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Abstract. A novel approach for paired and unpaired image enhance-
ment is proposed in this work. First, we develop global enhancement
network (GEN) and local enhancement network (LEN), which can faith-
fully enhance images. The proposed GEN performs the channel-wise in-
tensity transforms that can be trained easier than the pixel-wise pre-
diction. The proposed LEN refines GEN results based on spatial filter-
ing. Second, we propose different training schemes for paired learning
and unpaired learning to train GEN and LEN. Especially, we propose a
two-stage training scheme based on generative adversarial networks for
unpaired learning. Experimental results demonstrate that the proposed
algorithm outperforms the state-of-the-arts in paired and unpaired im-
age enhancement. Notably, the proposed unpaired image enhancement
algorithm provides better results than recent state-of-the-art paired im-
age enhancement algorithms. The source codes and trained models are
available at https://github.com/hukim1124/GleNet.

Keywords: Image enhancement, unpaired learning, generative adver-
sarial network

1 Introduction

Nowadays, many people take photographs to record everyday life as well as
important events. However, uncontrolled environments often make photographs
have low dynamic ranges or distorted color tones. Therefore, image enhance-
ment becomes more popular that edits photographs to improve their aesthetic
quality. Image enhancement methods can be categorized into global and local
approaches. The former derives a transformation function that maps input color
to output color. On the other hand, the latter performs spatial filtering to de-
termine a pixel color according to local neighborhood information. Professional
software applications such as Photoshop provide various global and local en-
hancement tools to support manual image enhancement. However, the manual
process is time-consuming. Moreover, its results highly depend on users’ skills
and experience.

https://github.com/hukim1124/GleNet
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(a) Paired data (b) Unpaired data

Fig. 1: Examples of paired and unpaired data

For automatic image enhancement, many studies have been proposed. Most
early studies focus on the global approach since it is more stable and requires
less computational complexity than the local approach. However, using only a
single transformation function may be insufficient to produce satisfying enhanced
images. In contrast, recent studies [8, 25, 30, 33] based on deep learning mainly
take the local approach. These methods learn a robust pixel-wise mapping from
lots of paired data, which consists of inputs and ground-truth enhanced images,
and provide promising enhanced images. However, they require many image
pairs of low-quality and high-quality images as in Fig. 1(a). To overcome this
problem, unpaired image enhancement, which does not require the image pairs,
has drawn much attention to many researches [4, 5, 12, 19, 26, 34]. Especially,
generative adversarial networks (GANs) [4, 5, 19] or reinforcement learning [12,
26,34] are employed to achieve unpaired image enhancement using unpaired data
in Fig. 1(b). However, despite some progress by existing studies, their results are
not satisfying when compared with existing paired image enhancement methods.

In this paper, we propose two networks, global enhancement network (GEN)
and local enhancement network (LEN), to achieve both paired and unpaired
image enhancement. GEN performs the channel-wise intensity transform, which
can be trained much easier than the pixel-wise prediction based on U-Net ar-
chitecture [27]. LEN conducts spatial filtering to refine GEN results. We then
develop two training schemes for paired learning and unpaired learning. Espe-
cially, we propose a two-stage training scheme for unpaired learning based on
generative adversarial networks. Experiments on the MIT-Adobe 5K dataset [2]
demonstrate that the proposed method outperforms the state-of-the-arts in both
paired and unpaired image enhancement. Moreover, it is shown that the pro-
posed unpaired method yields better enhanced results than conventional paired
methods.

To summarize, this work has three main contributions:

– We propose GEN and LEN for both paired and unpaired image enhancement.
– We propose the two-stage training scheme for unpaired image enhancement.
– The proposed method shows outstanding performance on the MIT-Adobe

5K dataset.
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2 Related Work

Early studies on image enhancement mainly focus on improving the global con-
trast of an input image [16, 24]. They often derive a transformation function
that maps input pixel values to output pixel values. The global contrast tech-
nique uses a single mapping function for all pixels in an entire image. For in-
stance, power-law (gamma) and log transformations [9] are well-known global
methods. Histogram equalization [9] and its variants [1, 17, 21–23, 29, 32] mod-
ify the histogram of an image to stretch its limited dynamic range. Retinex
methods [3,6,7,11,13,14,31,35] decompose an image into reflectance and illumi-
nation [20], and modify the illumination to enhance a poorly lit image. However,
these methods may not emulate the complex mapping function between an image
and its professionally enhanced version.

Recent studies on image enhancement take data-driven approaches that learn
the mapping between input and enhanced images using a large dataset. For this
purpose, Bychkovsky et al. [2] introduced the MIT-Adobe 5K dataset, which
contains 5,000 input images and enhanced images retouched by 5 different pho-
tographers. This dataset is widely adopted to train deep neural networks. Yan et
al. [33] predicts a pixel-wise color mapping using image descriptors from a deep
neural network. Lore et al. [25] first adopt an autoencoder approach to en-
hance low-light images. Gharbi et al. [8] achieved real-time image enhancement
by developing deep bilateral learning, which predicts local affine transforms.
Based on the retinex theory, Wang et al. [30] proposed a deep network to es-
timate an image-to-illumination mapping function. These deep learning meth-
ods [8,25,30,33] yield promising enhancement performances, but they are limited
in that they demand many pairs of input and enhanced images to train their
networks.

Collecting pairs of input and manually enhanced images is a labor-intensive
task. To overcome this problem, unpaired learning methods [4, 5, 12, 19, 26, 34],
which do not require paired data, have been proposed. Park et al. [26] adopted
deep reinforcement learning to mimic step-by-step human retouching processes.
Also, they proposed a distort-and-recover training scheme, which distorts a high-
quality image to generate a pseudo input and trains networks to enhance the
generated pseudo input to be similar to the corresponding high-quality image.
Deng et al. [5] employed a generative adversarial network (GAN) to develop
an aesthetic-driven image enhancement method. Chen et al. [4] proposed an
adaptive weighting scheme for stable training of two-way GANs. Hu et al. [12]
integrated an adversarial loss into reinforcement learning to generate a sequence
of enhancement operations. Yu et al. [34] trained local exposures with deep re-
inforcement adversarial learning, which divides an image into sub-images and
enhances them with different policies. Recently, Kosugi and Toshihiko [19] com-
bined reinforcement learning and adversarial learning to control tools in profes-
sional image editing software. However, these unpaired learning methods provide
relatively poor results than paired learning methods.
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Fig. 2: Overview of the proposed global enhancement network (GEN) and local
enhancement network (LEN).

3 Proposed Algorithm

3.1 Model

Fig. 2 shows an overview of the proposed image enhancement framework. First,
we develop GEN that produce channel-wise intensity transform functions to
achieve global image enhancement. Second, we learn LEN, which performs spa-
tial filtering, to refine global enhanced images. Let us describe each network
subsequently.

Global Enhancement Network: Let I(p) = (Ir(p), Ig(p), Ib(p))T denote 8-
bit intensity for red, greed, and blue channels at pixel position p. Also, let
wc = [wc,0, . . . , wc,255]T denote the transformation function for the channel
c ∈ {r, g,b}, whose kth element wc,k maps intensity k in Ic to intensity wc,k

in the output intensity Ĩc. Thus, the transformed intensity for the channel c at
pixel p is defined as

Ĩc(p) = vT
p wc (1)

where vT
p denotes a 256-dimensional one-hot vector, whose Ic(p)th element is 1

and the others are 0.
Given an RGB image of size 256 × 256, GEN produces a 768-dimensional

vector w = wr‖wg‖wb, which is a concatenated vector of three transforma-
tion functions wr,wg,wb. Table 1 specifies the detailed architecture of GEN.
We employ the inverted residual block in MobileNetV3 [4] to reduces the num-
ber of network parameters. All “Conv” operations except the last one include
convolution filters, batch normalization, and swish activation. The last “Conv”
only contains convolution filters. Finally, we perform the channel-wise intensity
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Table 1: Specification for global enhancement network.

Stage Operator Output Resolution Channels

1 Conv5x5 128 × 128 16
2 Inverted Residual, 5x5 64 × 64 24
3 Inverted Residual, 5x5 32 × 32 40
4 Inverted Residual, 5x5 16 × 16 80
5 Inverted Residual, 5x5 8 × 8 112
6 Conv1x1 & Pool 8x8 1 × 1 768
7 Conv1x1 1 × 1 768

transformation to obtain global enhanced images by sequentially applying output
functions wr, wg, and wb to (1). Note that GEN can be trained in an end-to-end
manner, since the intensity transformation is differentiable operation.

The proposed GEN has advantages when compared with the conventional
image enhancement network in [4], which contains a decoder to produce pixel-
wise color predictions. First, GEN can enhance an image regardless of its reso-
lution scale by performing the channel-wise intensity transformation unlike the
pixel-wise color prediction [4]. In other words, the channel-wise intensity trans-
formation can produce enhanced images without any image resize process, while
the pixel-wise color prediction often requires the resize process according to the
spatial size of input images. Second, GEN can save the memory for network
parameters, since it does not require a decoder part to restore the spatial resolu-
tion of enhanced images. Third, training GEN is much easier than the networks
that have the encoder-decoder architecture. In Section 4.1, we will clarify that
GEN requires less training steps for the convergence than the encoder-decoder
architecture does.

Different from early global enhancement methods, we do not suppose that
the three color intensity transformation functions should be a monotonic func-
tion. Most existing global methods focus on enhancing the gray intensity instead
of color intensities and suppose the monotonic constraint to prevent annoying
artifacts due to the reservation of the gray intensity ordering. However, the
monotonic constraint does not work in the channel-wise intensity transforma-
tion. Fig. 3 shows examples of pairs of input and retouched images and their
channel-wise intensity transformation functions. In these example, we see that
there are many non-monotonic functions between low-quality and high-quality
images.

Local Enhancement Network Despite many strengths in GEN, it is lim-
ited in that GEN considers only one-to-one mapping. However, as in Fig. 3,
there are many one-to-many mappings, which are delineated by shading in the
channel-wise transformation functions, between low-quality and high-quality im-
ages. Moreover, GEN may experience difficulty on removing noises and blur in
an input image through the channel-wise intensity transformation. Therefore, we
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Fig. 3: From top to bottom, input images, retouched images, and channel-wise
intensity transformation functions.

develop LEN, which performs spatial filtering for local enhancement, to overcome
these limitations of GEN.

Table 2 provides the specification of the LEN architecture. LEN has an
encoder-decoder structure. The encoder takes an enhanced images Ĩglobal of
GEN. The encoder reduces the spatial resolution of Iglobal to exploit larger re-
ceptive fields for spatial filtering, while the decoder performs up-sampling to
restore the spatial resolution. LEN uses the inverted residual block to decrease
the number of network parameters. In Table 2, “Upsample” denotes the bilinear
interpolation to increase the size of the feature map with scale factor 2. “Concat”
layers in the 6th, 8th, and 10th stages concatenates the previous stage results
with the outputs of the 3rd, 2nd, and 1st stages, respectively. The last convolu-
tion layer yields the residual image ∆Ĩlocal for enhancing local regions of Ĩglobal.

Finally, the enhanced image Ĩ is obtained by

Ĩ = Ĩglobal +∆Ĩlocal. (2)

3.2 Learning

We describe training schemes for unpaired learning and paired learning. First,
we train GEN and LEN using pairs of low-quality and high-quality images for
paired learning. Second, we propose the two-stage training scheme to learn GEN
and LEN in unpaired learning. Let us explain each training scheme subsequently.

Paired Learning: Suppose the set of image pairs {(ILQi , IHQ
i )}Ni=1 are avail-

able, where ILQi and IHQ
i are the low-quality image and its high-quality image,

respectively. We train GEN and LEN simultaneously to minimize the color loss
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Table 2: Specification for local enhancement network.

Stage Operator Output Resolution Channels

1 Conv5x5 H × W 16
2 Inverted Residual, 5x5 H/2 × W/2 24
3 Inverted Residual, 5x5 H/4 × W/4 40
4 Inverted Residual, 5x5 H/8 × W/8 80
5 Inverted Residual, 5x5 H/8 × W/8 40
6 Upsample & Concat H/4 × W/4 80
7 Inverted Residual, 5x5 H/4 × W/4 24
8 Upsample & Concat H/2 × W/2 48
9 Inverted Residual, 5x5 H/2 × W/2 16
10 Upsample & Concat H × W 32
11 Conv5x5 & Add H × W 3

and the perceptual loss between the estimated image ĨHQ
i and the ground-truth

high-quality image IHQ
i . The total loss is defined as

Lp = ‖ĨHQ
i − IHQ

i ‖1 + λp
∑

k=2,4,6

‖φk(ĨHQ
i )− φk(IHQ

i )‖1. (3)

The color loss in the first term penalizes the mean absolute error between the
predicted and ground-truth high-quality images. On the other hand, the second
term is the perceptual loss [15] to encourage the enhanced image and the ground-
truth image to have similar features on the pre-trained embedding space. Thus,
we employ VGG-16 [28] pre-trained on ImageNet to extract features. In (3),
φk(·) denotes the feature, which is extracted from the kth VGG-16 layer. The
hyper parameter λp balances two loss components.

Unpaired Learning: Let {ILQi }Mi=1 ∈ ILQ and {IHQ
j }Nj=1 ∈ IHQ be the sets of

low-quality images and high-quality images, respectively. Our goal in unpaired
learning is to learn GEN and LEN using unpaired training samples ILQ and
IHQ. First, we adopt the adversarial learning framework to train GEN. We re-
gard GEN as a generator. Also, the architecture of a discriminator is the same
as the generator except the last convolution layer to produce a scalar output
that discriminates between generated samples and real samples. Then, we de-
sign two types of GANs, where the one enhances low-quality to high-quality
images (Fig. 4(a)), and the other degrades high-quality to low-quality images
(Fig. 4(b)). Let Ge : ILQ → IHQ and Gd : IHQ → ILQ denote mapping func-
tions for generators to enhance and degrade input images, respectively. Also, let
De and Dd denote discriminators to discriminate between high-quality images
{IHQ} and enhanced images {Ge(I

LQ)} and between low-quality images {ILQ}
and degraded images {Gd(IHQ)}, respectively.

We employ the Wasserstein GAN with gradient penalty (WGAN-GP) [10]
to define objective functions of generators and discriminators. The discriminator
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(a) Enhancement GAN (b) Degradation GAN

Fig. 4: The network architectures of (a) enhancement GAN and (b) degradation
GAN.

losses LDe
and LDd

for De and Dd are defined as

LDe
= De(Ge(I

LQ))−De(I
HQ) + λgp(‖∇ĨHQDe(Ī

HQ)‖2 − 1)2

LDd
= Dd(Gd(IHQ))−Dd(ILQ) + λgp(‖∇ĨLQDB(ĪLQ)‖2 − 1)2.

(4)

In both discriminator losses LDe and LDd
, the first two terms are adversarial

losses. The last terms are gradient penalty to satisfy the Lipschitz constraint
in WGAN-GP. The image ĪHQ is obtained by interpolating Ge(I

LQ) and IHQ

with random weights. Similarly, ĪLQ is computed using Gd(IHQ) and ILQ. The
hyper-parameter λgp is a weight for the gradient penalty.

Also, for training generators Ge and Gd, we define the loss functions as

LGe
= −De(Ge(I

LQ)) + λi‖Ge(I
LQ)− ILQ‖1 + λc‖Ge(Gd(IHQ))− IHQ‖1

LGd
= −Dd(Gd(IHQ)) + λi‖Gd(IHQ)− IHQ‖1 + λc‖Gd(Ge(I

LQ))− ILQ‖1
(5)

which is composed of adversarial, identity, and cyclic color losses. The adversarial
loss (first term) penalizes the Wasserstein distance between generated images
and real images. The identity loss (second term) prevents generated images from
becoming too different from input images. Note that the identity supports stable
training by reducing the space of possible mapping functions. Also, we design
the cyclic color loss (third term), which enforces that the reconstructed image
should be similar to its origin. For instance, the cyclic color loss minimizes the
mean absolute error between Ge(Gd(IHQ)) and IHQ to train the enhancement
GAN in Fig. 4(a). To this end, we can learn the generator Ge to yield enhanced
images that are similar to the high-quality images in IHQ. Note that the cyclic
color loss is different from the cyclic consistency loss in [36], which argues that
ILQ and Gd(Ge(I

LQ)) should be similar for training Ge. In Section 4.2, we will
verify the effectiveness of the proposed cyclic color loss as compared with the
cyclic consistency loss in [36].

Next, we train LEN using the trained GEN. Notice that training LEN is
more difficult than training GEN since LEN is designed to produce the pixel-
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wise prediction, which requires the more complicated mapping function than the
channel-wise intensity transform in GEN. Therefore, we take a different approach
to train LEN. More specifically, we degrade a high-quality image IHQ in the
training samples using the generator Gd to obtain a pseudo pair of low-quality
and high-quality images, (Gd(IHQ), IHQ). Then, we enhance the degraded image
using the generator Ge. To this end, we can obtain a pseudo pair of global
enhanced image and high-quality images, (Ge(Gd(IHQ)), IHQ). Finally, we train
LEN using this paired data by minimizing the loss in (3).

4 Experiments

Experiments are organized as follows. In Section 4.1, we verify the effectiveness of
GEN and LEN when pairs of low-quality and high-quality images are available.
We compare the performance of the proposed GEN and LEN with state-of-the-
art algorithms based on paired learning. In Section 4.2, we train GEN and LEN
using the proposed unpaired learning and perform the comparison with state-
of-the-art methods in unpaired image enhancement.

For all experiments, we use the MIT-Adobe 5K dataset [2] that contains
5,000 input images, each of which was manually retouched by five different pho-
tographers (A/B/C/D/E). Thus, there are five sets of 5,000 pairs of input and
retouched images, one set for each photographer. Among these sets, we use high-
quality images retouched by photographer C only for training and test as done
in most existing image enhancement algorithms. We split the 5,000 images into
500 and 4,500 images, which are used for the training and test sets, respectively.
We use all 4,500 image pairs in training set for paired learning. In contrast, for
unpaired learning, the 4,500 image pairs divided into two groups, each of which
has 2,250 image pairs. Then, 2,250 input images in the first group are included
in the low-quality image set, while 2,250 retouched images in the second group
are used for the high-quality image set. Notice that images in the low-quality
set and the high-quality set are not overlapped.

For quantitative assessment, we employ PSNR and SSIM, which measure,
respectively, color and structural similarity between predicted and ground-truth
high-quality images.

4.1 Paired Learning

For paired learning, we use 4,500 training image pairs to train GEN and LEN.
We minimize the loss in (3) using the Adam optimizer [18] with an learning rate
of 1.0 × 10−4. The training is iterated for 25,000 mini-batches. The mini-batch
size is 16. For data augmentation, we randomly rotate images by multiples of 90
degrees. The parameter λp in (3) is fixed to 0.04.

First, we verify the effectiveness of the proposed GEN by comparing the
channel-wise intensity transform in GEN with the pixel-wise color prediction.
For this comparison, we design a baseline network, which produces pixel-wise en-
hanced results. More specifically, the baseline network has the encoder-decoder
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Fig. 5: PSNR and SSIM scores of GEN and the baseline network according to
the number of training iterations.

Table 3: Quantitative comparison of the proposed algorithm with state-of-the-art
methods based on paired learning. The best results are boldfaced.

Method HDRNet [8] DPE [4] DUPE [30] GEN GEN & LEN

PSNR 23.44 22.34 23.61 25.47 25.88
SSIM 0.882 0.873 0.887 0.917 0.925

architecture, where the encoder has the same structure as the encoder in GEN,
and the decoder consists of 6 up-sample blocks to perform bilinear interpolation,
concatenation, and convolution filtering, subsequently. The detailed architecture
of the baseline network can be found in the supplementary material. Fig. 5 shows
PSNR and SSIM scores of GEN and the baseline network according to training
steps. We observe that GEN achieves faster training than the baseline through
the channel-wise intensity transform. This is because the space of possible func-
tions for the intensity transform is much smaller than that of the pixel-wise color
transform. Notably, the proposed GEN surpasses the best performance of the
baseline networks within 5,000 iterations in both metrics.

Next, we compare the proposed GEN and LEN with recent state-of-the-
art algorithms [4, 8, 30]. For comparison, we obtain the results of conventional
algorithms using the source codes and settings provided by respective authors.
Table 3 reports PSNR and SSIM scores. The proposed GEN significantly outper-
forms all conventional algorithms. For instance, it convinces margins of 1.86dB
and 0.030 against DUPE [30] in terms of PSNR and SSIM. Also, LEN overcomes
the one-to-many mapping problems of GEN by exploiting local neighbor infor-
mation. Note that LEN further improves results of GEN, and thus joint GEN
and LEN (GEN & LEN) achieves the best performance in both metrics.

Fig. 6 illustrates the efficacy of the proposed LEN. In Fig. 6(b), GEN yields
slightly different color tones in the sky, water, and a tractor compared to pho-
tographer C’s retouched images in Fig. 6(d). This is because GEN fails to deal
with one-to-many transformation. For instance, since sky and ground regions in
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(a) Input (b) GEN (c) GEN & LEN (d) Photographer C

Fig. 6: Qualitative comparison between GEN and GEN & LEN methods.

the first row in Fig. 6(a) have similar intensities in the blue channel. Then, GEN
produces similar blue intensities between the sky and ground regions. Therefore,
as in Fig. 6(b), blue intensities in the sky region are not sufficiently enhanced
since GEN is tailored to enhance the ground region. LEN overcomes this prob-
lem through effective spatial filtering, as in Fig. 6(c). Compare to GEN, GEN &
LEN yields more visually pleasing results, which have similar color tones to the
manually retouched images in Fig. 6(d).

Fig. 7 compares the proposed algorithm with DUPE [30] qualitatively. In
Fig. 7(b), DUPE [30] fails to express similar color tones and brightness to pho-
tographer C’s retouched images in Fig. 7(d). Also, the results of DUPE have
limited contrast. On the other hand, the proposed algorithm successfully yields
high-quality images with vivid color tones, which are similar to photographer
C’s retouched images.

4.2 Unpaired Learning

We perform the two-stage training for unpaired image enhancement. Specifically,
we train GEN and LEN for 5,000 and 25,000 mini-batches, respectively, where
the size of mini-batch is fixed to 8. The Adam optimizer [18] is employed again.
We set the initial learning rate to 1.0 × 10−4, and reduce it by a factor of 0.5
every 10,000 mini-batches. Hyper parameters λgp, λi, λc, and λp are set to 10,
5, 50, and 0.04, respectively. For data augmentation, we randomly rotate images
by multiples of 90 degrees.

In Table 4, we compare the proposed algorithm with the conventional un-
paired image enhancement algorithms [4,19,26] using the MIT-Adobe 5K dataset.
The proposed GEN outperforms all conventional algorithms since it can be eas-
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(a) Input (b) DUPE [30] (c) GEN & LEN (d) Photographer C

Fig. 7: Qualitative comparison of the proposed algorithm with DUPE [30].

Table 4: Quantitative comparison of the proposed algorithm with state-of-the-art
methods based on unpaired learning. The best results are boldfaced.

Method D&R [26] DPE [4] FRL [19] GEN GEN & LEN

PSNR 21.60 21.86 22.27 23.74 23.82
SSIM 0.875 0.880 0.881 0.885 0.889

ily trained with unpaired data. This indicates that the channel-wise intensity
transform in GEN is suitable for unpaired learning. Also, we see that GEN &
LEN improves both PSNR and SSIM scores, as compared with GEN, and yields
the best results in all metrics. It is worth pointing that GEN & LEN outperforms
all conventional paired image enhancement algorithms in Table 3, even though
only unpaired data is used for training.

Fig. 8 qualitatively compares the proposed algorithm with FRL [19]. The
proposed GEN & LEN model provides more faithful images than FRL. For
instance, FRL fails to increase brightness sufficiently, as in images in Fig. 8(b).
In contrast, the proposed algorithm successfully enhances low-quality images to
be similar to high-quality images retouched by Photographer C.

The proposed training scheme in unpaired learning generates pseudo paired
data to train LEN. For the generation of pseudo paired data, each high-quality
image is first degraded (IHQ → Gd(IHQ)) and then the degraded image is en-
hanced to mimic global image enhancement (Gd(IHQ) → Ge(Gd(IHQ))). We
qualitatively analyze the accuracy of the pseudo pair generation. Fig. 9(a) and
(b) show degraded images and real low-quality images, respectively. We observe
that the degraded images Gd(IHQ) are well imitated with real images ILQ. Also,
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(a) Input (b) FRL [19] (c) GEN & LEN (d) Photographer C

Fig. 8: Qualitative comparison of the proposed algorithm with FRL [19].

Table 5: PSNR and SSIM scores in different training schemes.

Model Training PSNR SSIM

GEN WGAN-GP 23.05 0.868
GEN & LEN* WGAN-GP 21.78 0.847

GEN CWGAN-GP 23.11 0.869
GEN & LEN CWGAN-GP 23.18 0.874

GEN Proposed 23.74 0.885
GEN & LEN Proposed 23.82 0.889

it is worth pointing out that global enhanced images from the degraded images
and low-quality images are similar to each other, as in Fig.(c) and (d).

In Table 5, we analyze the efficacy of the proposed training schemes. “WGAN-
GP” denotes the training scheme that only adopts the adversarial loss in (4)
and (5). In other words, it does not utilize the degradation GAN. Notice that
pseudo paired data cannot be obtained without the degradation GAN. Therefore,
joint GEN and LEN (GEN & LEN*) in “WGAN-GP” training scheme is learned
using the adversarial loss only. Low PSNR and SSIM scores in GEN & LEN*
indicate that pseudo paired data is essential to train LEN. On the other hand,
GEN in “WGAN-GP” yields reasonable performance as compared with GEN
& LEN*. Because GEN based on the intensity transform is more suitable for
unpaired learning than LEN. “CWGAN-GP” training scheme substitutes the
cyclic color loss in (5) with the cyclic consistency loss in [36]. We can see that
the cyclic color loss is more effective than the cyclic consistency loss in [36].
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(a) Gd(IHQ) (b) ILQ (c) Ge(Gd(IHQ)) (d) Ge(I
LQ)

Fig. 9: Examples of (a) degraded images, (b) real low-quality images, (c) global
enhancement results from degraded images, and (d) global enhancement results
from low-quality images.

5 Conclusions

In this paper, we proposed a novel algorithm to achieve both paired and un-
paired image enhancement. The proposed GEN performs the channel-wise inten-
sity transformations and LEN improves the global enhanced images from GEN.
For training GEN and LEN, we developed paired learning and unpaired learn-
ing methods. For unpaired learning, we proposed the two-stage training scheme
based on GANs to exploit the strengths of GEN that can be trained easily. Ex-
perimental results demonstrated that the proposed algorithm outperforms the
state-of-the-art algorithms on the MIT-Adobe 5K dataset. Remarkably, GEN
and LEN, which are trained by the proposed unpaired learning, outperforms the
conventional paired image enhancement algorithms.
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