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Abstract. This paper presents a road detection technique based on
long-wave infrared (LWIR) polarization imaging for autonomous nav-
igation regardless of illumination conditions, day and night. Division
of Focal Plane (DoFP) imaging technology enables acquisition of in-
frared polarization images in real time using a monocular camera. Zero-
distribution prior embodies the zero-distribution of Angle of Polariza-
tion (AoP) of a road scene image, which provides a significant con-
trast between the road and the background. This paper combines zero-
distribution of AoP, the difference of Degree of linear Polarization (DoP),
and the edge information to segment the road region in the scene. We
developed a LWIR DoFP Dataset of Road Scene (LDDRS) consisting
of 2,113 annotated images. Experiment results on the LDDRS dataset
demonstrate the merits of the proposed road detection method based on
the zero-distribution prior. The LDDRS dataset is available at https:

//github.com/polwork/LDDRS.

Keywords: Road detection, Polarization prior, Angle of polarization,
LWIR DoFP sensor

1 Introduction

Road detection is a crucial task for traffic safety and intelligent transportation
systems such as Advanced Driver Assistant System (ADAS) [17]. Various sensing
modalities such as vision [21], [32], [42], [49] and LiDAR [26], [29] have been used
for this purpose. Vision-based methods include passive monocular [21], [32] and
the stereo imaging [42], [49], which provides high resolution color, texture and
lane marking information for road detection. Stereo imaging can obtain depth
information, but still less information than 3D LiDAR. Vision-based methods,
however, are unable to perform properly in low illumination conditions, dark-
ness, and strong illumination variations such as headlight of incoming cars at

https://github.com/polwork/LDDRS
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night. LiDAR is an active modality for lane and road detection, measuring 3D
structure of a vehicle nearby using an active light source enabling LiDAR to
be employed all the time, day and night. A major drawback of LiDAR is rela-
tively high cost and bulkiness. While thermal infrared cameras are often used for
pedestrian/animal detection [5], [23], but not for road detection since radiation
difference between road and the background is too small especially at night when
thermal equilibrium is reached.

Polarization has a physical property of light that provides characteristic infor-
mation of an object such as three-dimensional (3D) normal [38], surface smooth-
ness [43], and material composition [18]. Polarization imaging has been widely
applied in 3D reconstruction [9], anti-interference object detection [24], visual
navigation [40], image dehazing [41], and biomedical imaging [13]. To our best
knowledge, no published literatures have investigated the use of polarization for
road detection. Division of Focal Plane (DoFP) imaging technology [12], [44] en-
ables acquisition of infrared polarization images in real time with a monocular
camera. A DoFP infrared polarization camera consists of traditional infrared fo-
cal plane and a micro polarizer array which captures polarization information in
real time. DoFP cameras have similar dimensions, weight, and power consump-
tion as traditional uncooled thermal cameras, suitable for installing on vehicles
in real situations. We use a long-wave infrared (LWIR) DoFP polarimeter as
sensing modality to obtain polarization characteristics of the road.

This paper presents a road detection method based on zero-distribution prior
of the road. Zero-distribution prior embodies the zero-distribution of Angle of
Polarization (AoP) of the road region, which provides a significant contrast be-
tween the road and the background. Using this prior, a coarse mask for the road
region is obtained. Then we propose a statistical method with road vanishing
assumption to locate the horizon. The road area is located usually in the lower
part of the horizon to significantly reduce computational burden. This paper
combines zero-distribution of AoP, the difference of Degree of linear Polariza-
tion (DoP), and the edge information to segment the road region in the scene.
Then we refine the detection result by removing fragmented parts using a confi-
dence map. The definitions of AoP and DoP can be found in the Supplementary
Material. To evaluate the proposed method, we captured thousands of LWIR
DoFP images of various road scenes, including urban roads and highways during
day and night times. A total of 2,113 annotated LWIR DoFP images forms a
benchmark database named LWIR DoFP Dataset of Road Scenes (LDDRS).

As contributions, this paper proposes: (1) A zero-distribution prior to rep-
resent distinctive characteristics of the road; (2) A statistical method to detect
the horizon; (3) A joint road detection approach to segment the road; (4) A
database of LWIR DoFP images for benchmarking road detection algorithms.

2 Related Works

Thermal sensor: As the most related work, LWIR imagers are mainly used in
ADAS [5] to detect pedestrians or animals at night since emitted radiation of
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human is greater than the environment. Several methods have been developed
to detect the pedestrian, including enhanced thresholding segmentation tech-
nique [36], adaptive fuzzy C-means clustering, and CNN based approach [19].
LWIR imagers are also used to improve the road detection in low light condi-
tions by thermal-RGB fusion [48], stereo thermal cameras [34], or multi-frames
information [47]. Yet thermal characteristics between road and the background
may reach equilibrium at night.

Monocular vision: Many road detection methods have been developed for
conventional RGB cameras based on high-resolution intensity, color, and texture
information. Some constrain the road region by detecting lane markings. Wang
et al. [46] use a straight-curve model to detect curvy road in highways. Some
road models are based on the statistics or shape information to segment the
road. Lu [30] proposed a self-learned statistical model to re-label each pixel in
the input image based on a likelihood ratio classifier. Other road segmentation
methods use vanishing point to constrain road boundary. For example, a Gabor
filter [21] and a gLoG filter [22] are used to locate the vanishing point of road
with a voting-based scheme. Inspired by the Fully Convolutional Network (FCN)
[28] designed for semantic segmentation task, several road detection methods
are proposed based on deep learning including Up-Conv-Poly [32], FCN-LC [31]
and DLT-Net [37]. Utilizing the pixel-wise classification of FCN, these methods
have enhanced road detection performances. However, the inherent drawback
of visible camera in low light condition limits the performance of a monocular
vision system at night or in low illumination conditions.

Stereo imaging & LiDAR: A disparity map [14] generated by stereo
matching of two captured visible images can provide depth information to play
a key role in road detection. The traditional vanishing-point-constraint methods
[33], [49] and deep learning method [39] based on a disparity map are developed
in stereo vision system. Unfortunately, this approach also suffers from the same
limitation with the monocular vision system in low light environments. LiDAR,
on the other hand, uses an active light source to reconstruct 3D representation
of an object. As an active perception modality, LiDAR provides a strong cue to
detect road as used in several works [16], [26], [29], [50]. However, the detection
accuracy is easily affected by dust, haze or rain [35].

3 Zero-distribution Prior

The zero-distribution prior is based on the theory that thermal emissions are
partially linearly polarized parallel to the plane of incidence [9]. For a road
region, most values of AoP are near zero,

A(x) ≈ 0, x ∈ Ω (1)

where A denotes an AoP image and Ω denotes a set of pixels in the road region.
This characteristic of AoP in the road region is called zero-distribution prior of
AoP. In Fig. 1(a), we assume that the road plane is parallel with the y axis in the
image coordinate system, so zero-distribution of AoP means that the thermal
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Fig. 1. (a) The image coordinate system of LWIR DoFP camera. (b) Mode of how the
thermal radiation captured by detector is formed in LWIR. (c) ε‖(θ, n

′)2 − ε⊥(θ, n′)2

vary with respect to θ, n and k

radiations of road are partially linearly polarized parallel to x-z plane of an
incident light in Fig. 1(b). Therefore, the Stokes parameter S1 of road should be
positive and S2 should near zero (see Supplementary Materials for definition of
S1 and S2). Fig. 1(b) shows that the thermal radiation reaches the DoFP LWIR
detector contains reflected radiation R and emitted radiation E, and both are
expressed as the sum of two orthogonal polarized components, i.e. R = R‖+R⊥
and E = E‖+E⊥. For the road scene, the emitted thermal radiation dominates
the energies that reach the camera. In [4], S2 of thermal emissions have been
demonstrated to be zero for objects that are large compared to the emitted
wavelength [20], so here we only focus on the sign of S1. Based on Kirchoff’s
law [45] and Fresnel’s equations [15], we have (See Supplementary Material for
derivation)

S1 = n cos θ · P (T1)
2 ·
(
ε‖(θ, n

′)2 − ε⊥(θ, n′)2
)

(2)

where P (T1) denotes the Planck Blackbody radiance curve at temperature T1 of
road, ε is the emissivity and the special subscripts ‖ and ⊥ are added to ε that
correspond to respectively the polarized components parallel and perpendicular
to the plane of incidence, and ε is decided by incident angle θ and complex
index of refraction n′ = n+ ki of road. So the sign of S1 is decided by the sign
of ε‖(θ, n

′)2 − ε⊥(θ, n′)2 because n > 0 and cos θ > 0 (θ ∈ (0, 90◦)). Since the
exact refraction of the road is unknown, the intervals are set to n ∈ (0, 1000] and
k ∈ (0, 1000]. We calculate the value of ε‖(θ, n

′)2− ε⊥(θ, n′)2 and plot the result
with θ, n and k in Fig. 1(c). The quantity ε‖(θ, n

′)2 − ε⊥(θ, n′)2 is positive in
a sufficiently large interval, so S1 is also positive. We further make a statistical
analysis of the distribution of S1 and S2 in road region of 2,113 images in Fig. 3(a)
where basically all the values of S1 in road region are positive and most values
of S2 are around zero. Since the S1 in road region is positive and S2 is close to
zero, the AoP of road is zero distributed. Fig. 2 shows several road scene images
and the corresponding AoP images in false color. A statistical analysis of the
distribution of AoP A in road region of the 2,113 images produces the results
in Fig. 3(b)-(d). Approximately 96% of the pixels of road in the AoP images
have values in

(
− π

16 ,
π
16

)
, so most AoP values in road region are near zero. Using

this property, more generally, the AoP of each position in a plane is the same.
Intuitively, the proposed prior can also be effective for other applications such
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Fig. 2. Top: example images in our DoFP road scene database. Bottom: the corre-
sponding AoP images
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Fig. 3. (a) The distribution of S1 and S2 in road region of the 2,113 road images. (b)
Histogram of the AoP of the pixels in road region of all the 2,113 road images, and (c)
Corresponding probability distribution and (d) Cumulative distribution

as plane detection or defect detection in roads (e.g. potholes or obstacles). In
Section 4, this prior is used to detect the horizon and segment the road.

4 Road Detection with Zero-distribution Prior

The proposed zero-distribution prior poses a strong constraint on road detection.
Fig. 4 shows the proposed road detection method based on the zero-distribution
prior. An input DoFP image is denoised [1] and demosaicked [25] to generate four
high resolution polarization images and then the Stokes parameters, AoP and
DoP are computed (See Eqs. (1) and (2) in Supplementary Material). We use
the zero-distribution prior for horizon detection, and the road region is restricted
under the horizon in the image. Then we propose a joint road detection method
that combines AoP, DoP, and the edge information to segment the road. The
final road detection result is obtained by refining a road confidence map.

4.1 Horizon Detection

A coarse road map is obtained based on the strong constraint of zero-distribution
prior. Since the value of AoP in road region is near zero, we find a coarse road
estimation using

Rc(x) = exp(−γ|A(x)− σ|) (3)
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Fig. 4. The proposed road detection method based on the zero-distribution prior

where x is pixel position, γ was set to 0.01 and σ was set to 0 in the experiment
based on the zero-distribution prior. Then, we threshold t = 0.75 as the road,
followed by a morphological open operation to remove the small noise regions:

Mc = = (Rc, t)�X , = (Rc, t) =

{
1, Rc ≥ t
0, Rc < t

(4)

where � is the morphological open operation and X is the structural element.
Mc provides a coarse road detection result, and a horizon locates where the road
vanishes. As the road vanishes in Fig. 4, the number of pixels belonging to road
in each row decreases from bottom to top. We make a one-dimensional (1D)
projection of the coarse road map Mc by

Mp(r) =

w∑
j=1

Mc(r, j) (5)

where w is the width of the image, r is the row number and Mp represents
the number of pixels that belong to road in each row in Mc. In Fig. 4, the
horizon corresponds to the intersection of the green line and the x-axis in Mp.
Horizon can be obtained by locating where they intersect. Rather than fitting the
straight line in Mp directly, we propose to find the position in x-axis where the
lines (determined by every two points that have fixed rows apart in Mp) intersect
with x-axis most. To realize this, a horizon confidence map is generated by

H(r) =

h−s∑
l=1

[℘ ((l,Mp(l)) , (l + s,Mp(l + s))) = r] (6)

where h is the height of the image, l is the row number and ℘(x,y) indicates the
row where the straight line (determined by x and y) intersects with the x-axis
in Mp, and here we choose every two points that have two rows apart, that is
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s = 3. [·] equals 1 if the value inside the bracket is true and 0 otherwise. One may
notice that the biggest value or the dominant values in H may lie several pixels
away from the ground-truth horizon. To overcome this problem, we propose a
simple post-processing of H by

He(r) =

r+ρ∑
i=r−ρ

H(i) (7)

where He is the piecewise cumulative energy of H, and we set ρ = 3. With this
simple step, we improve the robustness of horizon detection and we can locate
the horizon by finding the biggest energy in He, as shown by the red line in
Fig. 4. The proposed horizon detection method is efficient and robust, and the
road is restricted in the lower part of the image.

4.2 Road Segmentation

In Section 4.1, we generate a coarse road detection result with the strong con-
straint of zero-distribution prior, and the horizon restrict the road in a small
part of the image which reduces the computation load. The AoP for car surface
are similar to that of the road as in Fig. 2 and Fig. 6(c). Therefore, cars can be
misclassified as the road if we only use the zero-distribution prior. There exist
some differences in DoP between the road and cars. The DoP of the hood and
windshield of a car is usually higher than the DoP of the road, while the other
surfaces of a car are always lower than that of the road as shown in Fig. 6(b).
This observation agrees with previous research for vehicle detection [10], [11].
We selected 200 images that contain various vehicles and computed the DoP dis-
tribution of the road and cars. Fig. 5 shows that clear differences of DoP exist
between road and vehicle (See Supplementary Material for details). This charac-
teristic helps separate the vehicle and road. This paper combines the AoP, DoP
and the edge information for road detection. Inspired by [27], the road confidence
map is obtained by the proposed joint road detection as:

RJ(x) =
2

1 + exp [η (1 + η1CE(x)) (CA(x) + CD(x))]
(8)

where

CA(x) =

{
exp [η2 (|A(x)−Ad| − α1)] , A(x) ≥ Ad
exp [η2 (|A(x)−Ad| − α2)] , A(x) < Ad

(9)

CD(x) =

{
exp [η3 (|D(x)−Dd| − β1)] , D(x) ≥ Dd

exp [η3 (|D(x)−Dd| − β2)] , D(x) < Dd
(10)

CE(x) = ω1ED(x) + ω2EA(x) + ω3EI(x) (11)

where CA is the constraint of AoP image A, CD is the constraint of DoP image D,
and CE is the edge constraint. In Eq. (11), ED, EA and EI are edge information
of DoP image, AoP image and the intensity image (S0), respectively, and ω1, ω2

and ω3 are corresponding weights (ω1 = 0.3, ω2 = 0.5 and ω3 = 0.2). η, η1, η2
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Fig. 6. (a) Intensity image. (b) DoP image in false color.
(c) AoP image in false color. (d) Coarse road map. (e) Road
confidence map. (f) Refined road detection result. (d)-(f)
only shows the region below the horizon

and η3 are weights of above three constraints (η = 10−7, η1 = 1.9, η2 = 0.2 and
η3 = 0.2 in our experiment). Ad and Dd are dominate values of AoP and DoP
in road region respectively obtained by the statistics of A and D of the road
region in coarse road map Mc. The bias terms α1 = π

50 , α2 = π
16 , β1 = β0 +0.02,

β2 = β0 +0.12 and β0 is set as the half of the distribution range of the most DoP
in road region. With Eq. (8), a pixel belongs to road will get a higher value near
1, and near 0 if otherwise. One can notice that for the constraint of AoP and
DoP images in Eqs. (9) and (10), we punish the values greater than Ad and Dd

more, because the shadow or wet areas of road usually have lower AoP and DoP
values. The edges of DoP image, AoP image and the intensity image provide
the road boundary information, so CE is used to separate the road with other
region by giving more punishment on strong edge.

With the road confidence map RJ , we can get a refined road map. First, the
pixels in RJ are binarized by = (RJ , τ) and τ = 0.95, and we assume that m
separated regions K (i) , i = 1...m are obtained. Then remove all the small pieces
whose areas NK(i) (defined as the number of pixels belong to K (i)) are smaller
than 2% of the total detected area Nt =

∑m
i=1NK(i). We take the biggest one

in K (i) as road and we can compute the mean DoP Dm and mean intensity
Im of road region. The remaining small pieces whose mean DoP or intensity
value are different from Dm or Im more than the preset threshold will be simply
removed (τI = 40 in 8 bit image and τD = β0). Finally, the refined road map
Mf is obtained by applying the background region growing to fill the holes in
road region.

For the road scene in Fig. 6, the front and back windshields are detected as
road in the coarse road map (Fig. 6(d)). But these false detections are mostly
removed with the proposed joint road detection method (Fig. 6(e)). And the
refined detection result is obtained after removing small speckles in the road
confidence map (Fig. 6(f)). The proposed joint road detection is applied only
in the part under the horizon detected in the last section. The proposed road
detection method is simple yet efficient and robust with the constraint of the
zero-distribution prior. The performance of the proposed method will be demon-
strated in Section 5.
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Fig. 7. Object geometry statistics of LDDRS. Histograms for the two most predomi-
nant categories (a) cars and (b) pedestrians. (c) Data distribution from day to night
in city proper and suburbs. (d) Histograms for sum of cars and pedestrians at day and
night

5 Experiment Results

Dataset. The proposed method is based on LWIR polarization imaging. To our
best knowledge, there is no existing dataset with this specific information/feature
available for the work. The only related LWIR dataset is described in KAIST [8];
its images of road are with only intensity information, no polarization. To test
the proposed method, we build a LWIR DoFP dataset of road scene (LDDRS)
with 2,113 images which provides both IR intensity (S0) and polarization infor-
mation. The DoFP images are captured with a self-developed uncooled infrared
DoFP camera with 512×640 resolution in 14 bits. The dataset includes urban
road and highway both day and night. The road regions of all 2,113 images
are manually annotated. Statistics of our LDDRS are shown in Fig. 7. LDDRS
contains different traffic situations that there are different number of cars and
pedestrians in road scene. For the input DoFP images, a BM3D method [1] is
used to reduce the noise and then a polarization demosaicking method [25] with a
polarization difference model is applied to generate four high resolution images
in four orientations. Based on these four images, the AoP, DoP and intensity
images can be obtained by using the Stokes equations [15].

Evaluation on horizon detection. First, we evaluate the performance of
our proposed horizon detection method. The error between the estimation and
the ground-truth horizon is defined as the absolute difference in their vertical
coordinates. Fig. 8 shows quantitative assessment of the proposed method. The
horizontal axis of Fig. 8 represents the distance errors, where about 80% of hori-
zon detection results have distance error smaller than 15 pixels. The horizon
detection is used to improve the road detection robustness and effectiveness.
To further test the necessity of horizon detection, we evaluate the road detec-
tion performance with and without horizon constraint. And three evaluation
criteria are used including precision (PRE), recall (REC), and Intersection over
Union (IoU) to assess the performance of road detection. Table. 1 shows that the
road detection performance is improved by over 20% and execution efficiency in-
creased by about three times when with horizon constraint, which demonstrates
the necessity of horizon detection.



10 N. Li et al.

0 10 20 30 40 50

Distance Error (pixels)

0

20

40

60

80

100

Proposed

Gabor+I

Gabor+DOP

Gabor+AOP

gLoG+I

gLoG+DOP

gLoG+AOP

C
u
m

u
la

ti
v
e 

H
o
ri

zo
n
 D

et
ec

ti
o
n
 R

at
e 

(%
)

0 10 20 30 40 50

Distance Error (pixels)

0

20

40

60

80

100

C
u

m
u
la

ti
v
e 

H
o

ri
zo

n
 D

et
ec

ti
o
n
 R

at
e 

(%
)

Sum of Cars and Pedestrians per Image

N
u
m

b
er

 o
f 

Im
ag

es

0 5 10 15 20 >25
0

20

40

60

80

100

120

140
Day
Night

0 10 20 30 40 50

Distance Error (pixels)

0

20

40

60

80

100

C
u
m

u
la

ti
v
e 

H
o
ri

zo
n
 

D
et

ec
ti

o
n
 R

at
e 

(%
)

Fig. 8. Statistics of the horizon estimation accuracy of the proposed method

Table 1. Results of road detection with and without horizon constraint

Methods PRE (%) REC (%) IoU (%) Running Time (ms)

w/o horizon constraint 72.65 71.87 67.52 194
with horizon constraint 93.48 94.50 88.69 67

Evaluation on road segmentation. To evaluate the performance of differ-
ent road detection methods, PRE, REC and IoU are used as assessment criteria.
For comparison, three kinds of single image road detection methods are chosen.
First kind of road detection method is designed especially for thermal infrared
sensors such as the region-growing based method [47] which applies temporal
information of sequential frames to refine the drivable region detection. The
second kind of road detection method uses a predefined road mask to build a
statistical model for road and background such as SSRD [30] which applies a
self-learned statistical model to re-label each pixel in the input image base on
a likelihood ratio classifier. The third kind is the deep-learning based semantic
segmentation methods such as DeepLab series [6], [7], encoder-decoder network
[3], FCN [28] and so on, are most powerful methods for pixelwise classification.
Here we use the DeepLabv3+ [7] in our dataset to test the performance of road
segmentation.

The region-growing based method [47] is applied to the intensity image, as
denoted as RG. The SSRD method is applied on the HSV fusion [2] image
(Fig. 10(b)) of intensity image, AoP image and DoP image. The DeepLabv3+ is
test on the intensity image, RGB fusion image (fusion of intensity image, AoP im-
age and DoP image in R, G, B channels respectively) and the HSV fusion image
and are denoted as DL3p−I (DeepLabv3+ with the intensity image), DL3p−RGB
(DeepLabv3+ with the RGB fusion image) and DL3p−HSV (DeepLabv3+ with
the HSV fusion image) respectively. For DeepLabv3+, ResNet-101 is used as
network backbone. And for dataset split, 1690 images are randomly selected for
training, 211 images are used for validation and the rest 212 images are used
for test. Considering the limited size of our LDDRS dataset, the DeepLabv3+
is initially trained with KAIST thermal infrared road scene dataset [47], and
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Table 2. Results comparison of different road detection methods, the best results are
shown in bold

Methods PRE (%) REC (%) IoU (%)

RG [47] 74.68 87.40 67.69
SSRD [30] 82.45 83.76 71.60
DeepLabv3+ [7] with intensity image 79.65 99.35 79.28
DeepLabv3+ [7] with RGB fusion image 87.88 98.65 86.90
DeepLabv3+ [7] with HSV fusion image 89.34 99.19 88.73

Proposed method on test set 93.19 94.84 88.74
Proposed method on whole set 93.48 94.50 88.69

then the final model is fine-tuned using our training images. The quantitative
assessments for these methods are shown in Table 2. Fig. 9 shows some visual
comparison results of road region detection by the above methods, and for all the
visual results, green region corresponds to true positive, red region represents
false negative and blue region denotes false positive.

Table 2 and Fig. 9 show that the proposed method outperforms conven-
tional techniques, and achieve comparable results with the state-of-the-art deep
learning method DeepLabv3+. The recall of our method is not as high as other
methods because our scheme tends to detect the road as accurate as possible
and the low confidence pixels and small pieces that belong to road are discarded
in the refinement process, which leads to a lower recall. Besides, the proposed
method achieves highest precision especially for the separation between car and
road. For example, as shown in the regions delineated in black rectangles in
Fig. 10, the windshield of car and road are similar in the HSV fusion image and
low occurrence of vehicle hoods compared with the road surface, making this
particularity difficult to learn, so the DL3p−HSV method may wrongly detect
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(a) (b) (c) (d)

Fig. 10. (a) Intensity image. (b) HSV fusion image. (c) Results based on DeepLabv3+
with the HSV image. (d) Ours results

Table 3. Comparison of AoP-DoP-edge constraint and AoP constraint only

Constraints PRE (%) REC (%) IoU (%)

AoP only 90.21 94.12 85.41
AoP+DoP+Edge 93.48 94.50 88.69

this car part as road while our method performs well. Methods using intensity
image, including RG and DeepLabv3+, have good recall performance but poor
precision, because it is difficult to separate road and cars or the background when
they have similar thermal radiation. In contrast, methods apply polarization in-
formation such as SSRD, DeepLabv3+ and our method perform well both on
precision and recall and have higher IoU, which demonstrates the power of the
infrared polarization imaging in augmenting the full-time road detection. On the
other hand, DeepLabv3+ road detection methods trained with the HSV fusion
image outperform that trained with RGB fusion image, because HSV fusion of
polarization images can reveal polarization characteristics better than the RGB
fusion.

To evaluate how different traffic situations affect the road detection perfor-
mance of different methods, we test the above road detection methods when the
scenes contain different number of cars and pedestrians. Fig. 11(a) shows that
most methods cannot detect road well under a complex road condition except for
the DL3p−HSV and our method. The performance of the methods using inten-
sity image and SSRD decline after there are more than 22 cars and pedestrians
in scene while our method and the DeepLabv3+ methods trained with HSV
fusion image still work well. Fig. 11(b) shows the comparison of DeepLabv3+
methods and our method under several difficult traffic situations. When there
are many cars in image, DL3p−I may wrongly detect parts of car as road be-
cause these parts may have similar thermal radiation with road. DL3p−HSV
and DL3p−RGB benefit from the polarization information and obtain more
compelling performance under these difficult situations. The proposed method
separates most of cars from road with the strong constraint of the proposed
zero-distribution prior and the difference of DoP.

To demonstrate the power of the proposed zero-distribution prior, we test
the performance of our road detection method with the AoP constraint only and
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with the AoP-DoP-edge constraint, the results are shown in Table 3. Note that
the result of AoP constraint only is obtained by simply removing all the small
pieces whose areas are smaller than 2% of the total detected area in Mc under
the detected horizon. The road detection performance of our proposed method
with only AoP constraint is still better than most of other methods except the
DeepLabv3+ with the HSV and RGB fusion images. The AoP constraint have
low precision performance due to the similar AoP between road and vehicle,
where the DoP-and-edge constraint is used to solve this problem. More results
of road detection videos, horizon detection and different traffic situations can be
found in the Supplementary Material.

Evaluation on execution efficiency. The computational time is also an
important factor for ADAS to evaluate road detection method. Our method is
implemented in Matlab and tested on a general PC with 64GB memory and
Intel Xeon E3-1225 CPU. The DeepLabv3+ method is tested on a GTX 1080Ti
GPU, and other methods are tested in a same PC which runs our method. The
average running time of a 512×640 input image is shown in Table 4, and the time
of denoising and demosaicking is discarded here. On the average, it takes 0.067s
for the proposed method to process an image and it is 5 times faster than the
DeepLabv3+ method, it is benefited from the powerful zero-distribution prior
and the horizon detection.

The resolution of LWIR camera is usually low. To test the robustness and
the effectiveness of the proposed method, we down-sample the input image by
2 times (2×d−s) and 4 times (4×d−s), and apply our road detection method
on these two low resolution inputs. As shown in Table 5, the results under 2
times down-sampled input still outperform the DeepLabv3+ method trained
with RGB fusion image and achieve a real-time performance with 33fps cause
the 2 times down-sampling barely damage the overall polarization information
of scene. With 4 times down-sampled input, the proposed method achieves com-
pelling results even with a higher speed.

It should be noted that the proposed method may fail when the road is
wet or the polarization characteristic of car is quite similar with road. When
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the road is covered with water, the dominant energy reaches the camera is re-
flected radiation rather than the emitted radiation as assumed in Section 3.
And the DoP of car is affected by the temperature and the viewing angle,
so the precision of the proposed method may be influenced when the DoP of
car is similar with the road. Our future work aims to solve these limitations.

Table 4. Running time comparison
of different methods

Methods Time (s/frame)

RG 2.761
SSRD 17.32
DeepLabv3+ 0.351
Proposed 0.067

Table 5. Performance of the proposed method
under 2 times and 4 times down-sampled inputs

Criteria Ours-2×d s Ours-4×d s

PRE (%) 93.03 92.95
REC (%) 93.53 90.98
IoU (%) 87.43 85.76
Running Time (ms) 30 16
Frame Rate (fps) 33 62

6 Conclusion

This paper presents a road detection technique based on LWIR polarization
imaging for autonomous navigation regardless of illumination conditions. We use
DoFP infrared imaging technology to acquire infrared polarization information in
real time with a monocular camera. The proposed zero-distribution prior of AoP
provides a powerful constraint for road detection. Based on this prior, we propose
a statistical method with a road vanishing assumption to locate the horizon to
reduce computation. We combine zero-distribution of AoP, the difference of DoP,
and the edge information to segment the road region in the scene. We developed
a LWIR DoFP dataset consisting of 2,113 annotated images. Experiment results
on the dataset demonstrate that the proposed method successfully detects the
road regardless of illumination conditions, day and night.
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