
PatchPerPix for Instance Segmentation:
Supplemental Material

Lisa Mais[0000−0002−9281−2668] and Peter Hirsch[0000−0002−2353−5310]

and Dagmar Kainmueller[0000−0002−9830−2415]

Berlin Institute of Health / Max-Delbrueck-Center for Molecular Medicine in the
Helmholtz Association, Berlin, Germany
{firstname.lastname}@mdc-berlin.de

Supplemental Figures for BBBC010 C. elegans worm disentanglement

(a) raw (b) ground truth (c) SON (d) PatchPerPix

Fig. 1: Qualitative comparison of PatchPerPix and Singling Out Networks [1]
(SON) on a BBBC010 image. PatchPerPix (ppp+dec) is significantly more pixel-
accurate as it does not rely on a dictionary of known shapes. In particular, it
accurately separates a cluster of objects on the lower right. (SON image from [1])

Fig. 2: Exemplary failure cases of PatchPerPix (ppp+dec) on BBBC010. (top)
false split due to large overlap; false split due to missing signal. (bottom) false
merge due to sequential layout of worms; inaccuracy due to strongly bent worm.



2 L. Mais and P. Hirsch et al.

Supplemental Hyperparameter Studies on BBBC010

Table 1: Impact of patch size used in ppp+dec, assessed on BBBC010. All
ppp+dec models have similar code size of ∼250, as well as a comparable number
of parameters. For ppp+dec, AP at lower thresholds, as well as avAP, tends to
increase with larger patch size. This is expected, as larger patches may bridge
larger overlaps of instances. However, AP the highest threshold tends to decrease
with larger patch size. This cannot be straightforwardly attributed to higher
compression rate, as AP is robust to code size variation at fixed patch size (see
Supp. Table 2). We hypothesize that it is due to shape variance increasing with
increasing distance from the center pixel of a patch, causing larger patches to
yield lower pixel accuracy at the fringes. Furthermore, ppp+dec considerably
outperforms ppp at the same patch size (25x25) and same number of parame-
ters. Improvement of ppp+dec over ppp is largest for AP at high thresholds. We
hypothesize that this may be due to differences in training procedures, where
in ppp+dec, only forground patches contribute to the loss, whereas in ppp, all
patches contribute, thereby significantly shifting balance. Said hypotheses have
to be verified by further experiments.

APdsb patch size avAP[0.5:0.05:0.95] AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

ppp 25x25 0.689 0.890 0.872 0.840 0.710 0.372
ppp+dec 25x25 0.720 0.895 0.877 0.857 0.763 0.450
ppp+dec 31x31 0.725 0.911 0.894 0.866 0.779 0.417
ppp+dec 41x41 0.727 0.930 0.905 0.879 0.792 0.386
ppp+dec 49x49 0.736 0.928 0.914 0.898 0.802 0.409

Table 2: Impact of code size used in ppp+dec, assessed on BBBC010. Patch size
fixed at 41x41, number of parameters kept constant. ppp+dec achieves compa-
rable results across a range of compression rates we assessed.

APdsb code size avAP[0.5:0.05:0.95] AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

ppp+dec 324 0.737 0.931 0.919 0.897 0.784 0.418
ppp+dec 252 0.727 0.930 0.905 0.879 0.792 0.386
ppp+dec 216 0.733 0.924 0.899 0.878 0.794 0.425
ppp+dec 180 0.730 0.924 0.906 0.888 0.786 0.413
ppp+dec 144 0.719 0.912 0.886 0.868 0.774 0.410
ppp+dec 108 0.734 0.932 0.914 0.893 0.776 0.409
ppp+dec 72 0.728 0.923 0.902 0.881 0.780 0.412



PatchPerPix for Instance Segmentation 3

Supplemental Hyperparameter Study on DSB2018

Table 3: Impact of patch size and code size assessed on the 2d nuclei dataset
dsb2018. In line with the respective study on BBBC010, results suggest that
with a smaller patch size the network is able to better learn the exact instance
shape (better at high IoU thresholds) yet with a larger patch size the detection
performance improves (better at smaller IoU thresholds).

APdsb patch
size

code
size

avAP
[0.5:0.1:0.9]

AP0.1 AP0.2 AP0.3 AP0.4 AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

ppp 25 / 0.670 0.905 0.905 0.901 0.882 0.846 0.797 0.737 0.603 0.365
ppp+dec 25 252 0.693 0.919 0.919 0.915 0.898 0.868 0.827 0.755 0.635 0.379
ppp+dec 25 512 0.691 0.929 0.927 0.925 0.913 0.874 0.825 0.763 0.626 0.368
ppp+dec 41 252 0.682 0.924 0.921 0.919 0.898 0.871 0.824 0.744 0.613 0.359
ppp+dec 41 576 0.685 0.934 0.934 0.931 0.916 0.871 0.827 0.750 0.614 0.361

Supplemental Figure for Nuclei3d

Fig. 3: Top: Exemplary xy-slice of a volume in the nuclei3d data set. Densely
packed nuclei in the nervous system of the C. elegans L1 larva (towards the
left) are particularly hard to separate. Center left: Close-up on said nervous
system. Center right: Exemplary yz-slice of nervous system. Bottom: Respective
PatchPerPix segmentation result.



4 L. Mais and P. Hirsch et al.

Supplemental Study of Instance Assembly Run-times

Table 4: Average run-times for PatchPerPix instance assembly on the different
datasets. We achieve convenient run-times with fair patch sizes on 2d data with
sparse foreground (BBBC010 and dsb2018). Long run-time for ISBI2012 at fair
patch size is due to the dense foreground of the data. Long run-time at small
patch size for nuclei3d is due to the data being 3d, albeit with sparse foreground.

dataset BBBC010 BBBC010 dsb2018 ISBI2012 nuclei3d

patch size 25x25 41x41 25x25 25x25 9x9x9
seconds per image 4 13 5 400 1300

Supplemental Analysis of Patch Scores

(a) BBBC010 (b) dsb2018

Fig. 4: We find significant correlation between the computed patch scores and the
IoU of predicted patches vs. ground truth patches. Each plotted dot stems from
a patch prediction at a pixel that is foreground either in the prediction or in the
ground truth. Correlation values: 0.52 (Spearman’s rho) and 0.37 (Kendall’s tau)
for BBBC010, and 0.8 (Spearman’s rho) and 0.62 (Kendall’s tau) for dsb2018.



PatchPerPix for Instance Segmentation 5

Supplemental Figure for Instance Assembly

(a) (b) (c) 

(d) (e) (g) (f) 

y
z

aff(y,z) = ?

y
z

aff(y,z) = 1/3*(
 - 0.9*(1-0.1)
 - (1-0.2)*0.97 
 - 0.9*(1-0.01)) 
aff(y,z) = -0.83 

y
z

y z y
z

Fig. 5: Overview of our instance assembly pipeline: (a) Raw image detail showing
two closely adjacent objects, (b) Zoom into ambiguous area. We use two pixels,
y and z, delineated in red, to visualize how the consensus affinities aff(y,z) are
computed. (c) Three exemplary patches, marked by different-colored squares,
that each cover y and z. The actual value each contributes to aff(y,z) is stated
next to the image (cf. Eq. 3). (d) Patch scores for all pixels, visualized as gray
value image. Predictions closer to an ambiguous region between two objects,
which agree less with the consensus affinities, receive lower patch scores (cf.
Eq. 5). (e) Selection of high-scoring patches that contribute to cover the image
foreground (for the sake of clarity only a subset is shown). They are depicted as
an overlay, where the spatial extension of each selected patch is delineated by a
colored box and the center pixel by a small square. (f) The crayoned areas show
the foreground area covered by each patch. We compute patch affinities between
overlapping patches (cf. Eq. 6), visualized by the lines (for the sake of clarity
only a subset is shown). For the two patches connected by white lines the union
of foregrounds agrees well with the consensus, they belong to the same object.
For the two patches connected by red lines, the union of foregrounds does not
agree well with the consensus, they belong to different objects. (g) The final
instance segmentation.



6 L. Mais and P. Hirsch et al.

References

1. Yurchenko, V., Lempitsky, V.S.: Parsing images of overlapping organisms with deep
singling-out networks. In: 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. pp. 4752–
4760 (2017). https://doi.org/10.1109/CVPR.2017.505, https://doi.org/10.1109/
CVPR.2017.505 1

https://doi.org/10.1109/CVPR.2017.505
https://doi.org/10.1109/CVPR.2017.505
https://doi.org/10.1109/CVPR.2017.505

