
PatchPerPix for Instance Segmentation

Lisa Mais[0000−0002−9281−2668] and Peter Hirsch[0000−0002−2353−5310]

and Dagmar Kainmueller[0000−0002−9830−2415]

Berlin Institute of Health / Max-Delbrueck-Center for Molecular Medicine in the
Helmholtz Association, Berlin, Germany
{firstname.lastname}@mdc-berlin.de

Abstract. We present a novel method for proposal free instance seg-
mentation that can handle sophisticated object shapes which span large
parts of an image and form dense object clusters with crossovers. Our
method is based on predicting dense local shape descriptors, which we
assemble to form instances. All instances are assembled simultaneously
in one go. To our knowledge, our method is the first non-iterative method
that yields instances that are composed of learnt shape patches. We eval-
uate our method on a diverse range of data domains, where it defines the
new state of the art on four benchmarks, namely the ISBI 2012 EM seg-
mentation benchmark, the BBBC010 C. elegans dataset, and 2d as well
as 3d fluorescence microscopy data of cell nuclei. We show furthermore
that our method also applies to 3d light microscopy data of Drosophila
neurons, which exhibit extreme cases of complex shape clusters.

1 Introduction

The task of instance segmentation has a wide range of applications in natural
images as well as microscopy images from the biomedical domain. A prevalent
class of instance segmentation methods, namely proposal-based methods based
on RCNN [10,11], has proven successful in cases where instance location and size
can be well-approximated by bounding boxes. However, in many cases, especially
in the biomedical domain, this does not hold: Instances may span widely across
the image, and hence multiple instances may have very similar, large bound-
ing boxes. To complicate things, instances may be densely clustered, in some
cases overlapping, including crossovers. Proposal-free methods are applicable
in such cases, where popular choices include metric learning / instance color-
ing [7,18,4,17], affinity-based methods [8,30,20,9], and learnt watershed [3,31].
However, respective pixel-wise predictions do not explicitly capture instance
shape, nor are they suitable for disentangling overlapping instances.

To overcome these limitations, we propose to (1) densely predict represen-
tations of the shapes of instance patches, (2) cover the image foreground with
the most plausible shape patches, and (3) puzzle together complete instance

Lisa Mais and Peter Hirsch contributed equally, listed in random order.
Code available: https://github.com/Kainmueller-Lab/PatchPerPix

https://github.com/Kainmueller-Lab/PatchPerPix

2 L. Mais and P. Hirsch et al.

(a) input image (b) predictions, selection (c) patch affinity graph (d) instance seg.

Fig. 1: PatchPerPix overview. Given the raw input image (a), a CNN predicts
dense patches for each pixel (b, best seen with zoom) which are then used to find
a consensus for each pair of pixels within the patch size. The patches that best
agree with this consensus are selected (shown in red in b) and connected to form
a patch affinity graph. (c) Edges of the patch affinity graph are assigned scores
derived from the agreement of the merged shape patches with the consensus. The
final instance segmentation (d) is obtained by signed graph partitioning. Shown
in (c,d) is the result of connected component analysis on the positive subgraph,
where edges with negative scores are depicted in red.

shapes from these patches by means of partitioning a patch affinity graph. The
approach of covering the image by selecting from a redundant set of instance
patch predictions allows for naturally handling overlap (including crossovers),
as overlapping instance patches can be selected, potentially resulting in pixels
covered by multiple instances.

Our general idea is closely related to Singling Out Networks [32]. However,
they are different in that they rely on a dictionary of known instances, thereby
limiting the variability of objects they can handle, and they only consider pre-
dicting whole instances and not patches of instances, thereby limiting the size
of feasible object categories.

Our shape prediction network predicts, for each pixel of the input image, a
representation of the local shape of the instance this pixel belongs to, namely a
shape patch of the pixel’s instance. The architecture we propose is derived from
the U-Net [26], thus allowing for efficient dense prediction. As representations
of instance patch shapes, we explore local binary masks, as well as encodings
(i.e. compressed versions) of these. The idea of predicting instance shape masks
per pixel of an image has been pursued before [5,6,15]. However, all these ap-
proaches work on the assumption that a shape mask can capture a complete
instance shape. Thus they are designed for object categories common to natu-
ral images rather than for disentangling clusters of complex shapes that occupy
similar bounding boxes, as relevant in the biomedical domain. Predicting shape
encodings instead of binary masks is also not new [15]. However, besides only
considering complete instance shapes as opposed to our patches of instances,
in [15], shape encoding and respective decoder are trained separately, where we
show in our work that end-to-end training yields considerable improvement.

The variant of our method that predicts local binary masks as shape represen-
tations is closely related to methods that employ long-range affinities [16,30,20,9].

PatchPerPix for Instance Segmentation 3

In essence, our predicted binary patches can be interpreted as dense affinities in
a neighborhood around each pixel. However, in contrast to affinity-based meth-
ods, we instead interpret our predictions as patches of instances, from which
we puzzle together complete instances. This way, our yielded global instance
shapes are assembled from learned shape patches, a property that does not hold
for affinity-based methods. Note that in this respect, our method is related to
CELIS [23], which learns to agglomerate super-pixels to form instances with
plausible shapes, yet their initial pixel-wise predictions do not capture object
shape. Furthermore, our method is related to Flood Filling Networks [13], an
iterative method that learns to expand instances one-by-one. In contrast, our
method segments all instances simultaneously in one pass.

We show in a quantitative evaluation that our method is the new state of the
art on the ISBI 2012 challenge on segmentation of neuronal structures in EM
stacks [1], outperforms the previous state of the art [32,25,17] on the BBBC010
benchmark dataset of worm images [28] by a large margin, and also outperforms
the state of the art [27,29,12] on 2d and 3d light microscopy images of densely
packed cell nuclei. Last but not least, we demonstrate that our method also
applies to the complex tree-like shapes of neurons in 3d light microscopy images.

In summary, our contributions are:

– A novel method for segmenting instances of complex shapes that spread
widely across an image in crowded scenarios, with overlaps and crossovers.

– Instance segmentations are assembled from learnt shape pieces. Our method
is, to our knowledge, the first such method that is not iterative, i.e. we
compute all instances in one pass.

– Our method defines the new state of the art on the competitive ISBI 2012
EM segmentation challenge, considerably outperforms the state of the art
on the challenging BBBC010 C. elegans dataset, and also defines the new
state of the art on 2d and 3d benchmark data of cell nuclei.

2 PatchPerPix for Instance Segmentation

We train a CNN to predict dense local shape patches, from which we assemble all
instances in an image simultaneously in a one-pass pipeline. Figure 1 and Suppl.
Fig. 5 provide an overview of our proposed method, which we term PatchPerPix.

Formally, our CNN yields an estimate p : Dom(I)×P → [0, 1] of the function

p∗ : Dom(I)× P → {0, 1}

(x,dx) 7→

{
1 if Instance(x) = Instance(x + dx) and x,x + dx ∈ fg(I)

0 otherwise

that captures, for each pixel x ∈ Rd in the foreground fg(I) of a d-dimensional
image I, and each pixel x + dx at a fixed, dense set of offsets P ⊂ Rd, whether
x and x + dx belong to the same instance.

Section 2.1 describes our proposed instance assembly pipeline given the es-
timated function p. Section 2.2 describes the CNN architectures we explore to
yield p.

4 L. Mais and P. Hirsch et al.

2.1 Instance Assembly

We denote a restriction of the estimated function p to a single pixel as

px : x + P → [0, 1] , y 7→ p(x,y − x)

We denote the domain of px as patch(px) := x + P. For each patch, the pixels
that are predicted to belong to the same instance as x by means of a probability
threshold t, i.e. the pixels classified as foreground w.r.t. the instance at x, are
denoted as

fg(px) := {y ∈ patch(px) : px(y) > t} , (1)

and, accordingly, the respective background pixels as

bg(px) := {y ∈ patch(px) : px(y) < 1− t} . (2)

For each pixel pair (y, z) covered by at least one informative patch, i.e. ∃x ∈
Dom(I) : {y, z} ⊂ patch(px) ∧ {y, z} ∩ fg(px) 6= ∅, summing up observations
from all patches yields a consensus that y and z belong to the same instance,
i.e. a consensus affinity

aff(y, z) :=
1

Zaff(y, z)
·
(∑

x∈Dom(I):
{y,z}⊂fg(px)

px(y) · px(z)

−
∑

x∈Dom(I):
y∈fg(px),z∈bg(px)

px(y) · (1− px(z))−
∑

x∈Dom(I):
y∈bg(px),z∈fg(px)

(1− px(y)) · px(z)
)

(3)
with normalization factor

Zaff(y, z) := |{x ∈ Dom(I) : {y, z} ⊂ patch(px) ∧ {y, z} ∩ fg(px) 6= ∅}|. (4)

Given these consensus affinities, we define a score for each patch with non-empty
foreground by assessing how well it agrees with the consensus:

score(px) :=
1

Zscore(px)
·
(∑
{y,z}⊂fg(px)

aff(y, z)−
∑

y∈fg(px),
z∈bg(px)

aff(y, z)
)

(5)

with normalization factor

Zscore(px) := |{{y, z} ⊂ patch(px) : {y, z} ∩ fg(px) 6= ∅}|.

We rank all patches w.r.t. their score (Eq. 5). We employ a greedy set cover
algorithm to select high-ranking patches whose patch foregrounds fg(px) fully
cover the image foreground fg(I). Section 2.2 describes how we obtain the image
foreground. In more detail, the set cover algorithm proceeds as follows: Iterating
from high to low score over the ranked list of patches, we pre-select patches if they
cover previously uncovered image foreground, until the image foreground is fully

PatchPerPix for Instance Segmentation 5

covered. We further thin out this pre-selection as follows: We iteratively select
as next patch from the pre-selection the patch that covers the most remaining
foreground, until the whole foreground is covered.

Given this selection of high-ranking patches, the consensus affinities (Eq. 3)
allow us to define a score that measures for a pair of patches whether they belong
to the same instance, i.e. a consensus affinity between px and py:

paff(px, py) :=
1

Zpaff(px, py)
·
∑

v∈fg(px),
w∈fg(py)

aff(v,w)
(6)

with normalization factor

Zpaff(px, py) := |{v ∈ fg(px),w ∈ fg(py) :

∃z : {v,w} ⊂ patch(pz) ∧ {v,w} ∩ fg(pz) 6= ∅}|.

We compute patch pair affinities (Eq. 6) between selected high-ranking patches
iff the respective Zpaff(·, ·) > 0, yielding a patch affinity graph. We partition
this graph via connected component analysis on the positive subgraph, or al-
ternatively by means of the mutex watershed algorithm [30], depending on the
application domain. We obtain the final instance segmentation by assigning, per
connected component, a unique instance ID to all pixels contained in the union of
the respective patch foregrounds. Note that in general, this may assign multiple
instance IDs to some pixels, which is desired in some, but not all, applications.
In case overlapping instances are not desired, we assign the ID of the patch
prediction with highest probability at the respective pixel.

We implemented the computationally expensive parts of our instance assem-
bly pipeline in CUDA for efficient execution. In applications with sparse image
foreground, we further improve computational efficiency by restricting patch(px)
to the image foreground, i.e. patchsparse(px) := patch(px) ∩ fg(I).

2.2 CNN Architecture

We train a deep convolutional neural network to predict the function p. It does
so by predicting px(x+P) for each pixel of the input image. Thus the cardinality
of the set P determines the number of output channels of the network. We train
the network w.r.t. standard cross-entropy loss averaged over all outputs. We
use a U-Net [26] as backbone architecture. To facilitate predictions of shape
representations with hundreds of dimensions, we keep the number of feature
maps fixed (instead of reducing) in the upward path of the U-Net. Thus we
avoid having to predict high-dimensional pixel-wise outputs from only tens of
feature maps as present in the penultimate layer of a standard U-Net.

Our baseline PatchPerPix architecture, termed ppp, is a U-Net that directly
outputs px at each pixel x of the input image I. To estimate the image foreground
fg(I), we include offset 0 in P. A practical issue with ppp is that the size of the
predicted patches, i.e. the number of outputs of the U-Net, is limited by GPU

6 L. Mais and P. Hirsch et al.

U-Net

input image
1 x 256 x 256

code and number of instances
(252 + 3) x 68 x 68

1 x 41 x 41
patch

252 x 1 x 1
code

Decoder

0 1 >1

sample
mini-batch
of codes

Fig. 2: ppp+dec architecture: A U-Net predicts shape patch encodings, which
are fed into the decoding path of an auto-encoder. Additional outputs of the U-
Net predict the number of instances at each pixel. U-Net and decoder are trained
jointly end-to-end. Categorical cross-entropy is used for the number of instances,
and binary cross-entropy for the patch predictions. Both losses are summed up
without weighting. The batch of codes that is run through the decoder is sampled
from pixels for which the number of instances is predicted to be 1.

memory. Furthermore, in most application domains, the variety of possible patch
predictions, and hence the amount of information contained in each, is limited.
Therefore, in addition to our baseline model, we explore two variants that learn
compressed representations of px and decode these via (1) the decoder part of
a separately trained autoencoder (ppp+ae), and (2) a decoder that is trained
end-to-end with the backbone U-Net (ppp+dec), as described in the following.

ppp+ae. In a separate first step, we train a fully convolutional autoencoder on
patches of ground truth binary masks to learn a patch latent space. The backbone
U-Net is then trained to regress a respective learnt latent vector (a.k.a. ”encod-
ing” or ”code”) for each pixel of the input image w.r.t. sum of squared differences
loss. To de-compress patch predictions for our instance assembly pipeline, the
decoder part of the pre-trained autoencoder is employed. We add an extra output
channel to the U-Net to predict a foreground mask, trained w.r.t. cross-entropy
loss and added to the code loss without any weighting. Codes are decoded for
all foreground pixels obtained by thresholding the foreground mask.

ppp+dec. Here, we attach the decoder part of the autoencoder used in ppp+ae
to the end of the U-Net and train the resulting joint network end-to-end from
scratch w.r.t. cross-entropy. As before, the U-Net part of the network outputs
the code. However, there is no loss employed directly on the code. To fit end-to-
end training onto GPU memory, we sample codes from ground truth foreground
pixels at training time, which are then fed to the decoder network. Similarly to
ppp+ae, we extend the U-Net to simultaneously predict the foreground to allow
for decoding only foreground pixels. This architecture is depicted in Figure 2.

ppp+dec combines a U-Net for predicting a shape encoding with the decoder
part of an auto-encoder. Interestingly, this end-to-end trainable architecture has
two decoding parts, namely (1) the upward path of the U-Net, which serves for
combining high-level image information captured at lower layers with low-level
information from upper layers, and (2) the decoder half of an auto-encoder,

PatchPerPix for Instance Segmentation 7

which is needed to decompress local shape predictions in the end. Furthermore,
especially when dealing with sparse data, the U-Net performs many dispensable
computations, namely on background pixels. Hence we investigated whether our
proposed architecture could be replaced by a standard encoder-decoder archi-
tecture alone, with one encoding and one decoding path, like e.g. [2], as follows:

ed-ppp. Our architecture takes an image patch the size of our shape patches
plus some surrounding receptive field as input, and generates a shape patch for
the respective central pixel’s instance as output. It is applied in a sliding window
fashion on all pixels in the image foreground. We use 3×3 down- and upsampling
to facilitate the singling out of the center pixel’s instance from its neighboring
instances. To determine for which pixels to run the encoder-decoder network, we
train a separate U-Net to generate a foreground mask in a preceding step.

2.3 Overlapping Regions

The case of multiple objects sharing pixels can be found in many biomedical
applications, e.g. in 2d images of model organisms such as worms that crawl on
top of each other, or neurons in light microscopy data that share pixels due to
the partial volume effect. As pixels located in areas of overlap belong to multi-
ple instances, their respective shape patch is not well-defined. Hence we exclude
these pixels from the entire pipeline. During training, we achieve this by mask-
ing out these areas in the loss computation. To detect overlap at test time, we
predict the number of instances per pixel by extending the foreground classifi-
cation task by an ”overlap” class, which, as before, is trained jointly with the
patch predictions by means of added cross-entropy loss. This information is then
used in the instance assembly: Pixels in overlapping regions are discarded, i.e.
their respective shape patches do not contribute to the consensus and cannot be
selected. This constitutes a limitation of our method in that (i) only overlapping
regions with a maximum diameter of smaller than the size of the patches can be
covered completely by patch shapes, and (ii) only occlusions within the range of
the neighborhood used in the patch graph generation can be bridged.

3 Results

We evaluate our method on four benchmark datasets, which comprise overlap-
ping objects, sophisticated object shapes, and, to show the generic applicability
of our method, also simple object shapes. The first dataset, the BBBC010 C. el-
egans dataset [21], exhibits clusters of overlapping objects with large, coinciding
bounding boxes. The second dataset, the ISBI 2012 Challenge on segmenting
neuronal structures in electron microscopy [1], exhibits densely clustered objects
with sophisticated shapes that span the whole image, albeit without overlaps.
The third and fourth dataset exhibit densely clustered objects of simple, ap-
proximately ellipsoidal shapes, namely 2d and 3d fluorescence light microscopy
datasets of cell nuclei [27,29]. Our results define the new state of the art in all

8 L. Mais and P. Hirsch et al.

cases, as detailed in Sections 3.1, 3.2, and 3.3. Furthermore, we study the im-
pact of individual steps of our instance assembly pipeline as well as our proposed
network architecture designs on BBBC010. Last, we show promising qualitative
results on 3d light microscopy data of neurons, which exhibit extreme cases of
sophisticated object shapes that form dense clusters with overlaps (Sec. 3.4).

3.1 BBBC010 C. elegans worm disentanglement

The BBBC010 dataset from the Broad Bioimage Benchmark Collection [21]1

consists of 100 brightfield microscopy images showing multiple C. elegans worms
per image, which may overlap and cluster. As ground truth, to capture overlaps
correctly, BBBC010 provides an individual binary mask for each worm.

In this Section, we report a quantitative evaluation of our method in compar-
ison with related work [32,25,17]. Furthermore, we report a comparison of the
neural network architecture designs we explored, as well as an ablation study
that assesses the impact of individual steps of our instance assembly pipeline.
Patch- and code-size hyperparameters are studied in the Supplement. We report
results in terms of the APdsb metric used in the kaggle 2018 data science bowl,
which takes both missing and spurious instances into account2. We also report a
range of additional metrics that have been reported for competing approaches,
including the slightly different APCOCO, thus enabling direct comparability.

As backbone CNN architecture we employ a 4-level U-Net [26] starting with
40 feature maps, with two-fold down- and upsampling operations, and constant
number of feature maps during upsampling. Our network takes raw brightfield
images as sole input, while [25,32,17] additionally exploit ground truth segmen-
tations of the image foreground as input. In the ppp architecture, we employ a
patch size of 25 × 25, yielding a U-Net with 625 outputs. In the ppp+ae and
ppp+dec architectures, we employ a code of size 252 as intermediate output of
the U-Net, which is then fed into a decoder network to yield a patch of size
41×41. The ed-ppp architecture takes 81×81 patches of the raw image as input
and predicts 41×41 shape patches. It applies 3×3 max-pooling three times, and
has two convolutional layers on each level. At the bottleneck, the code has an
extent of 3× 3× 256 and uses 1× 1 convolutions. The network is symmetric and
uses same padding. The output is cropped to obtain the desired patch shape.

As in related work [32,25,17], we divide the BBBC010 dataset into training-
and test set with 50 images each. We apply 2-fold cross-validation on the test set
to determine the number of training steps and the patch foreground threshold
t (Eq. 1), individually in all experiments. For training, we use standard aug-
mentation including elastic deformations in all experiments. Contrary to [32],
we do not augment the number of worms synthetically, but focus on crowded
regions during training. For patch graph partitioning, we explore connected com-
ponent analysis on the positive subgraph (CC) as well as the mutex watershed
(MWS) [30]. In our result tables, MWS is the default if not noted otherwise.

1 BBBC010v1: C.elegans infection live/dead image set version 1 provided by Fred
Ausubel

2 https://www.kaggle.com/c/data-science-bowl-2018

https://www.kaggle.com/c/data-science-bowl-2018

PatchPerPix for Instance Segmentation 9

Table 1: Quantitative results on the BBBC010 dataset. Top: We compare to com-
peting approaches in various metrics due to a missing standard: [25,17] report
COCO metrics [19], [32] plot the recall for different thresholds, [28] evaluate the
percentage of ground truth worms which are matched with pixelwise F1 score
above 0.8. Bottom: Results for the architecture setups we explored.

BBBC010

APCOCO avAP[0.5:0.05:0.95] AP0.5 AP0.75 Recall0.5 Recall0.8 F10.8

Semi-conv Ops [25] 0.569 0.885 0.661 - - -
SON [32] - - - ∼ 0.97 ∼ 0.7 -
WormToolbox [28] - - - - - 0.81
Harmonic Emb. [17] 0.724 0.900 0.723 - - -
PatchPerPix (ppp+dec) 0.775 0.939 0.891 0.987 0.895 0.978

APdsb avAP[0.5:0.05:0.95] AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

ppp 0.689 0.890 0.872 0.840 0.710 0.372
ppp+ae 0.617 0.878 0.831 0.783 0.610 0.199
ppp+dec 0.727 0.930 0.905 0.879 0.792 0.386
ed-ppp 0.675 0.891 0.853 0.820 0.734 0.309

Table 1 compares state-of-the-art methods [25,32,17] and PatchPerPix vari-
ants. Table 2 lists results of our ablation study. Figure 3 shows exemplary Patch-
PerPix results for different CNN architectures. Suppl. Fig. 1 compares Patch-
PerPix with Singling Out Networks [32] on an exemplary image.

PatchPerPix improves over competing methods by a considerable margin (cf.
Table 1, top). Singling Out Networks (SON [32]) are of limited pixel accuracy by
design, hence superior performance of PatchPerPix at high IoU thresholds is no
surprise. However, PatchPerPix is not just more pixel accurate, but outperforms
SON across the IoU threshold range. PatchPerPix also outperforms Harmonic
Embeddings [17], a metric learning variant that amends the restricted pixel
accuracy of SON, yet struggles at disentangling dense clusters of worms.

Interestingly, ppp+dec does not just outperform the separately trained ppp+ae,
but also outperforms ed+ppp. I.e., using a full U-Net as an encoder, followed
by a standard decoder, considerably outperforms a standard encoder-decoder
architecture applied in a sliding-window fashion (cf. Table 1, bottom).

Our ablation study (Table 2) shows the significant impact of two core ideas of
our instance assembly pipeline, namely consensus affinity computation (absent
in MWS-Dense, avAP -0.176) and selecting a sparse set of high-ranking patch
predictions while weeding out low-ranking ones by means of consensus agreement
scores (absent in ppp+dec w/o selection, avAP - 0.131). These scores correlate
significantly with true patch quality (cf. Suppl. Fig. 4). Thinning out a pre-
selection of high ranking patches has a small impact on accuracy (ppp+dec
w/o thinout, avAP - 0.004), yet also positively affects run-time. Patch graph
partitioning via CC vs. MWS are on a par on the BBBC010 data.

10 L. Mais and P. Hirsch et al.

(d) ed-ppp(b) gt (c) ppp (e) ppp+dec(a) raw

Fig. 3: Qualitative results for exemplary challenging regions of the BBBC010
dataset. All architectures are able to handle crowded and overlapping regions,
where ppp+dec yields fewest errors. However, rare shapes such as very bent
worms are segmented with slightly higher accuracy by ppp.

Suppl. Fig. 2 shows exemplary failure cases of ppp+dec. Interestingly, strongly
bent worms are captured with inferior pixel accuracy by our encoding-based
model ppp+dec as opposed to ppp (see Suppl. Fig. 2 right and Fig. 3 top row).

3.2 ISBI 2012 neuron EM segmentation

We evaluate our method on the ISBI 2012 Challenge on segmenting neuronal
structures in electron microscopy (EM) data [1]. The data consists of 30 slices
of 512x512 pixels with known ground truth (training data), and another 30 such
slices for which ground truth is kept secret by the Challenge organizers (test
data). Our network architecture as well as the training- and prediction procedure
closely follows [30], with the difference that our network has 625 instead of 17
outputs, namely patches of size 1x25x25, and we do not reduce the number of
filters in the upward path of the U-Net. For partitioning the patch graph, we
use the mutex watershed algorithm [30], which has proven powerful in avoiding
false mergers in case of missing neuron membrane signal in the image data.

Our method is the leading entry on the Challenge’s leaderboard3 at present
among thousands of submissions by more than 200 teams. Table 3 lists results

3 http://brainiac2.mit.edu/isbi challenge/leaders-board-new

http://brainiac2.mit.edu/isbi_challenge/leaders-board-new

PatchPerPix for Instance Segmentation 11

Table 2: Ablation study for PatchPerPix on the BBBC010 dataset. We ablate
consensus affinity computation as a whole by running graph partitioning directly
on the predictions p interpreted as dense affinities (MWS-Dense). We ablate
patch selection as a whole (ppp+dec w/o selection), and thinning of the patch
selection (ppp+dec w/o thinout). We run ppp+dec with a standard U-Net, i.e.
with decreasing number of feature maps in the up-sampling path (ppp+dec std
U-Net). Last, we compare patch graph partitioning with CC vs. MWS.

APdsb avAP[0.5:0.05:0.95] AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

MWS-Dense 0.551 0.687 0.676 0.661 0.586 0.326
ppp+dec w/o selection 0.596 0.878 0.853 0.798 0.544 0.157
ppp+dec w/o thinout 0.723 0.924 0.898 0.871 0.788 0.393
ppp+dec std U-Net 0.719 0.916 0.891 0.873 0.766 0.406
ppp+dec, CC 0.723 0.922 0.894 0.873 0.780 0.406
ppp+dec, MWS 0.727 0.930 0.905 0.879 0.792 0.386

obtained with PatchPerPix in terms of the Challenge error metrics, robust Rand
score (rRAND) and robust information theoretic measure (rINF), evaluated on
the test data. For comparison, the table also lists the previous state of the art
as obtained via sparse affinity predictions processed with the mutex watershed
algorithm [30] (MWS). Furthermore, as an additional baseline, we interpreted
our patch predictions as dense affinities which we processed with the mutex
watershed algorithm as in [30] (MWS-Dense). PatchPerPix slightly outperforms
MWS in terms of the leaderboard-defining rRAND score. This can be attributed
to fewer mistakes on large neuronal bodies which have respective large impact
on the rRAND score. However, the number of such large mistakes we were able
to identify by eye on the test set is very small in both approaches.

Interestingly, MWS-Dense performs considerably worse than both PatchPer-
Pix and MWS. The difference between MWS-Dense and PatchPerPix can be
attributed to individual erroneous predictions causing errors in MWS-Dense,
which are amended in PatchPerPix by our proposed consensus voting and patch
selection scheme. As for the difference between MWS-Dense and MWS, we hy-
pothesize that this is due to MWS smartly distinguishing between purely attrac-
tive short-range- and purely repulsive long-range affinities. Instead, MWS-Dense
treats all affinities as both attractive and repulsive.

3.3 Nuclei segmentation in 2d and 3d

We evaluate our method on 2d and 3d fluorescence microscopy images of cell
nuclei. The 2d dataset is a subset of the kaggle 2018 data science bowl4 as
defined in [27]. It consists of 380 training, 67 validation and 50 test images.
We refer to this dataset as dsb2018. The 3d dataset consists of 28 confocal
microscopy images collected and annotated by [22]. Image size is approximately

4 BBBC038v1: available from the Broad Bioimage Benchmark Collection[21]

12 L. Mais and P. Hirsch et al.

Table 3: Quantitative results for the ISBI 2012 Challenge on segmenting neuronal
structures in electron microscopy data [1]. PatchPerPix defines the current state-
of-the-art in terms of the leaderboard-defining rRAND score.

ISBI2012 rRAND rINF

PatchPerPix 0.988290 0.991544
MWS [30] 0.987922 0.991833
MWS-Dense 0.979112 0.989625

140 × 140 × 1100 pixels. Each image shows hundreds of nuclei, with multiple
dense clusters. An example is shown in Suppl. Fig. 3. We partition the data as
in [29,12], with 18 images for training, 3 for validation, and 7 for testing. We
refer to this dataset as nuclei3d.

For dsb2018, our CNN architecture is a 4-level U-Net, with 40 initial feature
maps, that predicts foreground/background labels as well as codes of size 256,
decoded into patches of size 25× 25. We determine the number of training steps
as well as the patch threshold on the validation set. For nuclei3d, we employ a
3-level 3d U-Net with 20 initial feature maps, tripled after each downsampling
step. We predict patches of size 9× 9× 9. We filter out instances smaller than a
threshold. We determine the number of training steps, the patch threshold, and
the instance size threshold on the validation set.

Table 4 lists our results in comparison to the previous state of the art on
this data [27,29,12]. We furthermore compare to MALA [8], an affinity-based
instance segmentation method trained with a structured loss, which is an estab-
lished baseline for a different kind of 3d data, namely 3d electron microscopy of
neuronal structures, but does not explicitly capture instance shape. For MALA,
we employ the same backbone U-Net as for PatchPerPix for a fair comparison.

Superior avAP of PatchPerPix compared to [27,29] can be attributed to
superior performance at high IoU thresholds, where StarDist’s pixel accuracy is
limited due to its coarse polyhedral shape representation, especially in 3d. We
list IoU thresholds down to 0.1 as in [29], indicating that PatchPerPix is on a
par with StarDist in terms of topological segmentation errors like false splits and
false mergers of nuclei. Compared to a recently proposed 3-label U-Net trained
with an auxiliary task [12], again, the high pixel accuracy of PatchPerPix leads
to slightly higher avAP, while [12] is slightly superior at low IoU thresholds.

On dsb2018, we observed a similar improvement of ppp+dec over ppp as on
BBBC010. However, this does not hold for nuclei3d, where ppp+dec did not
improve over ppp. We hypothesize that encodings are less able to capture the
ellipsoidal shape of nuclei at the very small 3d patch size of 9x9x9 we’re bound
to to achieve manageable computational performance of instance assembly in 3d
(see Suppl. Table 4 for run-times). This performance bottleneck constitutes a
current limitation of our method on 3d data, and is subject to future work.

PatchPerPix for Instance Segmentation 13

Table 4: Quantitative results for the nuclei datasets dsb2018 and nuclei3d. We
report average precision (APdsb) for multiple IoU thresholds.

APdsb avAP AP0.1 AP0.2 AP0.3 AP0.4 AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

[0.5:0.1:0.9]

dsb2018

Mask R-CNN[27] 0.594 - - - - 0.832 0.773 0.684 0.489 0.189
StarDist[27] 0.584 - - - - 0.864 0.804 0.685 0.450 0.119
PatchPerPix 0.693 0.9190.9190.9150.8980.8680.8270.7550.6350.379

nuclei3d

MALA [8] 0.381 0.895 0.887 0.859 0.803 0.699 0.605 0.424 0.166 0.012
StarDist 3D[29] 0.406 0.936 0.926 0.905 0.855 0.765 0.647 0.460 0.154 0.004
3-label+cpv[12] 0.425 0.9370.9300.907 0.848 0.750 0.641 0.473 0.224 0.035
PatchPerPix 0.436 0.926 0.918 0.900 0.853 0.7660.6680.4930.228 0.027

3.4 Neuron separation in 3d light microscopy data

We aim to identify and segment neurons of the fruit fly brain (GAL4 lines [14])
in an unpublished dataset of 3d multicolor confocal microscopy images. The
imaging is done by stochastic labeling able to express different densities of neu-
rons [24] (cf. Fig. 4a). This instance segmentation task is very challenging as the
number of neurons can be high and image quality is bounded by the necessity
to perform large-scale imaging. Moreover, the neurons are very thin, tree-like
structures which are intertwined and may overlap due to partial volume effects.

As this dataset is still in the process of being curated and extended, and no
competing approach has yet been reported, we do not perform a quantitative
evaluation of PatchPerPix, but show the quality of exemplary results on a test
set of two images in Figure 4. We use a 3-level 3d U-Net with 2× down- and
upsampling and 12 initial feature maps, tripled at each downsampling. The pre-
dicted patches are of size 7× 7× 7 pixels. Our results serve as proof-of-concept
that our method is applicable and yields reasonable results for thin, complex
tree-like structures in large 3d image volumes.

4 Conclusion

In this work we present a novel generic method for instance segmentation that
comprises a CNN to predict dense local shape descriptors and a one-pass instance
assembly pipeline. The method is able to handle objects of sophisticated shapes
that appear in dense clusters with overlaps, including crossovers. It is the first
to assemble all instances from learnt shape patches, simultaneously in one pass.
We successfully applied our method to a range of domains, showing that it
(1) outperforms the state of the art on the heavily contested ISBI 2012 challenge
on neuron segmentation in electron microscopy, (2) outperforms the state of

14 L. Mais and P. Hirsch et al.

BJD_103F09

BJD_114G04

(a) Raw (b) Ground Truth (c) PatchPerPix

Fig. 4: Qualitative results on 3d neuron light microscopy examples. (a) Maximum
intensity projection of raw images. Orange circles indicate overlapping areas in
3d. Ground truth data (b) were generated by manual segmentation using VVD
Viewer. PatchPerPix (c) shows promising results on this challenging dataset.

the art on the challenging BBBC010 C. elegans worm data by a large margin,
(3) outperforms the state of the art on 2d and 3d fluorescence microscopy data
of densely clustered cell nuclei (on par in terms of cell detection performance,
better in terms of pixel accuracy), showing that our method performs well also
for simple (blob-like) instance shapes, and (4) can be applied to extreme cases
of instance shapes, like neurons in 3d fluorescence microscopy. Future work will
tackle a performance bottleneck that becomes relevant on 3d data, where we’re
currently restricted to patch sizes that are most probably sub-optimally small.

Acknowledgments. We wish to thank Constantin Pape for his invaluable help
in reproducing the training- and prediction setup from [30], Carolina Waehlby for
help with the BBBC010 data, Stephan Saalfeld and Carsten Rother for inspiring
discussions, the FlyLight Project Team5 at Janelia Research Campus for provid-
ing unpublished data, and Claire Managan and Ramya Kappagantula (Janelia
Project Technical Resources) for their conscientious manual neuron segmenta-
tions. P.H., L.M. and D.K. were funded by the Berlin Institute of Health and the
Max Delbrueck Center for Molecular Medicine. P.H. was funded by HFSP grant
RGP0021/2018-102. P.H., L.M. and D.K. were supported by the HHMI Janelia
Visiting Scientist Program. VVD Viewer6 is an open-source software funded by
NIH grant R01-GM098151-01.

5 https://www.janelia.org/project-team/flylight
6 https://github.com/takashi310/VVD Viewer

https://www.janelia.org/project-team/flylight
https://github.com/takashi310/VVD_Viewer

PatchPerPix for Instance Segmentation 15

References

1. Arganda-Carreras, I., Turaga, S.C., Berger, D.R., Cireşan, D., Giusti, A., Gam-
bardella, L.M., Schmidhuber, J., Laptev, D., Dwivedi, S., Buhmann, J.M., et al.:
Crowdsourcing the creation of image segmentation algorithms for connectomics.
Frontiers in neuroanatomy 9, 142 (2015) 3, 7, 10, 12

2. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on pat-
tern analysis and machine intelligence 39(12), 2481–2495 (2017) 7

3. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. CoRR
abs/1611.08303 (2016) 1

4. Chen, L., Strauch, M., Merhof, D.: Instance segmentation of biomedical images
with an object-aware embedding learned with local constraints. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp.
451–459. Springer (2019) 1

5. Chen, X., Girshick, R.B., He, K., Dollár, P.: Tensormask: A foundation for dense
object segmentation. CoRR abs/1903.12174 (2019), http://arxiv.org/abs/1903.
12174 2

6. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional
networks. CoRR abs/1603.08678 (2016), http://arxiv.org/abs/1603.08678 2

7. De Brabandere, B., Neven, D., Van Gool, L.: Semantic instance segmentation with
a discriminative loss function. arXiv preprint arXiv:1708.02551 (2017) 1

8. Funke, J., Tschopp, F., Grisaitis, W., Sheridan, A., Singh, C., Saalfeld, S., Turaga,
S.: Large scale image segmentation with structured loss based deep learning for
connectome reconstruction. IEEE Transactions on Pattern Analysis and Machine
Intelligence PP, 1–1 (05 2018). https://doi.org/10.1109/TPAMI.2018.2835450 1,
12, 13

9. Gao, N., Shan, Y., Wang, Y., Zhao, X., Yu, Y., Yang, M., Huang, K.: Ssap: Single-
shot instance segmentation with affinity pyramid. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 642–651 (2019) 1, 2

10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies
for accurate object detection and semantic segmentation. In: Proceedings of
the 2014 IEEE Conference on Computer Vision and Pattern Recognition.
pp. 580–587. CVPR ’14, IEEE Computer Society, Washington, DC, USA
(2014). https://doi.org/10.1109/CVPR.2014.81, https://doi.org/10.1109/CVPR.
2014.81 1

11. He, K., Gkioxari, G., Dollr, P., Girshick, R.: Mask r-cnn (2017), http://arxiv.org/
abs/1703.06870, cite arxiv:1703.06870Comment: open source; appendix on more
results 1

12. Hirsch, P., Kainmueller, D.: An auxiliary task for learning nuclei segmentation
in 3d microscopy images. In: Medical Imaging with Deep Learning (MIDL) (July
2020) 3, 12, 13

13. Januszewski, M., Maitin-Shepard, J., Li, P., Kornfeld, J., Denk, W., Jain, V.:
Flood-filling networks. CoRR abs/1611.00421 (2016), http://arxiv.org/abs/
1611.00421 3

14. Jenett, A., Rubin, G.M., Ngo, T.T.B., Shepherd, D., Murphy, C., Dionne, H.,
Pfeiffer, B.D., Cavallaro, A., Hall, D., Jeter, J., Iyer, N., Fetter, D., Hausen-
fluck, J.H., Peng, H., Trautman, E.T., Svirskas, R.R., Myers, E.W., Iwinski,
Z.R., Aso, Y., DePasquale, G.M., Enos, A., Hulamm, P., Lam, S.C.B., Li,
H.H., Laverty, T.R., Long, F., Qu, L., Murphy, S.D., Rokicki, K., Safford, T.,

http://arxiv.org/abs/1903.12174
http://arxiv.org/abs/1903.12174
http://arxiv.org/abs/1603.08678
https://doi.org/10.1109/TPAMI.2018.2835450
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1611.00421
http://arxiv.org/abs/1611.00421

16 L. Mais and P. Hirsch et al.

Shaw, K., Simpson, J.H., Sowell, A., Tae, S., Yu, Y., Zugates, C.T.: A gal4-
driver line resource for drosophila neurobiology. Cell reports 2(4), 991–1001
(Oct 2012). https://doi.org/10.1016/j.celrep.2012.09.011, https://www.ncbi.nlm.
nih.gov/pubmed/23063364, 23063364[pmid] 13

15. Jetley, S., Sapienza, M., Golodetz, S., Torr, P.H.S.: Straight to shapes: Real-time
detection of encoded shapes. CoRR abs/1611.07932 (2016), http://arxiv.org/
abs/1611.07932 2

16. Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., Andres, B.: Efficient
decomposition of image and mesh graphs by lifted multicuts. In: Proceedings of
the IEEE International Conference on Computer Vision. pp. 1751–1759 (2015) 2

17. Kulikov, V., Lempitsky, V.: Instance segmentation of biological images using har-
monic embeddings. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2020) 1, 3, 8, 9

18. Lee, K., Lu, R., Luther, K., Seung, H.S.: Learning dense voxel embeddings for 3d
neuron reconstruction (2019) 1

19. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. pp. 740–755.
Springer International Publishing, Cham (2014) 9

20. Liu, Y., Yang, S., Li, B., Zhou, W., Xu, J., Li, H., Lu, Y.: Affinity derivation
and graph merge for instance segmentation. CoRR abs/1811.10870 (2018), http:
//arxiv.org/abs/1811.10870 1, 2

21. Ljosa, V., Sokolnicki, K.L., Carpenter, A.E.: Annotated high-throughput mi-
croscopy image sets for validation. Nature Methods 9, 637 EP – (Jun 2012),
https://doi.org/10.1038/nmeth.2083, correspondence 7, 8, 11

22. Long, F., Peng, H., Liu, X., Kim, S.K., Myers, E.: A 3d digital atlas of c. elegans
and its application to single-cell analyses. Nature Methods 6(9), 667–672 (2009).
https://doi.org/10.1038/nmeth.1366, https://doi.org/10.1038/nmeth.1366 11

23. Maitin-Shepard, J.B., Jain, V., Januszewski, M., Li, P., Abbeel, P.: Combinatorial
energy learning for image segmentation. In: Lee, D.D., Sugiyama, M., Luxburg,
U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 29, pp. 1966–1974. Curran Associates, Inc. (2016), http://papers.nips.cc/
paper/6595-combinatorial-energy-learning-for-image-segmentation.pdf 3

24. Nern, A., Pfeiffer, B.D., Rubin, G.M.: Optimized tools for multicolor stochas-
tic labeling reveal diverse stereotyped cell arrangements in the fly visual
system. Proceedings of the National Academy of Sciences 112(22), E2967–
E2976 (2015). https://doi.org/10.1073/pnas.1506763112, https://www.pnas.org/
content/112/22/E2967 13

25. Novotny, D., Albanie, S., Larlus, D., Vedaldi, A.: Semi-convolutional operators for
instance segmentation. In: The European Conference on Computer Vision (ECCV)
(September 2018) 3, 8, 9

26. Ronneberger, O., P.Fischer, Brox, T.: U-net: Convolutional networks for
biomedical image segmentation. In: Medical Image Computing and Computer-
Assisted Intervention (MICCAI). LNCS, vol. 9351, pp. 234–241. Springer (2015),
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a, (available on
arXiv:1505.04597 [cs.CV]) 2, 5, 8

27. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex
polygons. CoRR abs/1806.03535 (2018) 3, 7, 11, 12, 13

28. Wählby, C., Kamentsky, L., Liu, Z.H., Riklin-Raviv, T., Conery, A.L., O’Rourke,
E.J., Sokolnicki, K.L., Visvikis, O., Ljosa, V., Irazoqui, J.E., Golland, P.,

https://doi.org/10.1016/j.celrep.2012.09.011
https://www.ncbi.nlm.nih.gov/pubmed/23063364
https://www.ncbi.nlm.nih.gov/pubmed/23063364
http://arxiv.org/abs/1611.07932
http://arxiv.org/abs/1611.07932
http://arxiv.org/abs/1811.10870
http://arxiv.org/abs/1811.10870
https://doi.org/10.1038/nmeth.2083
https://doi.org/10.1038/nmeth.1366
https://doi.org/10.1038/nmeth.1366
http://papers.nips.cc/paper/6595-combinatorial-energy-learning-for-image-segmentation.pdf
http://papers.nips.cc/paper/6595-combinatorial-energy-learning-for-image-segmentation.pdf
https://doi.org/10.1073/pnas.1506763112
https://www.pnas.org/content/112/22/E2967
https://www.pnas.org/content/112/22/E2967
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a

PatchPerPix for Instance Segmentation 17

Ruvkun, G., Ausubel, F.M., Carpenter, A.E.: An image analysis toolbox
for high-throughput c. elegans assays. Nature Methods 9(7), 714–716 (2012).
https://doi.org/10.1038/nmeth.1984, https://doi.org/10.1038/nmeth.1984 3, 9

29. Weigert, M., Schmidt, U., Haase, R., Sugawara, K., Myers, G.: Star-convex poly-
hedra for 3d object detection and segmentation in microscopy. arXiv:1908.03636
(2019) 3, 7, 12, 13

30. Wolf, S., Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., Hamprecht,
F.A.: The mutex watershed: Efficient, parameter-free image partitioning. In: ECCV
(4). Lecture Notes in Computer Science, vol. 11208, pp. 571–587. Springer (2018)
1, 2, 5, 8, 10, 11, 12, 14

31. Wolf, S., Schott, L., Kothe, U., Hamprecht, F.: Learned watershed: End-to-end
learning of seeded segmentation. In: Proceedings of the IEEE International Con-
ference on Computer Vision. pp. 2011–2019 (2017) 1

32. Yurchenko, V., Lempitsky, V.S.: Parsing images of overlapping organisms with deep
singling-out networks. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. pp. 4752–4760
(2017). https://doi.org/10.1109/CVPR.2017.505, https://doi.org/10.1109/CVPR.
2017.505 2, 3, 8, 9

https://doi.org/10.1038/nmeth.1984
https://doi.org/10.1038/nmeth.1984
https://doi.org/10.1109/CVPR.2017.505
https://doi.org/10.1109/CVPR.2017.505
https://doi.org/10.1109/CVPR.2017.505

