceptible perturbations that mislead state-
of-the-art trackers, e.g ., SiamRPN++ [28], along an incorrect or specified tra-
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jectory. (2) Different theoretical novelties. PAT is to improve an existing Ex-
pectation Over Transformation (EOT)-based attack by studying the need to

PAT Result
SPARK OutputOriginal Input

Texture

Fig. 2. PAT [53] vs. SPARK.

randomize over different transformation variables.
Our work reveals the new challenges in attacking
visual tracking and proposes a novel method, i.e.,
spatial-aware online incremental attack, which
can address these challenges properly. (3) Dif-
ferent subject models. PAT validates its method
by attacking a light deep regression tracker,
i.e., GOTURN that has low tracking accuracy
on modern benchmarks [11,54,24]. We use our
method to attack the state-of-the-art trackers,
e.g ., SiamRPN++ [28] and SiamDW [60].

3 Spatial-aware Online Adversarial Attack

3.1 Problem Definition

Let V = {Xt}T1 be an online video with T frames, where Xt is the tth frame.
Given a tracker φθ(·) with parameters θ, we crop an object template T (i.e., the
target object) from the first frame. The tracker is tasked to predict bounding
boxes that tightly wrap the object in further incoming frames.

To locate the object at frame t, the tracker calculates {(yit,bit)}Ni=1 = φθ(Xt,T),
where {bit ∈ <4×1}Ni=1 are N object candidates in Xt and yit indicates the posi-
tive activation of the ith candidate (i.e., bit). We denote the tracker’s predictive
bounding box of the target object at the clean tth frame by bgt

t ∈ <4×1 and
the object tracker assigns the predictive result OT (Xt,T) = bgt

t = bkt , where
k = arg max1≤i≤N (yit), i.e., the bounding box with highest activate value is
selected as the predictive object at frame t. The above tracking process cov-
ers most of the state-of-the-art trackers, e.g ., Siamese network-based track-
ers [59,8,12,60,28,19,1] and correlation filter-based trackers [6,47,16]. We define
the adversarial attacks on tracking as follows:

Untargeted Attack (UA). UA is to generate adversarial examples {Xa
t}T1

such that ∀1 ≤ t ≤ T , IoU(OT (Xa
t ,T),bgt

t ) = 0, where IoU(·) is the Intersection
over Union between two bounding boxes.

Targeted Attack (TA). Suppose a targeted trajectory {ptr
t }T1 desires the

trajectory we hope the attacked tracker to output, e.g ., the blue line in Fig. 1. TA
is to generate adversarial examples {Xa

t}T1 such that ∀1 ≤ t ≤ T , ce(OT (Xa
t ,T)) =

ptr
t , where ce(·) shows the center position of the bounding box and ptr

t depicts
the targeted position at the tth frame.

Intuitively, UA is to make the trackers predict incorrect bounding boxes of a
target object at all frames by adding small distortions to online captured frames
while TA aims to intentionally drive trackers to output desired object positions
specified by the targeted trajectory.
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Fig. 3. Analysis of our basic attack (BA) and spatial-aware online incremental at-
tack (SPARK). (a) shows the distance between the targeted position and predicted object
position after attacking. A smaller distance means the attack is more effective. (b) shows
the mean absolute perturbation of each frame. A smaller MAP leads to less impercepti-
ble perturbation. (c) presents the adversarial perturbations of 4 attack methods at frame
49, corresponding adversarial examples, and response maps from SiamRPN-AlexNet. (d)
includes the incremental perturbations from frame 41 to 49 and the loss values at each
frame. The perturbations are enlarged by ×255 for better visualization.

3.2 Basic Attack

We first propose the basic attacks by adapting existing adversarial methods
at each frame. To attack a tracker OT (·), we can use another tracker OT ′(·)
to generate adversarial examples. For untargeted attack (UA), at frame t, we
formally define the problem of finding an adversarial example as follows:

minimize D(Xt,Xt + Et) (1)

subject to IoU(OT ′(Xt + Et,T),bgt′

t ) = 0 (2)

where Xa
t = Xt + Et and Et is the desired distortion that changes the result of

the tracker and D is a distance metric. We follow the setup of FGSM and use

the L∞ norm as D. We use bgt′

t as the predictive result on the clean frame Xt.
When OT (·) = OT ′(·), we consider the attack as a white-box attack.

To achieve the UA, we define the objective function fua such that IoU(OT ′(Xt+
Et,T),bgt′) = 0 if and only if fua(Xt + Et,T) < 0:

fua(Xt + Et,T) = ygt
′

t − max
IoU(bi

t,b
gt′
t )=0

(yit) (3)

where {(yit,bit)}Ni=1 = φθ′(Xt + Et,T), θ′ is OT ′(·)’s parameters, and ygt
′

t is the

activation value of bgt
′

t . For the targeted attack (TA), at frame t, we define the
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problem of finding a targeted adversarial example as follows:

minimize D(Xt,Xt + Et) (4)

subject to ce(OT ′(Xt + Et,T)) = ptr
t (5)

where ptr
t is the targeted position at frame t and ce(·) outputs the center position

of a bounding box. To achieve the goal, we define the objective function f ta such
that ce(OT ′(Xt + Et,T)) = ptr

t if and only if f ta(Xt + Et,T) < 0:

f ta(Xt + Et,T) = ygt
′

t − max
ce(bi

t)=ptr
t

(yit) (6)

To perform the basic attack, FGSM [15], BIM [27] and C&W [2] are adapted
to optimize the objective functions (i.e., Eq. (3) and (6)). In this paper, we
mainly focus on the white-box attack on visual object tracking by settingOT (·) =
OT ′(·) while studying the transferability of different trackers in the experiments.

3.3 Empirical Study

In the following, we perform an empirical study on evaluating the effectiveness
of the basic attack. In particular, we perform two kinds of basic targeted attacks
on a state-of-the-art tracker, i.e., SiamRPN-AlexNet§ to answer two research
questions: 1) how effective is the attack by applying basic attack on each frame?
2) how is its impact of the temporal frames in the video?:

BA-E: Online attacking each frame by using FGSM, BIM, and C&W to
optimize Eq. (6), respectively.

BA-R: Randomly select some frames and perform the basic attack on these
frames using FGSM, BIM, and C&W. For frames between two selected frames,
we use the perturbation from the first selected one to distort frames in the
interval and see if basic attacks could transfer across time. For example, we
attack 1st and 10th frames with basic attacks while distorting the 2th to 9th
frames with the perturbation of 1st frame.

Note that BA-E and BA-R can answer the two questions, respectively. To
be specific, we have configured two BA-R attacks. First, each frame is to be
attacked with a probability 0.1 (denoted as BA-R1). Second, we perform the
basic attack with an interval 10, i.e., attack at the 1th, 11th, 21th, . . . frame
(denoted as BA-R2). Table 1 shows the success rate, mean absolute perturba-
tion, and average iteration per frame of BA-E, BA-R1, and BA-R2 for attacking
SiamRPN-AlexNet tracker on OTB100 under TA. We see that: 1) BA-E methods
via BIM and C&W get high success rate by attacking each frame. Nevertheless,
their perturbations are large and attacking each frame with 10 iterations is time-
consuming and beyond real-time tracker. Although FGSM is efficient, its success
rate is much lower. 2) Randomly attacking 10% frames, i.e., BA-R1, is about 10
times faster than BA-E. However, the success rate drops significantly. 3) BA-R2

§ We select SiamRPN-AlexNet, since it is a representative Siamese network tracker
and achieves high accuracy on modern benchmarks with beyond real-time speed.
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Table 1. Comparing basic attacks, i.e., BA-E, BA-R1, and BA-R2 with our SPARK under
TA on the OTB100 dataset.

BA-E BA-R1 BA-R2
SPARK

FGSM BIM C&W FGSM BIM C&W FGSM BIM C&W

Succ. Rate (%) 8.0 69.6 57.7 6.6 17.8 17.5 6.7 53.7 23.5 78.9
Mean Absolute Perturbation 1.24 5.88 1.31 1.23 5.96 0.26 1.23 3.36 1.27 1.04
Aver. Iter. Num per frame 1 10 10 0.10 0.95 0.94 0.10 4.6 4.6 2.25
Aver. Cost per frame (ms) 56.2 326.0 264.0 5.50 39.1 24.8 5.68 189.5 121.4 62.1

method attacking at every 10 frames is efficient while sacrificing the success rate.
Compared with BA-R1, with the same attacking rate, i.e., 10% frames, BA-R2
has higher success rate than BA-R1. For example, base on BIM, BA-R2 has over
two times larger success rate. It infers that perturbations of neighbor 10 frames
have some transferability due to the temporal smoothness.

A case study based on BIM is shown in Fig. 3, where we use the three BA
attacks to mislead the SiamRPN-AlexNet to locate an interested object at the
top left of the scene (targeted position in Fig. 3 (c)). Instead of following the
standard tracking pipeline, we crop the frame according to the ground truth and
get a region where the object are always at the center. We show the distance
between the targeted position (Fig. 3 (a)) and tracking results, and the mean
absolute perturbation (MAP) (Fig. 3 (b)) at frame level. We reach consistent
conclusion with Table 1. As the simplest solution, BA-E attacks the tracker
successfully at some time (distance to the targeted position is less than 20) with
the MAP around 5. However, the attack is inefficient and not suitable for real-
time tracking. In addition, according to Fig. 3 (c), the perturbations are large
and perceptible. The results answer the first question: attacking on each frame
is not effective, i.e., time-consuming and bigger MAP.

Consider the temporal property among frames, if the attack can be trans-
ferred between the adjacent frames, we could only attack some frames while
reducing the overhead, e.g ., BA-R1 and BA-R2. Unfortunately, the results in
Table 1 and Fig. 3 show that BA-R1 and BA-R2 only work at the specific frames
on which the attacks are performed. The results answer the second question: the
perturbations generated by BA is difficult to transfer to the next frames directly
due to the dynamic scene in the video (see the results from BA-R1 and BA-R2).

3.4 Online Incremental Attack

Base on the empirical study results from basic attacks, we identify that attack-
ing on each frame directly is not effective. As the frames are sequential and the
nearby frames are very similar, our deep analysis found that transferability ex-
ists between nearby frames. However, how to effectively use the perturbations
from previous frames while being imperceptible when we attack a new coming
frame is questionable. A straightforward way is to add previous perturbations to
a new calculated one, which will increase the success rate of attacking but lead
to significant distortions. To solve this problem, we propose spatial-aware on-
line incremental attack (SPARK) that generates more imperceptible adversarial
examples more efficiently for tracking. The intuition of SPARK is that we still
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attack each frame, but apply previous perturbations on the new frame combined
with small but effective incremental perturbation via optimization.

At frame t, the UA with SPARK is formally defined as:

minimize D(Xt,Xt + Et−1 + εt) (7)

subject to IoU(OT ′(Xt + Et−1 + εt,T),bgt′

t ) = 0 (8)

where Et−1 is the perturbation of the previous frame (i.e., t− 1th fame) and εt
is the incremental perturbation. Here, the ‘incremental’ means εt = Et − Et−1,
and we further have Et = εt +

∑t−1
t0

ετ , where t0 = t−L and {ετ}t−1t−L are L− 1
previous incremental perturbations, and εt0 = Et0 . We denote t0 = t − L as
the start of an attack along the timeline. Based on Eq. 3, we introduce a new
objective function by using L2,1 norm to regularize {ετ}tt0 that leads to small
and spatial-temporal sparse εt.

fua(Xt + εt +

t−1∑
t−L

ετ ,T) + λ‖Γ‖2,1, (9)

where Γ = [εt−L, ..., εt−1, εt] is a matrix that concatenates all incremental values.
Similarly, the TA with SPARK is formally defined as:

minimize D(Xt,Xt + Et−1 + εt) (10)

subject to ce(OT ′(Xt + Et−1 + εt,T)) = ptr
t . (11)

We also modify the objective function Eq. 6 by adding the L2,1 norm and obtain

f ta(Xt + εt +

t−1∑
t−L

ετ ,T) + λ‖Γ‖2,1. (12)

We use the sign gradient descent to minimize the two objective functions,
i.e., Eq. 9 and 12, with the step size of 0.3, followed by a clip operation. In Eq. 9
and 12, λ controls the regularization degree and we set it to a constant 0.00001.
Online minimizing Eq. 9 and 12 can be effective and efficient. First, optimizing
the incremental perturbation is equivalent to optimizing Et by regarding Et−1
as the start point. Since neighboring frames of a video is usually similar, such
start point helps get an effective perturbation within very few iterations. Second,
the L2,1 norm make incremental perturbations to be spatial-temporal sparse and
let Et to be more imperceptible. For example, when applying SPARK on the
SiamRPN-AlexNet-based trackers, we find following observations:

Spatial-temporal sparsity of incremental perturbations: The incre-
mental perturbations become gradually sparse along the space and time (see
Fig. 3 (d)). This facilitates generating more imperceptible perturbations than
BA methods. In addition, SPARK gets the smallest MAP across all frames with
higher success rate than BA-E on OTB100 (see Fig. 3 (b)).

Efficient optimization: Fig. 3 (d) depicts the loss values during optimiza-
tion from frame 41 to 49. At frame 41, it takes about 7 iterations to converge.
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However, at other frames, we obtain minimum loss in only two iterations. It en-
ables more efficient attack than BA methods. As presented in Table 1, SPARK
only uses 2.25 iterations at average to achieve 78.9% success rate.

The sparsity and efficiency of SPARK potentially avoid high-cost iterations
at each frame. In practice, we perform SPARK at every 30 frames¶ and calculate
Et0 by optimizing Eq. 9 or Eq. 12 with 10 iterations. In addition, instead of the
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Algorithm 1: Online adversarial perturbations for TA

Input: A video V = {Xt}T1 ; the object template T;
targeted trajectory {ptr

t }; the attacked tracker
φθ(·); the tracker to perform attack: φθ′(·).

Output: Adversarial Perturbations {Et}T1 .
Initialize the incremental perturbation set E as empty;
for t = 2 to T do

Loading frame Xt;
if mod(t, 30) = 0 then

max_iter = 10;
Empty E ;
t0 = t;

else
max_iter = 2;

εt = SPARK(φθ′(Xt+E ,T,ba
t−1),p

tr
t ,max_iter);

Add εt to E = {ετ}t−1
t0

;
Et =

∑ E ;
(yat ,b

a
t ) = argmaxyit φθ(Xt +Et,T,b

a
t−1);

t = t+ 1;
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whole frame to accelerate the attacking
speed. The search region of the tth frame
is cropped from Xt at the center of pre-
dictive result of frame t − 1, i.e., ba

t−1,
and the trackers can be reformulated as
φθ′(Xt,T,b

a
t−1) and φθ(Xt,T,b

a
t−1). We

will discuss the attack results without ba
t−1

in the experiments. We perform both UA
and TA against visual tracking and sum-
marize the attack process of SPARK for
TA in Algorithm 1. At frame t, we first
load a clean frame Xt. If t cannot be evenly
divisible by 30, we optimize the objective
function, i.e., Eq. 12, with 2 iterations and get εt. Then, we add εt into E that
stores previous incremental perturbations, i.e., {ετ}t−1t0 , and obtain Et =

∑
E .

If t can be evenly divisible by 30, we clear E and start a new round attack.

4 Experimental Results

4.1 Setting

Datasets. We select 4 widely used datasets, i.e., OTB100 [54], VOT2018 [24],
UAV123 [39], and LaSOT [11] as subject datasets.

Models. Siamese network [1,16,29,62,28,12] is a dominant tracking scheme
that achieves top accuracy with beyond real-time speed. We select SiamRPN-
based trackers [29,28] that use AlexNet [26], MobileNetv2 [22], and ResNet-50
[20] as backbones, since they are built on the same pipeline and achieve the state-
of-the-art performance on various benchmarks. We also study the attacks on on-
line updating variants of SiamRPN-based trackers and the SiamDW tracker [60].

Metrics. We evaluate the effectiveness of adversarial perturbations on the
basis of center location error (CLE) between predicted bounding boxes and the
ground truth or targeted positions. In particular, given the bounding box annota-
tion at frame t, i.e., ban

t , we say that a tracker locates an object successfully, if we
have CLE(bt,b

an
t ) = ‖ce(bt)−ce(ban

t )‖2 < 20 where bt is the predicted box [54].
Similarly, we say an attacker succeeds at frame t when ‖ce(bt)−ptr

t ‖2 < 20 where
ptr
t is the tth position on a given targeted trajectory. With above notations, we

define precision drop for UA, success rate for TA, and MAP for both UA and

¶ We use 30 as the attack interval since videos are usually at 30 fps and such setup
naturally utilizes the potential delay between 29th and 30th frames.
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TA: (1) Prec. Drop: Following [51] and [55], for UA, we use precision drop of
a tracker (after attacking) to evaluate the generated adversarial perturbations.
The precision of a tracker is the rate of frames where the tracker can locate
the object successfully. (2) Succ. Rate: For TA, Succ. Rate denotes the rate of
frames where an attack method fools a tracker successfully. (3) MAP: Following
[52], we use the mean absolute perturbation (MAP) to measure the distortion
of adversarial perturbations. For a video dataset containing D videos, we have
MAP = 1

D∗K
∑
d

∑
k

1
M∗C

∑
i

∑
c |Ek,d(i, c)|, where K, M and C refer to the

number of frames, pixels and channels, respectively.
Configuration. For TA, the targeted trajectory, i.e., {ptr

t }T1 , is constructed
by adding random offset values to the targeted position of previous frame, i.e.,
ptr
t = ptr

t−1 +∆p, where ∆p is in the range of 1 to 10. The generated trajectories
are often more challenging than manual ones due to their irregular shapes.

4.2 Comparison Results

Baselines. Up to present, there still lacks research about adversarial attack
on online object tracking. Therefore, we compare with baselines by construct-
ing basic attacks and extending the existing video attack technique. To further
demonstrate the advantages of SPARK over existing methods, we extend the
BA-E in Table 1 such that it has the same configuration with SPARK for a
more fair comparison.

121 291
Targeted!
Trajectory

Targeted!
Position

Results!
after!SPARK
Attack!

Results!
after!BIM
Attack!

Ground!Truth!
Bounding!Box!

Fig. 4. BIM vs. SPARK under TA. We
use a spiral line as the targeted trajec-
tory that embraces the object at most of
the time and makes the TA challenge.

To be specific, original BA-E attacks
each frame with 10 iterations. However,
in Algorithm 1, SPARK attacks every 30
frames with 10 iterations while the frame in
interval are attacked with only 2 iterations.
We configure the new BA-E with the simi-
lar iteration strategy and adopt different
optimization methods (i.e., FGSM, BIM
[27], MI-FGSM [9], and C&W). In addi-
tion, we tried our best to compare with
the existing method, i.e., [52] designed
for action recognition. However, it uses all
frames of a video to predict the category and cannot directly be used for attack-
ing online tracking. We made an extension of it, i.e., when attacking at frame t,
the previous 30 frames are used to generate the adversarial.

Results. Table 2 shows the TA/UA results on the four datasets. Column
Org. Prec. gives the precision of the original tracker. We observe that: 1) Com-
pared with the existing attacks, SPARK achieves the highest Prec. Drop for UA
and Succ. Rate for TA on most of datasets and models. For the results of attack-
ing SiamRPN-Res50 on OTB100, SPARK gets slightly smaller Proc. Drop than
MI-FGSM but generates more imperceptible perturbations. 2) SPARK generates
imperceptible perturbations. When attacking SiamRPN-AlexNet on all datasets,
SPARK always gets more imperceptible perturbations than FGSM, BIM, MI-
FGSM, and C&W. [52] produces the smallest perturbations but the attacking
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Table 2. Attacking three models with proposed SPARK method on OTB100 and VOT2018
for both UA and TA. The comparison results of 5 existing attack methods are also
reported. The results on two larger datasets, i.e., UAV123 and LaSOT, for attacking
SiamRPN-AlexNet are presented. The best three results are highlighted by red, green,
and blue, respectively.

SiamRPN Attacks
Untargreted Attack (UA) Targeted Attack (TA)

OTB100 VOT2018 OTB100 VOT2018
Org. Prec. (%) Prec. Drop (%) MAP Org. Prec. (%) Prec. Drop (%) MAP Succ. Rate (%) MAP Succ. Rate (%) MAP

AlexNet

FGSM 85.3 8.0 1.24 65.8 13.6 1.24 7.9 1.24 4.3 1.24
BIM 85.3 72.1 2.17 65.8 57.4 2.28 38.8 2.14 48.5 2.10

MI-FGSM 85.3 68.4 3.70 65.8 58.2 4.31 41.8 3.18 47.0 3.17
C&W 85.3 54.2 1.31 65.8 50.6 1.26 25.7 1.27 25.7 1.23
Wei 85.3 25.9 0.21 65.8 33.6 0.30 16.0 0.27 20.9 0.24

SPARK 85.3 78.9 1.04 65.8 61.6 1.03 74.6 1.36 78.9 1.38

Mob.

FGSM 86.4 6.7 1.00 69.3 14.1 0.99 7.9 1.00 3.4 0.99
BIM 86.4 37.8 1.07 69.3 46.2 1.06 30.3 1.06 32.9 1.05

MI-FGSM 86.4 42.3 1.71 69.3 46.6 1.73 33.5 1.70 32.7 1.71
C&W 86.4 23.6 1.04 69.3 28.2 1.02 13.7 1.05 8.9 1.01
Wei 86.4 39.4 0.84 69.3 27.8 0.54 11.3 0.51 7.0 0.53

SPARK 86.4 54.1 1.66 69.3 55.5 1.25 51.4 1.65 45.5 1.21

Res50

FGSM 87.8 4.5 0.99 72.8 8.1 0.99 7.7 0.92 2.9 0.99
BIM 87.8 27.0 1.10 72.8 39.1 1.10 17.1 1.09 17.0 1.08

MI-FGSM 87.8 31.9 1.72 72.8 41.8 1.75 18.8 1.71 19.5 1.72
C&W 87.8 14.6 1.03 72.8 20.4 1.01 10.0 1.04 5.3 1.01
Wei 87.8 9.7 0.65 72.8 15.7 0.68 9.7 0.78 4.8 0.69

SPARK 87.8 29.8 1.67 72.8 54.3 1.26 23.8 1.70 39.5 1.26

SiamRPN Attacks
Untargreted Attack (UA) Targreted Attack (TA)

UAV123 LaSOT UAV123 LaSOT
Org. Prec. Prec. Drop MAP Org. Prec. Prec. Drop MAP Succ. Rate MAP Succ. Rate MAP

AlexNet

FGSM 76.9 3.7 1.25 43.5 4.0 1.22 3.7 1.25 4.70 1.22
BIM 76.9 36.4 1.70 43.5 32.0 1.64 28.7 1.75 17.4 1.73

MI-FGSM 76.9 31.5 2.54 43.5 31.6 2.50 28.3 2.53 17.8 2.46
C&W 76.9 17.0 1.37 43.5 19.9 1.29 11.0 1.36 8.7 1.28
Wei 76.9 5.6 0.31 43.5 9.3 0.29 6.8 0.37 6.9 0.31

SPARK 76.9 43.6 1.13 43.5 38.2 0.93 54.8 1.06 48.9 1.09

MI-FGSM but generates more imperceptible perturbations. 2) SPARK generates
imperceptible perturbations. When attacking SiamRPN-AlexNet on all datasets,
SPARK always gets more imperceptible perturbations than FGSM, BIM, MI-
FGSM, and C&W. [52] produces the smallest perturbations but the attacking
is not effective. Similar results can be also found on other three datasets. 3) In
general, it is more difficult to attack deeper models for all attacks, since the
Prec. Drop and Succ. Rate of almost all attacks gradually become smaller as
the models become more complex. In summary, the results indicate the effec-
tiveness of SPARK in attacking the tracking models with small distortions. In
addition to the quantitative results, we give a concrete example base on BIM and
SPARK (see Fig. 4). Compared with BIM, SPARK lets the SiamRPN-AlexNet
tracker always produces bounding boxes on the targeted trajectory with a sparse
perturbation, indicating the effectiveness of SPARK.

4.3 Analysis of SPARK

Results under Challenging Attributes. OTB dataset contains 11 subsets
corresponding to 11 interference attributes‖. Fig. 5 shows results of six methods
for SiamRPN-AlexNet on 11 subsets. We observe that: 1) SPARK has much
larger Prec. Drop and Succ. Rate than baselines on all subsets except the LR

‖
The 11 attributes are illumination variation (IV), scale variation (SV), in-plane rotation (IPR), outplane rota-
tion (OPR), deformation (DEF), occlusion (OCC), motion blur (MB), fast motion (FM), background clutter (BC),
out-of-view (OV), and low resolution (LR).

Table 2. Attacking 3 mod-
els with SPARK on OTB100
and VOT2018 for both UA
and TA. The comparison re-
sults of 5 existing attack meth-
ods are also reported. The re-
sults on 2 larger datasets, i.e.,
UAV123 and LaSOT, for attack-
ing SiamRPN-AlexNet are pre-
sented. The best 3 results are
highlighted by red, green, and
blue, respectively.

Table 3. Left sub-table shows the results of attacking DSiamRPN trackers on OTB100 for
UA and TA while the right one presents the results of attacking SiamDW trackers.

UA Attack TA Attack UA Attack TA Attack
Org. Prec.(%) Prec. Drop(%) Succ. Rate(%) Org. Prec.(%) Prec. Drop(%) Succ. Rate(%)

DSiam-AlexNet 86.6 78.5 65.9 SiamDW-CIResNet 83.0 58.1 21.5
DSiam-Mob. 87.8 56.8 44.4 SiamDW-CIResNext 81.7 74.2 29.4
DSiam-Res50 90.3 37.1 20.4 SiamDW-CIResIncep 82.3 70.2 30.8

is not effective. Similar results can be also found on other three datasets. 3) In
general, it is more difficult to attack deeper models for all attacks, since the
Prec. Drop and Succ. Rate of almost all attacks gradually become smaller as
the models become more complex. In summary, the results indicate the effec-
tiveness of SPARK in attacking the tracking models with small distortions. In
addition to the quantitative results, we give a concrete example base on BIM and
SPARK (see Fig. 4). Compared with BIM, SPARK lets the SiamRPN-AlexNet
tracker always produces bounding boxes on the targeted trajectory with a sparse
perturbation, indicating the effectiveness of SPARK.

4.3 Analysis of SPARK

Results under Challenging Attributes. OTB dataset contains 11 subsets
corresponding to 11 interference attributes‖. Fig. 5 shows results of six methods
for SiamRPN-AlexNet on 11 subsets. We observe that: 1) SPARK has much
larger Prec. Drop and Succ. Rate than baselines on all subsets except the LR
one for both UA and TA. 2) The advantages of SPARK over baselines for TA
is more significant than that for UA. 3) BIM, Wei, MIFGSM, and C&W are
much more effective under the LR attribute than others. This may be caused by
the limited effective information in LR frames, which leads to less discriminative
deep representation and lets the attacking more easier.

Transferability across Models. We discuss the transferability across mod-
els, which is to apply perturbations generated from one model to another. In

‖ The 11 attributes are illumination variation (IV), scale variation (SV), in-plane rota-
tion (IPR), outplane rotation (OPR), deformation (DEF), occlusion (OCC), motion
blur (MB), fast motion (FM), background clutter (BC), out-of-view (OV), and low
resolution (LR).
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Fig. 5. (a) and (b) are the Succ. Rate and MAP of 6 variants of SPARK under TA for
SiamRPN-AlexNet. The 6 variants are built by using different number of previous pertur-
bations for Eq. (12) and (c) shows the MAP difference between neighboring variants.(d)
Attacking SiamRPN-AlexNet with the 6 compared methods on the 11 subsets of OTB100
for both TA and UA.

Table 4, the values in the UA and TA parts are the Prec. Drop and Succ. Rate,
respectively. We see that the transferability across models also exists in attacking
object tracking. All attack methods lead to the precision drop to some extent.
The limited transferability may be caused by the insufficient iterations during
online process and can be further studied in the future.

Validation of the online incremental attack. We implement six variants
of SPARK by setting L ∈ {5, 10, 15, 20, 25, 30} in Eq. 12 to analyze how historical
incremental perturbations affect attacking results. For example, when attacking
the frame t with L = 5, we use previous 5 incremental perturbations to generate
Et. We use these SPARKs to attack SiamRPN-AlexNet under TA on OTB100
and report the Succ. Rate, MAP, and MAP difference (MAP Diff.(L)) in Fig. 3,
where MAP Diff.(L)=MAP(SPARK(L))-MAP(SPARK(L− 1)). We see that: 1)
the Succ. Rate increases with the growing of L. It demonstrates that historical
incremental perturbations do help achieve more effective attack. 2) Although
MAP also gets larger as the L increases, the MAP Diff. gradually decrease. This
validates the advantages of SPARK, that is, it can not only leverage temporal
transferability effectively but also maintaining the imperceptible perturbations.

SPARK without object template T and the attacked tracker’s pre-
dictions. As discussed in Section 3.4 and Algorithm 1, the tracked object, i.e.,
the template T, should be given during attack. Besides, our method is performed
on the search region of φθ(·) and require the attacked tracker’s prediction, i.e.,
ba
t−1, as an additional input. These two factors might limit the application of

our method. Here, we demonstrate that we can realize effective attack without
these two factors. For the template T, given the first frame of an online video,
we use SSD [33] to detect all possible objects in the frame and select the object
nearest to the frame center as the template. As presented in Table 4, without
the T, SPARK-noT achieves 71.0% Prec. Drop under UA and is slightly lower
than the original SPARK. For the attacked tracker’s prediction, we replace the
ba
t−1 in the Algorithm 1 with ba′

t−1. Then, we can perform attack on the search
region of φθ′(·) and propagate the perturbations to the whole frame. Without
the attacked tracker’s predictions, SPARK-noba

t gets 67.7% Prec. Drops under
UA which is slightly lower than the original SPARK.
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Table 4. The left subtable shows the transferability between AlexNet, MobileNetv2, and
ResNet50 on OTB100. Values in UA and TA are Proc. Drop and Succ. Rate, respectively.
The right subtable shows the results of attacking SiamRPN-AlexNet on OTB100 without
object template T or attacked tracker’s prediction. The third row of this subtable is the
original results of SPARK in Table 2.

Proc. Drop of UA from Succ. Rate of TA from Untargeted Attack (UA) Targeted Attack (TA)
AlexNet Mob.Net Res50 AlexNet Mob.Net Res50 Org. Prec. Prec. Drop Succ. Rate

SiamRPN-AlexNet 78.9 6.7 2.0 74.6 6.2 6.7 SPARK-noT 85.3 71.0 50.6
SiamRPN-Mob. 3.5 54.1 2.7 6.3 51.4 6.6 SPARK-noba

t 85.3 67.7 46.2
SiamRPN-Res50 7.5 16.1 29.8 6.2 6.5 23.8 SPARK 85.3 78.9 74.6

Transferability to online updating trackers. We build three online up-
dating trackers via dynamic Siamese tracking (DSiam) [16], and get: DSiamRPN-
AlexNet, MobileNetv2, and ResNet-50. We then use the adversarial perturba-
tions from SiamRPN to attack the DSiamRPN trackers. In Table 3, we see that:
1) DSiam indeed improves the precision of three SiamRPN trackers. 2) The
adversarial perturbations from SiamRPNs are still effective for DSaim versions
with 78.5%, 56.8%, and 37.1% precision drops which are larger than the results in
Table 2 due to the corrupted tracking models updated by adversarial examples.

Attacking SiamDW [60]. We validate the generality of SPARK by attack-
ing another tracker, i.e., SiamDW [60] that is the winner of [25]. As shown in the
Table 3, without changing any attack parameters, SPARK significantly reduces
the precision of SiamDW trackers under the UA, demonstrating its generality.

5 Conclusion

In this paper, we explored adversarial perturbations for misleading the online
visual object tracking along an incorrect (untarged attack, UA) or specified (tar-
geted attack, TA) trajectory. An optimization-based method, namely spatial-
aware online incremental attack (SPARK), was proposed to overcome the chal-
lenges introduced in this new task. SPARK optimizes perturbations with a L2,1

regularization norm and considers the influence of historical attacking results,
thus is more effective. Experimental results on OTB100, VOT2018, UAV123,
and LaSOT showed that SPARK successfully fool the state-of-the-art trackers.
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