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Abstract. In this paper we propose a new intermediate supervision
method, named LabelEnc, to boost the training of object detection sys-
tems. The key idea is to introduce a novel label encoding function, map-
ping the ground-truth labels into latent embedding, acting as an auxil-
iary intermediate supervision to the detection backbone during training.
Our approach mainly involves a two-step training procedure. First, we
optimize the label encoding function via an AutoEncoder defined in the
label space, approximating the “desired” intermediate representations
for the target object detector. Second, taking advantage of the learned
label encoding function, we introduce a new auxiliary loss attached to
the detection backbones, thus benefiting the performance of the derived
detector. Experiments show our method improves a variety of detection
systems by around 2% on COCO dataset, no matter one-stage or two-
stage frameworks. Moreover, the auxiliary structures only exist during
training, i.e. it is completely cost-free in inference time.
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1 Introduction

Object detection is one of the fundamental problems in computer vision. In
deep learning era, modern object detection networks [32, 11, 23, 24, 14, 38, 30, 31]
are composed of two main components: one is the backbone part f(·; θf ), which
generates the intermediate embedding from each image; the other part is the
detection head d(·; θd), to extract instance information (i.e. class label as well
as the corresponding bounding box) from the intermediate representation. To
learn the parameters θf and θd, earlier work like [15] proposes to optimize them
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separately on different datasets respectively. However, most of recent state-of-
the-art detection frameworks [11, 32, 23, 30, 26] suggest joint optimization of
the backbones and detection heads for simpler pipeline and better performance,
formulated as follows:

θ∗f , θ
∗
d = arg min

θf ,θd

E(I,y)∼D Ldet (d(f(I; θf ); θd), y) , (1)

where (I, y) stands for a pair of image and ground-truth label; D is the dataset
distribution; and Ldet(·, ·) represents the detection loss, which is usually com-
posed of classification terms and bounding-box regression terms [32].

Typically, the backbone part f(·; θf ) contains too many parameters, thus
may be nontrivial or very costly to be directly optimized in the detection dataset
[46, 34, 22, 13]. A common practice is to introduce pretraining, for instance, ini-
tializing θf in Eq. 1 with ImageNet pretrained [32, 30, 31, 23, 26, 24] or self-
supervised [7, 12] weights. Though such pretraining-then-finetuning paradigm
has been demonstrated to achieve state-of-the-art performances [14, 4], however,
we find that only pretraining backbone weights θf may be suboptimal for the
optimization. Since the weights in detection head θd are still randomly initial-
ized, during training, gradient passed from the detection head to the backbone
could be very noisy, especially in the very beginning. The noisy gradient may
significantly harm the pretrained weights, causing slower convergence or poorer
performance. Actually, such degradation has been observed in many codebases
and a few workarounds are also proposed. For example, a well-known workaround
is to freeze a few weight layers in the backbone during finetuning to avoid un-
stable optimization [32, 11]; however, it seems still insufficient to fully address
the issue.

In this paper, we propose to deal with the problem from a new direction –
introducing an auxiliary intermediate supervision directly to the backbone. The
key motivation is, if we can provide a feasible supervision in the training phase,
the backbone part could be effectively optimized even before the detection head
converges. We formulate our method as follows:

θ∗f , θ
∗
d = arg min

θf ,θd

E(I,y)∼D Ldet (d(f(I; θf ); θd), y) + λR(f(I; θf ), y), (2)

where R(f(I; θf ), y) means the auxiliary loss attached to the outputs of the
backbone, which is independent to the detection head d(·, θd) thus not affected
by the latter’s convergence progress. λ is the balanced coefficient.

The core of our approach thus includes the design of R(·, ·). Intuitively, the
auxiliary supervision aims to minimize the distance between latent feature rep-
resentation and some “ideal” embedding of the corresponding training sample.
However, how to define and calculate the desired representation? Some previous
works, especially Knowledge Distillation [17] methods, suggest acquiring the in-
termediate supervision from more powerful teacher models; nevertheless, whose
representations are not guaranteed to be optimal. Instead in this work, for the
first time, we point that the inverse of the underlying optimal detection head
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(i.e. d−1(y; θ∗d)) could be the feasible embedding, which traces the ground-truth
label y back to the corresponding latent feature. More discussion will be referred
in Sec. 3.

Motivated by the analyses, in our proposed method LabelEnc, we intro-
duce a novel label encoding function to realize R(·, ·) in Eq. 2, which maps the
ground-truth labels into the latent embedding space thus providing an auxiliary
intermediate supervision to the detector’s training. Label encoding function is
designed to approximate d−1(y; θ∗d), since the underlying optimal parameters θ∗d
and the “inverse form” d−1(·) in the latter’s formulation are nontrivial to be
directly derived in mathematics. Thus our method in general involves a two-step
training pipeline. First, to learn the label encoding function, we train an Au-
toEncoder architecture, embedding the ground-truth labels into the latent space
according to the (approximated) optimal detection head. Second, with the help
of the learned label encoding function, we optimize Eq. 2 under the auxiliary
supervision R(f(I; θf ), y); in addition, initial weights in the detection head θd
can also inherit from the AutoEncoder instead of random values for more stable
optimization.

We evaluate our method on various object detection systems. Under different
backbones (e.g. ResNet-50, ResNet-101 [16] and Deformable Convolutional Net-
works [9, 47]) or detection frameworks (e.g. RetinaNet [24], FCOS [38] and FPN
[23]), on each of them our training pipeline achieves significant performance gains
consistently, e.g. ∼2% improvements on COCO [25] dataset. More importantly,
our method is completely cost-free in inference time, as the auxiliary structures
only exist during training. Please refer to Sec. 4 for detailed results.

In conclusion, the major contributions of our paper are as follows:

– We propose a new auxiliary intermediate supervision method named La-
belEnc, to boost the training of object detection systems. With the novel
label encoding function, our method can effectively overcome the drawbacks
of randomly initialized detection heads, leading to more stable optimization
and better performance.

– Our method is demonstrated to be generally applicable in most of modern
object detection systems. Compared with previous methods like [21, 47, 34],
though various auxiliary losses are also introduced, usually those methods
rely on specified backbone architectures or detection frameworks. Further-
more, though the underlying formulations appear to be somewhat complex,
the implementation of our approach is relatively simple. Code will be released
soon.

2 Related Work

Auxiliary supervision. Auxiliary Supervision is a common technique to im-
prove the performance of the model in indirect ways, e.g., weight decay, Center
Loss [41], etc. Among various auxiliary supervision methods, Multi-task Learn-
ing (MTL) [5] methods are used commonly. MTL solves multiple tasks using a
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single model. By sharing parameters between the tasks, inductive bias is trans-
ferred and better generalization is gained. In object detection, Mask R-CNN
[14] combines object detection with instance segmentation by adding a simple
mask branch to Faster R-CNN model [32]. The MTL strategy can improve the
performance of the detection branch efficiently, but it requires additional mask
annotation. [20], on the contrary, does not need additional annotations, but it
requires carefully-designed auxiliary tasks.

Deeply Supervise is another common method of auxiliary supervise. Instead
of introducing additional tasks, Deeply Supervise introduces supervision on ad-
ditional layers. DSN [19] first proposes the concept by adding additional super-
vision on the hidden layers. Inception [36] also uses similar auxiliary classifiers
on lower stages of the network. In semantic segmentation, PSPNet [45] and Ex-
Fuse [44] adopt Deeply Supervise in order to improve the low-level features. In
object detection, DSOD [34] utilizes Deeply Supervise with dense connections
to enable from-scratch training. In our method, we adopt the idea of Deeply
Supervise by proposing a label encoding function, with which we can map the
labels into latent embedding for auxiliary intermediate supervision.

Knowledge distillation. our method shares some common inspiration with
Knowledge Distillation [17, 33, 43, 40]. In Knowledge Distillation, the training is
a two-step process. A large teacher model is trained first. Then its predictions
are used to supervise a smaller student model. Knowledge Distillation has been
used in several fields, e.g., face [27], speech [37], re-id [8]. There are several
works focusing on object detection as well: [6] uses balanced loss on classification,
bounded loss on regression and L2 loss on feature; [47] and [21] propose their
distillation methods based on RoIs; [39] so that distillation focuses on object-
local areas.

From the distillation perspective, the label encoding function is the teacher
model in our pipeline. It is trained in the first step and utilized for supervision in
Step 2. But it is a relatively simple architecture and does not involve feature in
real world. On the contrary, traditional distillation models rely heavily on a big
teacher model. Usually, the stronger the teacher model is, the better distillation
performance it can give. However, teacher models with high performance are not
always available in practice. The state-of-the-art models are the best teachers
we can find. This limits the performance of traditional distillation.

Label encoding. There are several works that use label encoding to boost
training [3, 1, 35, 42]. However, few evaluate in supervised object detection task.
Among them, our method is most similar to [28]. [28] uses an AutoEncoder to
model the labels of semantic segmentation. The AutoEncoder is then used to
perform auxiliary supervision. Compared with our method, there are two main
differences: first, in object detection, label structures hardly exist. Segmentation
has rich information in label structures thanks to the outline of regions in an-
notation, e.g. a cat has a long tail, a thick body and a small head. Whereas in
object detection, such structures are very limited, since all objects are just boxes
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with different scales and aspect ratios. Second, we propose a joint optimization
scheme that introduces auxiliary structures for training AutoEncoder, which we
empirically find vital to the performance. Whereas in [28], the AutoEncoder is
trained independently.

3 Method

3.1 Intermediate Auxiliary Supervision

As mentioned in the introduction, the core of our method is to define the su-
pervision term R(·, ·) in Eq. 2, which is expected to provide feasible supervision
to the backbone training. Intuitively, the auxiliary loss should encourage the
latent feature generated by the backbone network to be close to some “ideal”
embedding T (I, y) for each training sample:

R(f(I; θf ), y) = Ldis(f(I; θf ), T (I, y)), (3)

where Ldis(·, ·) represents the distance measurement. Therefore, a problem rises:
how to define the so-called “ideal” feature T (I, y)? Obviously, the calculation
of T (I, y) cannot directly rely on the training of the detection head d(·; θd),
otherwise it may be unstable and redundant to the existing detection loss Ldet.

Let us think for a further step. If we have finished the optimization in Eq. 2 via
some way, i.e. the corresponding optimal weights θ∗f and θ∗d have been obtained,

we can intuitively define the inverse of the detection head d−1(y; θ∗d) as the
“optimal” intermediate embedding. So,

R(f(I; θf ), y) = Ldis(f(I; θf ), d−1(y; θ∗d)). (4)

We argue that the definition of R(·, ·) is feasible because if the auxiliary loss
tends to zero, it is easy to verify that the detector will predict the ground truth
y exactly. Unfortunately, Eq. 4 cannot be directly used in the optimization.
First, to substitute Eq. 4 into Eq. 2, we find θ∗d exists in both side of the
equation – we cannot determine the value in advance. Second, even though
θ∗d is given, the inverse form d−1(·; θ∗d) is still difficult to be calculated due to
the high nonlinearity of neural networks (actually the inverse is generally not
unique).

We deal with the second problem firstly. Notice that for any y, we have
d−1 ◦ d(y; θ∗d) ≡ y. Motivated by this, to approximate d−1(·; θ∗d) we introduce a
new network h(·;ψ), whose parameters are learned by the optimization:

ψ∗ = arg min
ψ

E(I,y)∼D Ldet(d(h(y;ψ); θ∗d), y). (5)

Here, Ldet(·, ·) is the detection loss, following the definition in Eq. 1. Intuitively,
h(·;ψ∗) maps the ground truth label y into the latent feature space and d(·; θ∗d)
recovers the label from the latent representation. So, we say that h(·;ψ∗) approx-
imates the “inverse” of d(·; θ∗d). It is worth noting that the composite function
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(h◦d)(·;ψ∗, θ∗d) actually represents an AutoEncoder defined in the label space.
Thus we name h(·) as label encoding function. Thanks to the approximation, we
rewrite Eq. 4 as follows:

R(f(I; θf ), y) = Ldis(f(I; θf ), h(y;ψ∗)). (6)

Then we come back to the first problem. In Eq. 6, note that the optimization
of ψ∗ still implies θ∗d (Eq. 5). So, in our formulations (Eq. 2, 6 and 5) there still
exists the recursive dependence on θ∗d. To get out of the dilemma, we use an
unrolling trick, i.e. recursively substituting Eq. 6 and Eq. 5 into Eq. 2. Thus
we obtain the final formulations (please refer to the appendix for the detailed
derivation):

θ∗f , θ
∗
d = arg min

θf ,θd

E(I,y)∼D Ldet (d(f(I; θf ); θd), y) + λLdis(f(I; θf ), h(y;ψ∗)),

(7)
where

ψ∗ = arg min
ψ

E(I,y)∼D Ldet(d(h(y;ψ); θ̂d), y),

s.t. θ̂d = arg min
θ′d

[
min
θ′f

E(I,y)∼DLdet(θ′f , θ′d) + λLdis(f(I; θ′f ), h(y;ψ))

]
.

(8)

Here Ldet(θ′f , θ′d) is short for Ldet(d(f(I; θ′f ); θ′d), y).
Eq. 7 and Eq. 8 compose the core idea of our method. The formulations

actually imply a two-step training pipeline. In the first step, by optimizing the
auxiliary AutoEncoder defined in Eq. 8, we obtain an encoding function h(·;ψ∗)
mapping the ground-truth label map y into the latent space. Then in the second
step, we train the detection framework with the intermediate supervision of
h(y;ψ∗), as described in Eq. 7. In the next subsections, we will introduce the
optimization details.

3.2 Step 1: AutoEncoder Training

In this subsection we aim to derive the label encoding function h(·;ψ∗) via Eq. 8.
However, directly solving Eq. 8 is not easy – since ψ exists in both the target
and the constraint, it is actually a bilevel optimization problem, which seems
nontrivial to be implemented with current deep learning tools. Therefore, we
propose to relax the formulation into joint optimization scheme, as follows:

ψ∗, θ̂d = arg min
ψ,θ′d

min
θ′f

E(I,y)∼D Ldet(d(h(y;ψ); θ′d), y)

+ λ1Ldet(d(f(I; θ′f ); θ′d), y) + λ2Ldis(f(I; θ′f ), h(y;ψ)),

(9)

where λ1 and λ2 are balanced coefficients, while in our experiment we just triv-
ially set them to 1. It is clear that Eq. 9 simply corresponds to a multi-task
training paradigm with three loss terms: the first one is reconstruction loss (L1)
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for the label’s AutoEncoder; the second term is the common detection loss (L2),
which enforces d(·; θ′d) to be a valid detection head; the third loss (L3) mini-
mizes the gap between the two latent spaces (namely the outputs of the backbone
f(·; θ′f ) and label encoding function h(·;ψ) respectively).

L3 Shared 
Detection Head

Label Encoding 
Function

Detection Backbone

Ground Truth

Image

𝑦

𝐼

𝑓(𝐼; 𝜃’()

ℎ(𝑦; 𝜓) 𝑑(ℎ 𝑦; 𝜓 ; 𝜃′.)

𝑑(𝑓 𝐼; 𝜃’( ; 𝜃/.)

L1

L2

ℎ(⋅; 𝜓)

𝑓(⋅; 𝜃’()

𝑑(⋅; 𝜃/.)

Fig. 1. Step 1: AutoEncoder training. L1 – AutoEncoder reconstruction loss; L2 –
detection loss; L3 – distance minimization loss; please refer to Eq. 9 for details. The
solid and dashed lines indicate the forward and backward flows respectively

Fig. 1 illustrates the implementation and optimization of Eq. 9. According
to Eq. 9, the same detection head d(·; θ′d) is applied in both L1 and L2 terms
– which is why we mark “shared detection head” in Fig. 1. It is also worth
noting that we forbid the gradient flow from L3 to the label encoding function
h(·;ψ). The motivation is, in Eq. 8 (which is the original form of Eq. 9), the
optimization of θ′d does not directly affect ψ, thus we follow the property in the
implementation. We empirically find the above details are critical to improve the
final performance.

Initialization. Before optimization, we follows the common practice of initial-
ization method, i.e. using pretrained weights (e.g. pretrained on ImageNet [10])
for backbone parameters θ′f and Gaussian random weights for ψ and θ′d. One
may argue that according to the introduction, randomly initialized detection
head d(·; θ′d) may cause unstable training. But actually, since this training step
mainly aims to learn the label encoding function h(·;ψ), the detection backbone
f(·; θ′f ) and the detection head d(·; θ′d) are thus “auxiliary structures” in this
step, whose performances are not that important. Furthermore, as we will intro-
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duce, the architecture of h(·;ψ) is relatively simple, so the optimization seems
not difficult.

3.3 Step 2: Detector Training with Intermediate Supervision

Auxiliary Loss

Detection Head

Label Encoding 
Function

Detection Backbone

Ground Truth

Image

𝑦

𝐼

𝑓(𝐼; 𝜃!)

ℎ(𝑦; 𝜓∗)

𝑑(𝑓 𝐼; 𝜃! ; 𝜃#)

ℎ(⋅; 𝜓∗)

𝑓(⋅; 𝜃!)

𝑑(⋅; 𝜃#)

Detection Loss

Fig. 2. Step 2: Detector training with intermediate supervision. Please refer to Eq. 7 for
the detailed definitions. The solid and dashed lines indicate the forward and backward
flows respectively

After the label encoding function h(·;ψ∗) has been learned, we then use it as
the intermediate supervision to improve object detector training, according to
Eq. 7. Fig. 2 illustrates the implementation. In addition to the common detection
loss, we introduce an auxiliary loss λLdis(f(I; θf ), h(y;ψ∗)) to directly supervise
the detection backbone. The coefficient λ is also trivially set to 1. Besides, Eq. 7
also suggests that ψ∗ is fixed rather than optimization variable. So, we block
the gradient flow from the auxiliary loss to h(·;ψ∗), as shown in the figure.
After training, the auxiliary structure – h(·;ψ∗) – is then removed. The resulted
(f ◦ d)(·; θ∗f , θ∗d) is the learned object detector we expected.

Another important detail on the implementation is initialization. From Eq. 7
and Eq. 8 we know that in the two training steps, the detection backbones f(·)
and the detection heads d(·) shares the same network architecture respectively,
however, whose parameters are not necessarily the same. So, in Step 2, we reini-
tialize the the backbone parameters θf (using ImageNet pretrained weights, for
instance) before training. As for the detection head parameters θd, empirically

we find that initializing them with the corresponding parameters θ̂d learned in
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Step 1 (see Eq. 9) results in better performance and stable convergence. It may
be because the pretrained detection head can provide less gradient noise to the
backbone, compared with the randomly initialized heads.

3.4 Implementation Details and Remarks

Ground-truth label representation. As mentioned above, in both two train-
ing steps the label encoding function h(·) needs to take ground-truth labels y as
the network inputs. It is nontrivial because in detection task, each image con-
tains different numbers of instances, each of which may have various class labels
and bounding boxes. We have to produce a fixed-length label map that contains
all the ground-truth information for each image.

We propose to use a C×H×W tensor to represent the ground-truth objects
in one image, where H ×W equals to the image size and C is the number of
classes in the dataset (e.g. 80 for COCO [25] dataset). For an object of the c-th
class, we fill the corresponding region (according to the bounding box) in the
c-th channel with positive values: the value ranges from 1 at the object center
to 0.5 in the box boundary, which decays linearly. Fig. 1 and Fig. 2 visualize the
encoding. Specially, if two bounding boxes of the same class overlap with each
other, the joint region is filled with larger values of those calculated separately.
Additionally, in training, the boxes are augmented by multiplying a random
number between 0 and 1 with a probability of 0.5. Other values in the tensor
remain to be zeros.

Architecture of label encoding function. For ease of optimization, we use
relatively simple architecture to implement h(·). The design of the structure
is inspired by ResNet [16], while the number of residual blocks in each stage
reduces to {1, 2, 2, 1} respectively. In addition, the Max Pooling layer is replaced
by stride convolution. The input channels is set to 80 to satisfy the number of
classes in COCO [25] dataset. Batch Normalization [18] is not used here. We
use the same architecture for all experiments in the paper. Please refer to the
appendix for details.

Multi-scale intermediate supervision. Recently, state-of-the-art detection
frameworks like [23, 24, 38] usually introduce Feature Pyramid Networks (FPNs)
to generate multi-scale feature maps, which greatly improves the capacity to
detect objects of various sizes. Our approach can be easily generalized to multi-
scale cases. First, we attach one FPN structure to the label encoding function
h(·) so that it can produce multi-resolution representations. Then in both Step
1 and Step 2, we make the intermediate supervision terms Ldis(f(I), h(y)) (see
Eq. 9 and Eq. 7) applied on all the scale levels. As shown in the following
experiments, our method can effectively boost the detection frameworks with
FPNs.
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Distance measurement. In Eq. 7 and Eq. 9, the distance measurement term
Ldis(·, ·) is used to minimize the difference between two feature maps. One simple
alternative is to use L2-distance directly. However, there are several issues as
follows: 1) the sizes of the two feature maps may be different; 2) since the feature
maps are generated from different domains respectively, directly minimizing their
difference may suffer from very large gradient. So, we propose to introduce a
feature adaption block into the distance measurement, which is defined as follows:

Ldis(xf ,xh) , min
φ
‖LN(A(xf ;φ))− LN(xh)‖2 , (10)

where LN(·) means Layer Normalization [2]; ‖·‖ is L2-distance; xf and xh are
feature maps derived from the backbone and the label encoding function respec-
tively. A(·) represents feature adaption network, which acts as the transformer
between the two domains. We implement A(·) with three convolution layers,
whose kernel size is 3 × 3 and number of channels is 256. The parameters φ
are learned jointly with the outer optimization. Similar to h(·), A(·) is also an
auxiliary structure thus will be discarded after training.

4 Experiment

4.1 Setup

All our experiments are done with PyTorch [29]. We use COCO [25] dataset
to evaluate our method. Following the common practice [23, 24], we train our
models with the union of 80k train images and a subset of 35k validation images
(trainval35k). We test our models in the rest 5k of validation images (minival).
All results are evaluated with mmAP, i.e. mAP@[0.5,0.95], using common single-
scale test protocol. For both training and inference, we resize each images to 800
pixels on the shorter edge. The training batch size is a total of 16 in 8 GPUs.
We mainly use so-called 1× schedule for training, which refers to 90k iterations
with two learning rate decays at 60k and 80k iteration. We use almost the same
training protocol for our Step 1 and Step 2 training, as well as all the counterpart
baseline models respectively, with two exceptions: for Step 1, we find that adding
L3 from the beginning cause L3 to be nearly zero. The network somehow finds
a way to cheat, causing terrible results. So we add an additional 30k warmup
iterations without L3, which we find sufficient to solve the problem; for Step 2,
we remove the auxiliary loss in the last 10k iterations, which results in minor
improvements. Since our training pipeline involves two steps, the total number
of the iterations thus doubles. For fair comparison, we provide 2× schedule for
baseline models as well, which refers to 180k iterations with two learning rate
decays at 120k and 160k iteration.

4.2 Main Results

In order to show the effectiveness of our model on different detection frame-
works, we evaluate our method on RetinaNet [24], FCOS [38] and FPN [23],
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Table 1. Experiments on various baselines (mmAP/%)

Model Backbone Baseline(1x) Baseline(2x) Ours

RetinaNet [24]
(our impl.)

ResNet50 36.1 36.4 38.4
ResNet101 38.1 38.6 40.3
Res101-DCN 40.6 41.1 42.1

FCOS [38]
(our impl.)

ResNet50 36.7 37.0 38.9
ResNet101 38.8 39.2 41.2
Res101-DCN 41.9 41.9 43.2

FPN [23]
(our impl.)

ResNet50 36.8 37.3 38.8
ResNet101 38.9 39.6 40.9
Res101-DCN 41.8 42.7 43.2

which are representative baselines of one-stage detectors, anchor-free methods
and two-stage frameworks respectively. We also evaluate our method on vari-
ous commonly-used backbones, including ResNet-50, ResNet-101 [16] and De-
formable Convolutional Networks (DCNs) [9].

Results are presented in Table 1. Compared with the counterparts with 1×
schedule, our method achieves performance gains of over 2% on both ResNet-50
and ResNet-101 backbones. On ResNet-101-DCN, there are still relative im-
provements of ∼1.4% in average. Compared with the baselines of 2× schedule,
the gap becomes closer but still remains considerable, which suggests that our
improvements are not mainly brought by more training iterations. It is worth
noting that although our training pipeline doubles the total number of iterations,
we argue that our label encoding function can usually be reused among different
backbones (see the next subsection). Therefore in practice, we usually only need
to run Step 1 only once for different models.

4.3 Ablation Study

Step 1: is joint optimization required? In Sec. 3.2, to optimize Eq. 9 we
propose a joint optimization scheme to take all the three loss terms into account.
Recall that in Step 1, only the learned label encoding function will be reserved
into the next stage. As a result, one may argue that whether the auxiliary struc-
ture, i.e. the detection backbone, is really necessary in training. In other words,
the question is, can we only use L1 (AutoEncoder reconstruction loss) in Eq. 9 for
this step? If it is true, the training step can be further simplified. Unfortunately,
we find it not the case.

To validate the argument, we conduct a comparison by removing L2 and L3
in Eq. 9 to derive the label encoding function. Other settings such as Step 2 keep
unchanged. The results are listed in Table 2, while the modified counterparts
are marked with “reconstruction loss only”. We compare them on RetinaNet
with ResNet-50 and ResNet-101 backbones. It is clear that, without the auxil-
iary backbone, our method (although still outperforms baseline models) shows
significant degradation in precision.
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Table 2. Ablation study of removing the auxiliary structures in Step 1

Backbone Methods mmAP (%)

ResNet50

Baseline (1×) 36.1
Baseline (2×) 36.4
Ours (reconstruction loss only) 36.9
Ours 38.4

ResNet101

Baseline (1×) 38.1
Baseline (2×) 38.6
Ours (reconstruction loss only) 39.0
Ours 40.3

Table 3. Comparisons of different detection backbones in Step 1

Step 1 Backbone Step 2 Backbone mmAP (%)

ResNet50
ResNet101

40.3
ResNet101 40.3

Discussion and remarks. In Step 1, although the existence of auxiliary struc-
tures is vital, we find the exact weights in the backbone are actually less impor-
tant. From Eq. 7 and Eq. 8, we know that θ′f does not affect the optimization of
θf directly. It only contributes to the optimization of ψ∗. Also, unlike θd which

is inherited from θ̂d for initialization, θf is reinitialized exactly in Step 2. There-
fore, the trained auxiliary detection backbone f(·; θ′f ) in Step 1 is completely
discarded.

The observation inspires an interesting assumption: is the final performance
actually insensitive to the detailed backbone architecture in Step 1? We try to
verify the guess by using different backbones in Step 1 and Step 2. As reported
in Table 3, we use ResNet-50 as the auxiliary backbone in the first step. Whereas
in Step 2, the final detection backbone is ResNet-101. Compared with the model
whose backbones in both stages are ResNet-101, the performances almost keep
the same. The new finding thus suggests another advantage of our method in
practice. The label encoding function h(·;ψ∗) can be pretrained once but re-
used for multiple detectors with different backbones, as long as they
have the same detection head. This property of our method greatly reduces the
cost of the practical applications.

Is Step 1 alone sufficient? In Step 1, we only aim to solve the label encoding
function for later intermediate supervision. However, the training framework in
Step 1 is quite similar to that in Step 2, and there is a detection model (the
auxiliary structure) that can be proceeded for testing. Intuitively, the detection
model in Step 1 should improve as well. One may even guess that Step 1 alone
is sufficient. We show the ablation in Table 4. We only use Step 1 and test the
performance of the detection model (the auxiliary structure). We compare them
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Table 4. Results of only using Step 1

Model Backbone Method mmAP (%)

RetinaNet ResNet50
Step1-only 37.9
Ours 38.4

FCOS ResNet50
Step1-only 38.0
Ours 38.9

FPN ResNet50
Step1-only 37.3
Ours 38.8

on multiple models with ResNet50 backbone. Step1-only can indeed improve the
detection model over baseline, but clearly it alone is not sufficient.

Step 2: do intermediate supervision and initialization matter? In Step
2, we use two methods to facilitate the optimization, i.e. intermediate supervision
on the backbone as well as the initialization of the detection head. In Table 5,
we show the ablation studies on them. The baseline framework is RetinaNet [24]
with ResNet-50 backbone. We also make the combinational studies of the case
that using reconstruction loss only in Step 1 (please refer to Table 2). The results
suggest that both methods contribute to the final performance.

Table 5. Intermediate supervision and initialization in Step 2

Step 1 Supervision Initialization mmAP (%)

ResNet50 Baseline 36.1

Ours
(reconstruction loss only)

X 36.9
X 35.8

X X 36.9

Ours
X 36.8

X 37.3
X X 38.4

4.4 Comparison with Knowledge Distillation

Our two-step pipeline resembles Knowledge Distillation (KD). Actually, if we
train an object detector alone in Step 1 instead of our label encoding function
with a joint framework, and use it in Step 2 for supervision, the method becomes
KD. In Table 6 we show comparison between our method and the alternative
mentioned above, denoted as “Vanilla KD”. On a lightweight backbone, i.e. Mo-
bileNet, our method can reach similar performance to Knowledge Distillation,
although we only use a label encoding function instead of a heavy ResNet-50 that
extracts “real” features. On a heavier backbone, i.e. ResNet-50, our method out-
performs KD with ResNet-50 and ResNet-101 as teachers, whose improvements
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Table 6. Comparison with Knowledge Distillation (%)

Backbone Method Teacher Network mmAP

MobileNet
Baseline - 27.7

Vanilla KD ResNet50 29.7
Ours Label Encoding Function 29.8

ResNet50

Baseline - 36.1
Vanilla KD ResNet50 36.8
Vanilla KD ResNet101 36.5

Ours Label Encoding Function 38.4

Table 7. Experiments on MaskRCNN (mmAP/%)

Backbone Method box mask

ResNet50
Baseline (1×) 37.4 34.2
Baseline (2×) 38.2 34.6
Ours 39.1 35.6

ResNet101
Baseline (1×) 40.0 36.0
Baseline (2×) 40.6 36.4
Ours 41.7 37.6

are limited due to the small performance gap between teacher and student.
Knowledge distillation requires a teacher network that is strong enough, which
is usually not easy to find when the student network is already strong. Our
method, on the other hand, is not limited by it.

4.5 Performance on Mask Prediction

Above we mainly focus on object detection. However, our previous discussion
when proposing the method (Sec. 1 and Sec. 3) is based on the structure and
optimization of detection networks, not object detection task itself. Thus it is
likely that our method can be extended to other tasks with similar framework.
We tested our method on Mask R-CNN [14], which produces mask prediction in
instance segmentation, but has a similar framework to FPN. It is worth noting
that for Mask R-CNN, we use masks instead of boxes as the input for label
encoding function. Results are presented in Table 7. It indicates our method
improves mask prediction as well.

5 Conclusions

In this paper, we propose a new training pipeline for object detection systems.
We design a feature encoding function and utilize it to introduce intermediate
supervision on the detection backbone. Our method is generally applicable and
efficient, adding no extra cost in inference time. To show its ability, we evaluate
it on a variety of detection models and gain consistent improvement.
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