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Abstract. Video frame interpolation (VFI) aims at synthesizing new
video frames in-between existing frames to generate smoother high frame
rate videos. Current methods usually use the fixed pre-trained network-
s to generate interpolated-frames for different resolutions and scenes.
However, the fixed pre-trained networks are difficult to be tailored for a
variety of cases. Inspired by classical pyramid energy minimization op-
tical flow algorithms, this paper proposes a recurrent residual pyramid
network (RRPN) for video frame interpolation. In the proposed net-
work, different pyramid levels share the same weights and base-network,
named recurrent residual layer (RRL). In RRL, residual displacements
between warped images are detected to gradually refine optical flows
rather than directly predict the flows or frames. Owing to the flexible
recurrent residual pyramid architecture, we can customize the number
of pyramid levels, and make trade-offs between calculations and quality
based on the application scenarios. Moreover, occlusion masks are also
generated in this recurrent residual way to solve occlusion better. Final-
ly, a refinement network is added to enhance the details for final output
with contextual and edge information. Experimental results demonstrate
that the RRPN is more flexible and efficient than current VFI networks
but has fewer parameters. In particular, the RRPN, which avoid over-
reliance on datasets and network structures, shows superior performance
for large motion cases.

Keywords: Video frame interpolation, Customizable pyramid network,
Arbitrary resolution and scenes, Adjustable calculation.

1 Introduction

Video frame interpolation (VFI) is a classic computer vision task with a wide
range of applications, such as novel view interpolation synthesis [9], frame rate
conversion [24], slow motion [15]. As deep learning has achieved significant suc-
cess in many computer vision tasks, increasingly more deep-learning-based meth-
ods are proposed to obtain high quality interpolated frames. Long et al. [22]
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Fig. 1. A challenging 4K (3840 × 2160) example from DAVIS [28]. As the resolu-
tion increases, the pixel displacements increase, which makes fixed pre-trained models
difficult to estimate motion. Our method can handle arbitrary resolution cases with
flexibility and adjustable calculation.
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Fig. 2. Left : The traditional pyramid energy minimization optical flow architecture [6,
11] with flexibility. Right : The proposed recurrent residual pyramid architecture in-
herits the flexible structure from traditional method, which estimates residual flows
between two warped images at each pyramid level by a reusable CNN.

regard VFI as an image generation task, and use CNNs to directly generate in-
termediate frames without an intermediate motion estimation step, which may
cause blurry results. To avoid blurring artifacts and produce high quality inter-
mediate frames, many CNN-based methods utilize an effective intermediate mo-
tion estimation step before frame interpolation [15, 21, 26, 42, 3]. However, large
motion and occlusions are still challenging for these CNN-based approaches.

To handle large motion in VFI, current methods rely on improving model
architecture, increasing the number of parameters, and enlarging the training
set that contains enough large motion cases. For example, Van et al. [1], Bao et
al. [3] and Niklaus et al. [25] adopt coarse-to-fine flow estimation architecture
to estimate more accurate optical flow. Niklaus et al. [27] train a big enough
spatially-adaptive convolution kernel for each pixel to cover large motion. But
these fixed pre-trained models face two problems. First, as shown in Figure 1,
when encountering cases with larger resolutions or motion scales that were not
considered in training data, the performance of these methods tends to be sig-
nificantly degraded. Second, a model originally trained for high resolution videos
leads to an increased number of parameters. When applied for smaller resolution
or motion scale videos, the oversized network has significant computational re-
dundancy. Hence, fixed pre-trained model is not very effective to handle a wide
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variety of scenes in the wild. Is it possible to train a flexible network that can
be tailored for different scenarios, instead of training separate networks?

To address this question, we propose a flexible coarse-to-fine network in-
spired by classical pyramid energy minimization optical flow estimation algo-
rithms. This architecture can customize the number of pyramid layers and make
trade-offs between calculations and quality based on the application scenario. As
shown in Figure 2 (Left), classical pyramid optical flow algorithm usually utilizes
energy minimization operation to detect residual flow between first image and
the warped second image at each pyramid level, which is warped by upsampled
flow from last pyramid level. These algorithms can design different numbers of
layers for various cases of different difficulties. Meanwhile, high quality optical
flow can be accurately estimated by means of the coarse-to-fine refinement. In
VFI tasks, we mainly solve optimal optical flow from the target time position to
adjacent two frames, and then pre-warp frames guided by flow and blend them
to final output. Therefore, the similar structure can naturally be applied to solve
motion estimation for VFI with flexibility, as in Figure 2 (Right). This structure
can arbitrarily divide a difficult large task into multiple simple small tasks, and a
CNN-based module is utilized to solve the sub-problem in each pyramid layer. In
this way, the optical flows would be iteratively refined by residual flows with the
same network, which avoid over-reliance on datasets and network complexity.

Therefore, a flexible Recurrent Residual Pyramid Network (RRPN) is pro-
posed in this paper. In the training phase, we design a multi-layers recurrent
pyramid network, in which each pyramid layer shares same structure and weight-
s. As mentioned before, the residual learning strategy is used in the pyramid
network to gradually refine the flow. Hence, each pyramid layer is named as re-
current residual layer (RRL). Occlusion maps, which are also generated in this
recurrent and residual way, are applied to the warped images before fusion to
solve occlusion better. In the testing phase, the RRL can be easily applied more
times than that in training phase. Moreover, in order to improve the details and
sharpness of the output frame, a refinement network is presented after the pyra-
mid, which simultaneously takes the warped frames, warped contextual feature,
warped edge maps and occlusion maps as input. The contextual feature and the
edge maps are extracted via pre-trained VGG19 [33] and HED [40].

The entire network is trained end-to-end using more than 80K collected frame
groups. Experimental results demonstrate that the recurrent residual approach
can achieve state-of-the-art performance on several datasets, including Middle-
bury [2], UCF101 [34], Thumos15 [16] (720P videos), ActivityNet [8] (1080P
videos) and H.266 4K test sequences [5, 35], with higher flexibility and low-
er complexity. In particular, the proposed method shows superior performance
when facing with large motion cases that not contained in the training data.

2 Related Work

Common frame interpolation approaches usually generate intermediate frames
with an intermediate motion estimation step [21], which usually is optical flow [29,
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36, 12]. In this section, we mainly discuss recent learning-based VFI and optical
flow estimation algorithms.

Video frame interpolation. Deep voxel flow [21] estimates a 3D optical
flow across space and time, to samples pixels from adjacent frames. However,
inaccuracies in voxel flow estimation lead to unsatisfactory results sometimes.
Van et al. [1] combine DVF with coarse-to-fine architecture to achieve better
results, while its performance is still limited by the number of the pyramid
levels. Niklaus et al. [27] utilize a CNN to combine motion estimation and
pixel synthesis into a single convolution step. They estimate spatially-adaptive
convolution kernels for each pixel to synthesize a intermediate frame. While
their prediction are limited by the size of adaptive kernels when faced with
large motion. Bao et al. [4] first warp input frames by optical flow and then
estimate kernels to sample pixels, which inherits the benefits from both flow-
based and kernel-based approaches. Jiang et al. [15] estimate bidirectional flow
between two frames, and then synthesize intermediate flow fields to generate
the intermediate frame at the arbitrary time step . Liu et al. [20] propose a
cycle consistency loss to make synthesized frames more reliable by reconstructing
input frames with synthesized frames. Recently, Zhang et al. [43] effectively
uses spatio-temporal information contained in multiple frames to generate high-
quality intermediate frames.

Optical flow estimation. As a pioneer of CNN-based methods, Dosovit-
skiy et al. [7] develop two network architectures of FlowNetS and FlowNetC,
which proved that a U-Net [32] architecture can be used to predict optical flow
effectively. Ilg et al. [13] design a much larger FlowNet2 based on FlowNetS and
FlowNetC to achieve better performance. In addition to the supervised learning,
learning optical flow using CNNs in an unsupervised way has also been explored
[19, 23, 30, 37]. Recently, many deep networks are designed by considering classi-
cal principles of optical flow, such as coarse-to-fine strategy and iterative residual
refinement, and have achieved better results with less computation [12, 29, 36].

3 Proposed Approach

Given consecutive two input frames I = {I0, I1}, the goal of VFI is to predict the
intermediate frame It at the temporal location t in between I0 and I1, t ∈ (0, 1).
Let us assume F = {Ft→0, Ft→1} to represent the predicted optical flow from
It to I0 and I1. The intermediate frame It can be synthesized through warping
two frames guided by these flow and then fusing them as follows:

It = Mt←0 ⊗ w(I0, Ft→0) +Mt←1 ⊗ w(I1, Ft→1), (1)

where w(·, ·) denotes a backward warping function, which can be implemented
using bilinear interpolation [21] and is differentiable. M = {Mt←0,Mt←1} denote

occlusion maps of the two warped frames, where
1∑

i=0

Mt←i(i, j) = 1, Mt←i(i, j) ∈

[0, 1]. (i, j) denote the pixel coordinate and ⊗ denotes element-wise multiplica-
tion. Occlusion areas often results in artifacts in the warped frames. Therefore,
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Fig. 3. Left : A Residual Pyramid Network with several residual layers (RL) to de-
tect residual flows between warped images at each pyramid level. Right : Overview of
the Recurrent Residual Pyramid Network (RRPN), which utilizes the single recurrent
residual layer (RRL) with shared weights at each pyramid level to iteratively update
optical flows. Moreover, a refinement network that combines edge information and
contexture feature are used to enhance the final output.

occlusion masks [15, 42] are estimated and only pixels that are not occluded are
used in interpolation.

3.1 Recurrent Residual Pyramid Network (RRPN)

Pyramid framework is commonly used in traditional computer vision and pat-
tern recognition tasks, which can effectively divide a difficult task into multiple
simple tasks, especially for motion estimation. Residual learning strategy is al-
so useful in many CNN-based image restoration methods that utilize a global
residual connection to improve the convergency and force the networks to learn
the high-frequency details. To inherit the benefits of these effective strategies, we
first present a residual pyramid network similar to FIGAN [1], in which a series
of base-networks are composed in coarse-to-fine manner to refine VFI results,
as shown in Figure 3 (Left). In each pyramid layer, residual displacement are
predicted from warped images, and then propagate to higher resolution layers of
the pyramid to update optical flows. Hence, the optical flows are gradually im-
proved until high-quality optical flows are obtained at full resolution. In order to
avoid error propagation in the iterative process, all warped images are resampled
by updated optical flows from original input at each pyramid level, rather than
being resampled by residual flows from warped images. Therefore, the unsuper-
vised motion information are kept track of, composed, and passed through the
network instead of being absorbed into warped images. By refining optical flows
and occlusion masks with residual flows and residual masks at each pyramid
level, the estimation accuracy of motion and occlusion can also be increased.
Note that the values of initial flows and masks are 0 and 0.5, respectively.

However, this fixed residual pyramid network still cannot well handle a wide
variety of VFI scenes in the wild, because different numbers of pyramid layer-
s should be set for videos with different resolutions. Moreover, increasing the
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layers of residual pyramid network also lead to larger amount of parameters.
Hence, design of numbers of pyramid layers becomes another difficult question.
One common way is to carefully select the number of layers to make a bal-
ance between performance and computational complexity. However, a pyramid
with fixed layers either is insufficient to deal with complex larger motion cases,
or increases computational redundancy for easy smaller motion cases. In order
to address this problem in a flexible and efficient way, we propose a Recurrent
Residual Pyramid Network (RRPN) based on weight sharing strategy. Each layer
of the pyramid uses the same network with shared weights to detect the residual
displacement of warped images. Therefore, the number of pyramid layers can be
customized according to the application scenario to achieve a trade-off between
calculations and quality.

The structure of proposed RRPN is shown in Figure 3 (Right), which adopts
similar architecture as the residual pyramid network. However, each pyramid
layer adopts the same base-network with shared weights in recurrent way, named
Recurrent Residual Layer (RRL). Finally, a refinement network is presented to
further enhance the details of final output with contextual and edge information.
Let u(·) be the upsampling function using bilinear interpolation. Ik denotes the
image from k-th layer of the image pyramid. βk denotes the ratio of the resolution
between Ik and Ik−1. Mk, mk, F k and fk denote occlusion mask M , residual
mask m, optical flow F and residual flow f , respectively. At the k-th level of the
pyramid, F k and Mk can be described as follows,

fk,mk = RRL(w(Ik, u(βkF k−1)), u(βkF k−1), u(Mk−1)) (2)

F k = u(βkF k−1) + fk (3)

Mk = u(Mk−1) +mk (4)

3.2 Recurrent Residual Layer (RRL)

As shown in Figure 4, RRL estimates the residual displacements between warped
images to gradually refine optical flows rather than directly predicts the flows or
frames. The backbone of RRL is a U-Net architecture. (The configuration details
are provided in the supplementary material.) Moreover, the feature extractor
consists of 3 convolutional layers and the context network is design based on
dilated convolutions, which has 4 convolutional layers with dilation constants of
[2, 4, 8, 1]. The spatial kernel for all convolutional layers above is 3 × 3 except
the first hierarchy of U-Net encoder, which adopts 7× 7 kernels.

In this paper, we train a 3-level RRPN with the same RRL at each pyramid
level to enforce the RRL to learn residual displacement detection. This results
in a single effective unsupervised optical flow predictor RRL that can be applied
multiple times across pyramid structure. The predicted flows are visualized in
Figure 5. We can observe that residual flows and residual masks can be effec-
tively predicted to refined the optical flow and occlusion masks in coarse-to-fine
way, in spite of using the same RRL at each pyramid layer. Note that the RRL
can be easily applied more times in testing phase than that in training stage,
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Fig. 4. Illustration of the RRL and only the target frame at each pyramid level is
used as supervisory signal. The RRL uses the same siamese convolutional layer as
feature extractor to provide good features to establish correspondence, particularly in
the presence of shadows and lighting changes. Moreover, context network is also used
to post-process the residual flow and mask[36].

(a) Input two frames

(c) Predicted flows and mask from the second layer

(d) More acurrate flows and masks from the third layer

(b) The ground truth and our final output

Fig. 5. Samples of predicted flows and masks from a 3-level Recurrent Residual Pyra-
mid Network that indicates the single RRL can gradually refine the result.

and the performance continues to increase until saturation. This implies that
RRL can help to achieve better performance with flexibility. In addition, this
compact and flexible method also sheds the reliance on large motion datasets.
By inheriting the merits of traditional pyramid framework, the RRPN can ar-
bitrarily decompose large prediction task into multiple simple small prediction
tasks. Therefore, the RRL can be only trained to learn small increment motion
estimation and does not require a dataset which covers a wide range of motion.

3.3 Refinement Network

To further enhance the visual quality of output frame, a refinement network,
which consists of 3 residual blocks, is added after the last layer of the recurrent
residual pyramid to predict the residuals between the ground-truth frame and
the blended frame. Generating the final output via blending two warped frames
with occlusion maps usually leads to the loss of rich contextual information [25].
Meanwhile pixels with larger gradients tend to have large errors [20]. Therefore,
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Fig. 6. Illustration of the refinement network.

we use conv1 layer of a pre-trained VGG19 [33] and side-output1 of HED [40]
to extract the contextual feature and the edge map of original frames. Then
we concatenate the warped input frames, occlusion maps, output flows, warped
contextual feature, and warped edge maps as input, as shown in Figure 6.

3.4 Loss Function

For each pyramid layer of d-level RRPN, we denote the interpolated frame by Îkt
and its ground truth by Ikt . Moreover, Ît and It denote the output of refinement
network and the target frame, respectively. We mainly use Reconstruction loss
and Edge-aware smoothness loss in this paper.

Reconstruction loss lr1 and lr2 [15, 21, 3] are traditional MAE loss functions,
where pixel values are normalized into the range [-1, 1].

lr1 =

d∑
k=1

∥∥∥Ikt − Îkt ∥∥∥
1

(5)

lr2 =
∥∥∥It − Ît∥∥∥

1
(6)

Edge-aware smoothness loss ls [10], which is a spatial coherence regulariza-
tion, is added to encourage neighboring pixels to have similar flow values. As
flow discontinuities often occur at image gradients, we weight this cost with an
edge-aware term by means of image gradients, where Nk is the number of pixels
at each pyramid level and (i, j) denote the pixel coordinate.

ls =

d∑
k=1

1

Nk

∑
i,j

∥∥∂xF k
ij

∥∥ e−‖∂xI
k
t,ij‖+

∥∥∂yF k
ij

∥∥ e−‖∂yI
k
t,ij‖ (7)

Finally, the loss function lRRL and lrefinement are defined as follow, the
parameters are empirically set as λr = 1, λs = 0.01, d = 3.

lRRL = λrlr1 + λsls (8)

lrefinement = lr2 (9)



A Flexible Recurrent Residual Pyramid Network for VFI 9

4 Experiments

4.1 Training

Training Dataset. For training, we collect 60-fps videos with a resolution of
1280× 720 from YouTube, which contain a great variety of scenes. Then videos
are split into triplets of three frames and all frames are resized to have a shortest
dimension of 480. For each triplet, the middle frame serves as the ground truth
while the other two are inputs. To have more challenging samples for training,
we only select triplets with useful information, especially large motion. Hence we
calculate optical flow between input frames using DIS flow [18] to drop samples
with no or little motion. Finally, approximately 80,000 triplets are selected, 4000
samples are used for validation and 4000 samples are used as testing data for
model analysis among them. We augment the training data by randomly crop-
ping patches with a size of 352 × 352, flip each patch vertically or horizontally,
and swap the temporal order.

Implementation Details. We pre-train the RRL and refinement network
in turn, and then fine-tune the entire model. Adam [17] is used to optimize the
proposed network. We set the β1 and β2 to 0.9 and 0.999 and use a batch size
of 8. The learning rate is initialized to be 1e− 4, 1e− 5 for pre-train stage and
fine-tune stage respectively, and decreased by a factor of 10 every 15 epochs.
Batch normalization [14] is adopted on RRL for accelerating convergence. We
train our network to interpolate intermediate frame at t = 0.5 temporal location
in all experiments. Moreover, we train our model on an NVIDIA Tesla V100
GPU, which takes about one day to converge.

4.2 Evaluation Datasets and Metrics

The proposed method is evaluated on on several independent datasets with d-
ifferent resolutions, including UCF101 (240P), Middlebury benchmark (480P),
our testing data (480P), Thumos15 (720P), ActivityNet (1080P) and H.266 4K
test sequences [5, 35].

UCF101 (240P). Videos from UCF101 are low resolution and relatively
easy to interpolate intermediate frames. So we select videos with obvious motion
using DIS flow, which are more difficult than that used in DVF [21].

Middlebury benchmark (480P). Since the interpolation category of the
Middlebury optical flow benchmark is typically used for assessing frame inter-
polation methods, we submit our frame interpolation results to its website.

Thumos15 (720P), ActivityNet (1080P) and H.266 test sequences
(4K). To verify the performance of our approach in high-resolution videos, we
select 25 720P videos from Thumos15 test data, 20 1080P videos from Activi-
tyNet data and all 6 4K (3840×2160) test sequences of VVC (H.266) video codec
standard. These high-resolution videos contain a variety of situations, such as
small and large movement, motion blur, global motion, and occlusion.

Metrics. PSNR, SSIM [38] and the interpolation error (IE) [2], which is
defined as root-mean-square difference between the ground-truth and the pre-
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(a) Input two frames and the ground truth (red box)

(b) Optical flows and interpolation result of RRPN-L1

(c) Optical flows and interpolation result of RRPN-L3

Fig. 7. Examples for the effectiveness of customizing the number of pyramid levels.

Table 1. Impact of the number of pyramid
layer.

PSNR SSIM IE

UCF101(240P) RRPN-L1 w/o R 34.64 0.960 6.06
RRPN-L2 w/o R 34.72 0.962 5.98

Our test set(480P)
RRPN-L1 w/o R 30.74 0.878 8.62
RRPN-L2 w/o R 31.75 0.913 7.95
RRPN-L3 w/o R 31.80 0.913 7.92

Thumos15(720P)
RRPN-L1 w/o R 33.56 0.936 7.89
RRPN-L2 w/o R 34.50 0.946 7.04
RRPN-L3 w/o R 34.65 0.951 6.83
RRPN-L4 w/o R 34.69 0.951 6.78

Table 2. Effectiveness of the re-
finement network (test on 480P).

PSNR SSIM IE

RRPN-L2 w/o R 31.75 0.913 7.95

RRPN-L2 (basic R) 31.78 0.910 7.93

RRPN-L2 (edge R) 31.83 0.913 7.89

RRPN-L2 (context R) 31.86 0.915 7.85

RRPN-L2 (whole R) 31.90 0.916 7.86

diction, are used to evaluate the quality of interpolated video frame. Lower IE
indicate better performance.

4.3 Model Analysis

We analyze the contribution of the two key components in the proposed mod-
el: recurrent residual pyramid architecture and refinement network. UCF101
(240P), our testing data (480P), and Thumos15 (720P) are used here.

Customizing the number of pyramid layers for the RRPN. To ana-
lyze the flexibility and effectiveness of the RRPN, we customize a series of RRP-
Ns with different number of pyramid layers and then evaluate their performance
on several datasets with various resolutions. Note that refinement network is not
used for all these models in this testing. Table 1 shows the impact of the number
of pyramid layers on interpolation performance. ’-Lx’ indicates the number of
pyramid layers.

We can see that the quality of the interpolation can be improved by means of
more pyramid layers, although each layer of the pyramid is with same network
and weights. Moreover, when facing with large resolution (large motion) cases on
Thumos15 (720p) dataset, using four RRLs can continue to increase the perfor-
mance although this RRL is originally trained on a 3-level RRPN. These verify
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w/o R basic R

edge R context R whole R

Fig. 8. Examples (’Evergreen’ on the Middlebury set) for the effectiveness of refinement
network. The context and edge maps can help produce sharper results in the highly
textured region.

RRPNMEMC-NetSepconv-LFSlomoPhaseBased

Ground truth DVFMDP-flowDeepflow

Fig. 9. Challenging sample results from our
selected UCF101 dataset.

PSNR SSIM IE

MDP-Flow2 [41] 34.49 0.959 6.37
DeepFlow [39] 34.40 0.957 6.44
Phase-Based [24] 33.65 0.946 6.83
SepConv-LF [27] 34.62 0.959 6.30
DVF [21] 34.13 0.956 6.35
Slomo [15] 34.59 0.960 6.06
DAIN [3] 34.75 0.963 5.93
MEMC-Net [4] 34.70 0.963 5.95

RRPN-L1 (Match for 240P) 34.73 0.962 5.95
RRPN-L2 34.76 0.962 5.93

DVF [21] ToFlow [42] DAIN [3] RRPN-L1

PSNR 34.12 34.58 34.99 34.76

Table 3. Comparison on our UCF101
dataset (Top) and the UCF101 dataset
(256 × 256) used in DVF [21] (Bottom).

the core idea of the RRPN and indicate our approach can can flexibly deal with
large motion. Figure 7 provides a visualization of optical flows and interpolated
frames for large motion cases. We can observe that the single RRL can only
detect small displacements, so there are obvious artifacts in the hand and ball
with large motion in Figure 7(b). But it can divide large displacement prediction
into multiple simple small displacement predictions in pyramid recurrent way to
gradually capture large motion, as shown in Figure 7(c).

However, the performance improvement brought by increasing the numbers
of pyramid layers would gradually reaches saturation. As the Table 1 shows, one
layer is sufficient for 240P frames, but the 480P and 720P frames may require
2 and 3 layers, respectively. Therefore, the flexibility of the RRPN is not only
reflected in large motion cases, but also in making trade-offs between calculations
and quality for cases of different difficulty levels.

Impact of the refinement network. In this part, four variants of refine-
ment networks: whole refinement network (whole R), refinement network with-
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Inputs MDP-flow CtxSyn  SepConv SloMo ToFlow MEMC-Net RRPN-L2

Fig. 10. Visual comparisons on the Middlebury benchmark. The proposed method
reconstructs a clear shape of the ball.

Table 4. Evaluation on the Middlebury(480P). The RRPN-L2 has comparable perfor-
mance with DAIN in terms of IE and NIE but with fewer parameters and calculation.

AVERAGE Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen

IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE

SepConv [27] 5.61 0.83 2.52 0.54 3.56 0.67 4.17 1.07 5.41 1.03 10.2 0.99 5.47 0.96 6.88 0.68 6.63 0.70
ToFlow [42] 5.49 0.84 2.54 0.55 3.70 0.72 3.43 0.92 5.05 0.96 9.84 0.97 5.34 0.98 6.88 0.72 7.14 0.90
Slomo [15] 5.31 0.78 2.51 0.59 3.66 0.72 2.91 0.74 5.05 0.98 9.56 0.94 5.37 0.96 6.69 0.60 6.73 0.69
CtxSyn [25] 5.28 0.82 2.24 0.50 2.96 0.55 4.32 1.42 4.21 0.87 9.59 0.95 5.22 0.94 7.02 0.68 6.66 0.67
MEMC-Net [4] 5.24 0.83 2.47 0.60 3.49 0.65 4.63 1.42 4.94 0.88 8.91 0.93 4.70 0.86 6.46 0.66 6.35 0.64
DAIN [3] 4.86 0.71 2.38 0.58 3.28 0.60 3.32 0.69 4.65 0.86 7.88 0.87 4.73 0.85 6.36 0.59 6.25 0.66
RRPN-L2 4.93 0.75 2.38 0.53 3.70 0.69 3.29 0.87 5.05 0.94 8.20 0.88 4.38 0.88 6.50 0.65 6.00 0.62

out context and edge maps (basic R), refinement network without context maps
(edge R) and refinement network without edge maps (context R), are added
behind RRPN-L2 to test our 480P test set. The quantitative results and inter-
polated images are shown in Table 2 and Figure 8, which demonstrate context
and edge maps can improve the performance and reproduce sharper results.

4.4 Comparison with State-of-the-art Methods

In this section, our approach is compared with state-of-the-art methods pub-
lished on Middlebury benchmark, including MDP-Flow2 [41], DeepFlow [39],
Phase based approach from [24], SepConv [27], DVF [21], recent Super-Slomo
[15], MEMC-Net [4] and DAIN [3]. For all these methods, we use the source
code or pre-trained models from the original papers. For optical flow methods,
we apply the interpolation algorithm presented in [2]. UCF101 (240P), Middle-
bury (480P), Thumos15 (720P), ActivityNet (1080P) and H.266 test sequences
(4K) are adopted for evaluation here.

UCF101. In this part, we utilize RRPN with one layer (RRPN-L1) to com-
pare with other state-of-the-art methods on our UCF101 dataset. The quanti-
tative results are shown in Table 3. RRPN-L1 has comparable performance and
outperforms most methods in low resolution cases with fewer parameters. More-
over, the performance of RRPN-L1 on the UCF101 dataset (256 × 256) used
in DVF [21] is consistent with results of our UCF101 dataset, while samples in
our UCF101 dataset have larger motion. Sample interpolation results from our
UCF101 can be found at Figure 9.

Middlebury. The image resolution in Middlebury is around 640 × 480 pix-
els. Therefore, we use RRPN with just two layers (RRPN-L2) to test eight
sequences provided by the Middlebury benchmark, and submit our frame inter-
polation results to its website. Normalized Interpolation Error (NIE) is also used
on the Middlebury. In Table 4, we show the comparisons on the EVALUATION
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Table 5. Results on the Thumos15 720P (Left) and ActivityNet 1080P (Right).

PSNR SSIM IE

DeepFlow [39] 33.65 0.946 7.67
Phase-Based [24] 32.77 0.927 8.42
SepConv-LF [27] 33.73 0.940 7.79
DVF [21] 33.46 0.937 8.03
Slomo [15] 33.81 0.943 7.98
MEMC-Net [4] 33.96 0.948 6.99
DAIN [3] 34.53 0.950 7.02

RRPN-L3 34.77 0.951 6.73

PSNR SSIM IE

SepConv-LF [27] 28.86 0.883 12.00
DVF [21] 28.88 0.874 12.98
Slomo [15] 29.04 0.891 11.71
MEMC-Net [4] 29.20 0.890 11.57
DAIN [3] 29.29 0.892 11.44

RRPN-L3 30.13 0.898 10.93
RRPN-L4 30.08 0.902 10.68

Table 6. Results on the H.266(VVC) 4K
(3840 × 2160) test sequences.

PSNR SSIM IE

SepConv-LF [27] 32.74 0.939 7.48

DVF [21] 32.81 0.937 7.41

Slomo [15] 33.54 0.948 6.98

MEMC-Net [4] 33.62 0.947 6.94

RRPN-L4 34.86 0.960 6.25

RRPN-L5 (Match for the resolution) 35.28 0.9616.11

Table 7. Comparisons on parameter and
runtime (test on 480P).

#Parameters (million)Runtime (seconds)

SepConv [27] 21.6 0.15
MEMC-net [4] 70.3 0.10
Slomo [15] 39.6 0.14

RRPN-L2 6.1 0.12
RRPN-L2 w/o R 4.8 0.06

RRPN-L3 6.1 0.12
RRPN-L3 w/o R 4.8 0.07

set of the benchmark. The proposed model not only outperforms representa-
tive non-neural methods based on optical flow, such as Deep flow, MDP-flow2,
Epicflow [31], but also performs favorably against recent CNN-based approach-
es, like CtxSyn [25], ToFlow [42], Slomo, Sepconv, MEMC-Net. Our network
with just two pyramid layers here balance calculations and quality well, which
has comparable performance with DAIN [3] but with fewer parameters. Sample
interpolation results from ’Backyard’ sequences are shown Figure 10.

High resolution videos. For Thumos15 (720P), ActivityNet (1080P) and
H.266 (4K) test data, we use RRPN with three layers (RRPN-L3), four lay-
ers (RRPN-L4) and five layers (RRPN-L5) to interpolate intermediate frames,
respectively. As reported in Table 5 and 6, our approach can achieve superior
performance in higher resolution videos, which reflects the advantages of custom
pyramid layers in dealing with large motion. Qualitative comparisons are shown
in Figure 11 and 12. For super large motion cases that have not included in train-
ing data, the RRPN can produce visually pleasing results with fewer artifacts,
while other methods tend to produce significant artifacts.

Computational efficiency. We list the number of model parameters and
execution time (640 × 480 image, a Tesla V100 GPU) of each method in Table
7. Please see supplementary material for more network details. Compared with
representative state-of-the-art methods, the proposed model is more compact
and run faster. The RRPN-L2 has 71% fewer parameters than SepConv and
save 20% execution time. Morover, the RRPN-L2 w/o refinement network can
further save 21% parameters and 50% runtime.

5 Conclusion

Motivated by classical pyramid energy minimization optical flow algorithm, this
paper proposed a compact and flexible network to handle large motion for video
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Ground truth

SlomoMEMC-Net

RRPN-L2

Sepconv-LF

RRPN-L3 RRPN-L4

Fig. 11. Sample interpolation results from ActivityNet (1080P) videos. The proposed
method can better restore the shape of the motorcycle, which is an challenging example
with large motion.

 RRPN-L5MEMC-Net  RRPN-L2  RRPN-L3

Ground truth SlomoSepconv-LF

Fig. 12. Sample interpolation results from H.266 (4K) test data. Our method can
gradually capture large motion for the 4K video examples, in which the pole and the
baby carriage closer to the camera have larger motion. While other approaches produce
significant artifacts on these super large motion cases that are not considered. Please
see supplementary material for more image and video comparison.

frame interpolation, named Recurrent Residual Pyramid Network (RRPN). The
proposed RRPN adopts the same Recurrent Residual Layer (RRL) with shared
weights at each pyramid layer to predict residual flows in between warped images.
Therefore, the RRPN can customize the number of pyramid layers according
to different video resolutions and thus make trade-offs between complexity and
visual quality. Moreover, a refinement network is introduced to further enhancing
details of the interpolated frame. Experiments demonstrate that the RRPN is
more flexible and efficient than current SOTA methods but has fewer parameters.
Acknowledgement:Thanks to National Natural Science Foundation of China
61672063 and 61972129, Shenzhen Research Projects of JCYJ20180503182128089
and 2018060-80921419290.
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