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Abstract. Multi-class 3D object detection aims to localize and classify
objects of multiple categories from point clouds. Due to the nature of
point clouds, i.e. unstructured, sparse and noisy, some features benefit-
ting multi-class discrimination are underexploited, such as shape infor-
mation. In this paper, we propose a novel 3D shape signature to explore
the shape information from point clouds. By incorporating operations
of symmetry, convex hull and chebyshev fitting, the proposed shape sig-
nature is not only compact and effective but also robust to the noise,
which serves as a soft constraint to improve the feature capability of
multi-class discrimination. Based on the proposed shape signature, we
develop the shape signature networks (SSN) for 3D object detection,
which consist of pyramid feature encoding part, shape-aware grouping
heads and explicit shape encoding objective. Experiments show that the
proposed method performs remarkably better than existing methods on
two large-scale datasets. Furthermore, our shape signature can act as a
plug-and-play component and ablation study shows its effectiveness and
good scalability.1

1 Introduction

The success of autonomous vehicles in urban scene heavily relies on the ability to
handle the complex environments, where the accurate and robust perception is
the foundation. To achieve this, autonomous vehicles are equipped with various
sensors, including camera, radar and lidar, in which lidar is considered as the
most critical one. The lidar sensor could provide the accurate depth information
which is a significant advantage than image and thus lidar-based object de-
tection [36,13,40,37] also achieves greatly better performance than image-based
methods [4,32,14,19]. The mainstream 3D detection frameworks often focus on
the single-category detection, such as car or pedestrian, while in the real world
the autonomous vehicles need to detect multi-class objects simultaneously. In
this way, how to distinguish heterogeneous categories plays an indispensable
role in the success of multi-class 3D object detection.

1 Source code at SSN and also available at mmdetection3d soon.

https://github.com/xinge008/SSN
https://github.com/open-mmlab/mmdetection3d
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Fig. 1. We show an example of the point clouds of two objects belonging to different
categories. It is noted that they have different shapes and scales.

A natural idea to handle this challenge is to utilize the difference on appear-
ance or texture to distinguish different objects. Unfortunately, this approach is
not feasible for point clouds, due to its point-based representation lacking of
texture or appearance. An appealing alternative is to explore the shape infor-
mation to guide the discriminative feature learning. Fig. 1 shows an example
that demonstrates the shape difference between two categories. From the teaser,
we can find that the shape and scale vary with the categories. However, due to
the sparsity and noise of the point cloud, how to build the effective and robust
shape encoding remains a widely open question.

In this paper, we propose a novel shape signature for shape encoding, which
possesses two appealing properties, i.e. compact (effective and short as the
objective) and robust (robust against the sparsity and noise). Specifically, as
the scan of lidar often covers parts of object (e.g. two or three faces), we first
use the symmetry operation to complete the sparse points. Then we project the
points to three views of the object, including bird view, side view and front
view, for thoroughly modeling the shape information. Furthermore, the convex
hull is introduced to represent the shape of three views, making it robust to
the inner-sparsity. Based on the convex hull, we use an angle-radius strategy
to form the function of convex hull, in which each separate angle corresponds
to a radius from inner-center to contour. Finally, to make the shape encoding
compacter and more robust, we apply the Chebyshev fitting to perform the ap-
proximation on the function of angle-radius strategy, and then the final shape
encoding is formed by the coefficients of Chebyshev approximation. Note that
the proposed shape signature aims to keep the shape information consistent
(not same) within the same category and separate the shape distributions across
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different categories, which enables the shape signature serve as a soft constraint
for learning discriminative and class-specific features.

Based on the proposed shape signature, we develop the shape signature net-
works for multi-class 3D object detection. The basic idea is to incorporate the
shape information to better distinguish multiple categories. Specifically, SSN
consists of four components, point-to-structure, pyramid feature encoding part,
shape-aware grouping heads and shape signature objective. Here, shape-aware
grouping heads bring the objects with similar shape together, so as to share
weights based on the object size (e.g. bus and truck need a heavier head than
car); while shape signature acts as an auxiliary objective, thus benefitting the
feature capability of multi-category discrimination.

We tested the proposed framework on two large-scale datasets, nuScenes [3]
and Lyft [1] dataset, which contain multi-class objects, including car, bus, pedes-
trian, motorcycle and etc. On these experiments, SSN yields considerable im-
provement over existing methods, about 10% in NDS and 5% in mAP-3D, re-
spectively. We also make an in-depth investigation on the proposed shape signa-
ture, showing its good scalability with different backbone networks on different
datasets. TSNE visualization of shape signature vector also verifies its role of
soft constraint.

The contributions of this work mainly lie in four aspects: (1) We propose a
novel shape signature to explicitly explore the 3D shape information from point
clouds, which is compact but contains sufficient information, and robust against
the noise and sparsity. (2) We develop the shape signature networks (SSN) for
object detection from point clouds, which effectively perform the multi-class de-
tection through shape-aware heads grouping and shape signature investigation.
(3) We conduct extensive experiments to compare the proposed methods with
others on various benchmarks, where it consistently yields notable performance
gains. (4) The proposed 3D shape signature could act as a plug-and-play com-
ponent and be independent to the backbone. Experiments on different backbone
networks show its good scalability.

2 Related Work

Shape Representation Numerous works processing on this research area
have been made in recent decades. Johnson et al. [10] introduced a local shape
based descriptors on 3D point clouds called spin images. Based on spin image,
Golovinskiy et al. [8] incorporated the contextual features into shape descriptor.
While these local descriptors construct encoding resorting to the local neighbor-
hood, global descriptors [2,6,11,21] encode the geometric and structured infor-
mation of the whole 3D point cloud. IS [9] introduced an implict shape signature
for instance segmentation by using the auto-encoder to learn a low-dimensional
shape embedding space. Viewpoint Feature Histogram (VFH) [27] used the view-
point direction component and surface shape component to bin the point cloud
for shape encoding. However, most of them do not pursue the compact rep-
resentation and the robustness to the sparsity, which is the major difference
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between our shape signature and theirs. The proposed shape signature performs
the symmetry for completion, convex hull for inner sparsity and Chebyshev fit-
ting for short vector. The cooperation of these operations leads to the compact
and robust shape encoding.
3D Object Detection Most 3D object detection methods can be divided into
two groups: image-based methods and lidar-based methods. For the image-based
methods, the key insight is to estimate the reliable depth information to replace
lidar [32,14,19]. Monocular or stereo based depth estimation methods [35] have
greatly pushed forward the-state-of-art in this field. [33] introduced a multi-
level fusion method by concatenating the image and generated depth map. [22]
incorporated depth features including disparity map and distance to the ground
into the detection framework. However, although the image-based methods have
made significant progress, the performance of this type of methods still lags far
behind lidar-based methods.

Lidar-based methods are the mainstream of 3D detection task as lidar pro-
vides accurate 3D information. Most lidar-based methods process the unstruc-
tured point input in different representations. In [40,36,31], point cloud were
converted into voxels and a SSD [20] based convolution network was used for
detection. PointPillar [13] used the pillar to encode the point cloud with Point-
Net [26]. [5,38,16,12,34,15] converted point cloud data into a BEV representation
and then fed them into the structured convolution network. [28,39,24] introduced
the two-stage detector into 3D detection, where coarse proposals were first gen-
erated and then refine stage was used to get the final predictions. [25] used the
raw point cloud as input and extracted the frustum region reasoned from 2D
object detection to localize 3D objects. However, most of them focus on the
single-class detection, while neglecting to explore the multi-class discrimination.
Compared to these works, our proposed method differs essentially in that it effec-
tively explores the shape information, which plays a crucial role in distinguishing
multi-class objects.

3 Methodology

3.1 Overview

Given a point cloud, our goal is to localize and classify the multi-class target
objects. Unlike the single-class detectors, we desire to obtain a detector which
could effectively distinguish the objects from multiple categories. To this end,
we propose a multi-class 3D detection framework based on shape information
exploration. The basic idea is to utilize the shape information via two key ingre-
dients, i.e. shape signature objective and shape-aware grouping heads, to benefit
the multi-class classification.

As shown in Fig. 3, our framework consists of four components, i.e. point-to-
structure, pyramid feature encoding, shape-aware grouping heads and multi-task
objectives, where point-to-structure and pyramid feature encoding are flexible
(i.e. multiple options are available). The key components of SSN are the shape
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signature objective and the shape-aware grouping heads. Particularly, during the
training the shape signature objective could guide the learning of discriminative
features via back-propagation, benefitting the multi-class discrimination. After
training, the shape signature objective is no longer needed. In what follows, we
will present the details of shape signature and SSN.

3.2 Shape Signature

Given the ground truth points of object, we parameterize the shape information
of the object with the proposed shape signature, then apply the obtained shape
signature vector as a soft constraint to improve the feature capability of multi-
class discrimination. As mentioned above, the desired shape signature should
carry two properties: 1) compact and effective as a part of objective; 2) robust to
the sparsity and noise. To achieve this, we introduce several operations to handle
the issue of point clouds. As shown in Fig. 2, the shape signature contains two
components, shape completion and shape embedding, where shape completion
consists of Transform and Symmetry, and shape encoding involves Projection,
Convex Hull, Angle-Radius and Chebyshev Fitting.

Shape Completion Since the scan of lidar sensor only covers the partial ob-
servation, this property limits the shape investigation. We thus introduce the
shape completion to tackle this issue, which consists of following steps.
Transform. The points of target object are located in the scene. We first
transform the center of ground truth box to the origin point, and use the for-
warding direction as the reference axis.
Symmetry. Lidar scans could only cover two or three faces of object, thus
this partial observation would affect the investigation of shape. We introduce
the centro-symmetry to complete the partial view. From Fig. 2 (b), we can find
that after symmetry, the points of target object become more dense and the
observation gets complete.

Shape Embedding We then introduce following operations to achieve the
compact and effective shape embedding.
Projection. Given the completed points, we project the 3D points to three
2D views, i.e. bird view, front view and side view. Based on the projection, the
3D points are decoupled into several 2D planes, which could thoroughly describe
the 3D shape and benefit the reduction of parameters.
Convex Hull. After projection, we get 2D points of different views. However, it
can be found that the organization of 2D points is limited to effectively represent
the shape and there still exists the inner-sparsity. Hence, the convex hull is
introduced to characterize these 2D points and emphasize the contour of views,
thus being robust to the inner-sparsity. Furthermore, the contour of 2D points
also maintains the scale information, which is an important factor for multi-class
discrimination (see Fig. 2 (d)).
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Shape Completion Shape Embedding

Fig. 2. We show the workflow of the proposed shape signature. Two major compo-
nents, i.e. Shape Completion and Shape Embedding, are illustrated with two dashed
rectangles. Specifically, step (a) is to transform the center of box to the origin point.
(b) is the symmetry for completing the partial observation. (c) is to project the 3D
points into three views. (d) is to extract the convex hull to enhance the robustness to
sparsity. (e) is the Angle-Radius and step (f) is the Chebyshev fitting to get the final
shape vector. (Best viewed in color).

Angle-Radius. To describe the convex hull and highlight the contour shape
and scale, we design an angle-radius parametric function f(θ). We use the center
of ground truth box as the origin point σ and densely sample some angles θ. In

this way, the function f(θ) = dist(σ
θ−→ C), where C is the convex hull and dist

indicates the distance between origin point and intersection point (i.e. radius). In
the implementation, we sample 360 angles and calculate the radius accordingly.

From Fig. 2 (e) (see the aspect ratios), it is noted that the function f(θ)
involving the angle and radius does well in maintaining the shape and scale of
contour. However, the dense sampling also introduces the long vector (360 dimen-
sions) which is not desired for the objective. Hence, to shorten the long vector
representation and further enhance the robustness against the noise (e.g. some
outliers in the 2D points), we introduce the Chebyshev Fitting to process the
angle-radius function f(θ).

Chebyshev Fitting. Chebyshev Polynomials Fitting [23] provides an ap-
proximation that is close to the polynomial of best approximation to a function
under the maximum norm. Our goal is to apply the Chebyshev polynomials to
approximate the angle-radius function, and then use their coefficients to serve
as the final shape vector.

There are two kinds of Chebyshev polynomials fitting [23], and we use the
Chebyshev polynomials of first kind. The first kind Tn(x) is defined by the
recurrence relation:

T0(x) = 1, T1(x) = x, (1)

Tn+1(x) = 2xTn(x)− Tn−1(x). (2)
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Fig. 3. The pipeline of our framework SSN. Four major components are illustrated with
four dashed rectangles. The first one is the Point-to-Structure part, which converts the
raw points into the structured representation, such as voxels [36,40] or pillars [13].
The second is the pyramid feature encoding part. The third one is the shape-aware
grouping heads, which consist of multiple branches for objects with similar shape and
scale. The final part is the objective, including classification, localization and shape
signature regression. (Best viewed in color).

Hence, the generic formulation of Chebyshev approximation can be written as a
sum of Tn(x).

f(x) ≈
N∑
n=0

αnTn(x), (3)

where α are the coefficients. These coefficients can be computed with the formu-
las:

α0 =
1

N + 1

N∑
n=0

f(xn)T0(xn) (4)

αj =
2

N + 1

N∑
n=0

f(xn)Tj(xn) (5)

Since the number of coefficients in f(x) is 2N−1, we truncate α with top k terms.
For each view, top k coefficients are the shape vector. The final shape signature
is [α1, . . . , αk︸ ︷︷ ︸

Birdview

, α1, . . . , αk︸ ︷︷ ︸
Sideview

, α1, . . . , αk︸ ︷︷ ︸
Frontview

]. In the implementation, we use k=3 and

the dimension of final shape signature vector is 9, which is suitable to serve as
an objective for the network.

Some Extreme Cases. Due to the limitation of Lidar sensor and human
annotators, some ground truth boxes contain less than or equal to 5 points, even
0 point for incorrect labeling. For these boxes, it is hard to model the shape
information, and we thus use the average encoding of that category to represent
their shape vectors.
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3.3 SSN: Shape Signature Networks

Based on the proposed shape signature, we design the SSN to achieve the effec-
tive multi-class 3D detection. We first describe each component, especially two
key ingredients, i.e. shape-aware grouping heads and shape signature objective,
then we integrate different parts to form the unified target: exploring the shape
information to better distinguish multi-class objects.
Point-to-Structure. Since the organization of point cloud is unstructured,
the first step is to transform the point cloud to the structured representation. As
mentioned above, multiple options are available in this part, such as the voxel-
based [36,40] representation or pillar-based [13] or Bird-view representation [5].
After obtaining the structured representation, the subsequent 2D convolution or
3D convolution networks can be applied. In the implementation, we choose the
pillar-based representation to structure the point clouds. Furthermore, we also
test the shape signature with other structure representation (voxel-based) and
the proposed shape signature shows good scalability.
Pyramid Feature Encoding. We follow the idea of FPN [17] to perform the
feature encoding. A top-down convolutional network is first applied to extract
the feature from multiple spatial resolutions. Then all features are fused together
through upsampling and concatenation.
Shape-aware Grouping Heads. Since multi-class target objects vary sig-
nificantly in scale and shape, we propose the shape-aware grouping heads to
adapt this ideology for multi-class discrimination. The basic idea is to create
multiple heads, in which objects with similar scale and shape share the weights.
The reasons mainly lie in the following: 1) objects with different scale and shape
should have different heads. For example, the head of bus needs to be heavier
(or more deep) than the head of bike due to its large scale, because heavier head,
larger receptive field. 2) shape grouping heads could perform the coarse shape
exploration and also alleviate the effect from other groups.

As shown in Fig. 3, the design of shape-aware grouping heads follows the
spirit of “larger object, heavier head”. Based on the shape and scale of target
objects, we group the bus, truck and trailer together with a heavier head, and
gather bicycle and motorcycle with a lighter head, and treat the car with a
medium head. Each head only covers the prediction of corresponding categries.
By integrating above components, a SSD-based detection framework is formed.

3.4 Multi-task Objectives

In our framework, there are three objectives, i.e. multi-class classification, local-
ization regression and shape vector regression. For the multi-class classification,
we follow the previous work [36] to use the focal loss [18]

Lcls = −αt(1− pt)γ log(pt), (6)

where pt is the class probability of the default box and we use α = 0.25 and
γ = 2.
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For the localization loss, we use the smooth L1 loss to minimize the distance
between predictions and localization residuals [36].

Lloc = SmoothL1(4b), (7)

where 4b are the localization residuals, including the center (x, y, z), scale
(w, h, l) and rotation (θ).

Unlike regressing the residuals in localization, the network is trained to di-
rectly regress the shape vector. For the shape regression, we also apply the
smooth L1 loss.

Lshape = SmoothL1(S), (8)

where S is the shape vector.
The total objective of three tasks is therefore:

L = β1Lcls + β2Lloc + β3Lshape, (9)

where β are the constant factors of loss terms. As the shape loss is much larger
than localization and classification loss, we set β1 = 1.0, β2 = 1.0 and β3 = 0.5
to balance the value scale.

4 Experiments

4.1 Datasets

Two large-scale datasets, nuScenes dataset and Lyft dataset, are applied in ex-
periments. The details of two datasets are shown in the following.
NuScenes Dataset [3] It collects 1000 scenes of 20s duration with 32 beams
lidar sensor. The number of total frames is 40,000, which is sampled at 2Hz,
and total 3D boxes are about 1.4 million. 10 categories are annotated for 3D
detection, including Car, Pedestrian, Bus, Barrier, and etc.(details in the exper-
imental results). They also officially split the data into training and validation
set, and the test results are evaluated at EvalAI2. Furthermore, a new metric is
also introduced in nuScenes dataset, namely nuScenes detection score (NDS) [3],
which quantifies the quality of detections in terms of average classification preci-
sion, box location, size, orientation, attributes, and velocity. The mean average
precision (mAP) is based on the distance threshold (i.e. 0.5m, 1.0m, 2.0m and
4.0m). The whole range is about 100 meter, and we mainly use the range of
0-50m in full 360 degree.
Lyft Dataset [1] It contains one 40-beam roof lidar and two 40-beam bumper
lidars, and in the experiments, we only use the data from roof lidar. The data
format is similar to the nuScenes dataset. Total 9 categories are annotated for
detection, including car, emergency vehicle, motorcycle, bus, truck, and etc..
Total 22,680 frames are used as the training data, and test set contains 27,468

2 https://evalai.cloudcv.org/web/challenges/challenge-page/356/overview

https://evalai.cloudcv.org/web/challenges/challenge-page/356/overview
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frames while 30% of the test data is for validation in Kaggle competition3. The
evaluation metric is the mean average precision, which is similar to the metric
of COCO dataset but calculates the 3D IoU (with the threshold of 0.5, 0.55, 0.6,
0.65, ..., 0.95). Hence, we name it as mAP-3D, and it is worthy to note that
mAP-3D is much strict than mAP in nuScenes and Kitti [7].

4.2 Implementation Details

In our implementation, we use the pillar based [13] method to convert the point
cloud to the structured representation. For nuScenes dataset, the x, y, z range
is ([-49.6, 49.6], [-49.6, 49.6], [-5, 3]) and the pillar size is [0.2, 0.2, 8]. The max
number of pillars is 30,000 and max number of points per pillar is 20. For Lyft
dataset, the range is ([-89.6, 89.6], [-89.6, 89.6], [-5, 3]) and the pillar size is [0.2,
0.2, 8] too. The max number of pillars is 60,000 and max number of points per
pillar is 12.

For the anchors, we calculate the mean width, length and height of each class
and use birdview 2D IoU (width and length) as the matching metric; when the
matching between anchors and ground truth is larger than the positive thresh-
old, these anchors are positive, otherwise if the matching is smaller than neg-
ative threshold, they are negative anchors. The matching threshold is different
for different categories. During inference, the multi-class and rotational NMS is
employed, where multi-class NMS indicates applying NMS for each class indepen-
dently. For a fair comparison, no multi-scale training / testing, SyncBN and
ensemble are applied. For nuScenes dataset, online ground truth sampling [36]
is not used.

Network Details For the point-to-structure, we follow the network in [13],
where a simplified PointNet is used. It contains a linear layer, BatchNorm and
ReLU layer to handle the features of pillars. For the CNN feature encoding,
the FPN based module is introduced to extract the fused features. Three levels
of features are first upsampled with the transposed 2D convolution, and then
concatenated. For the shape-aware grouping heads, objects with similar shape
and scale share the same head. For bus, truck and trailer, a heavier head is
applied, where two downsample blocks process the features from FPN. Each
downsample block consists of 3x3 2D convolution layer with stride=2, followed
by BatchNorm and ReLU. For the lighter head (such as bicycle, motorcycle),
the block with stride=1 is used. For the medium head, one downsample block is
applied. Note that another block with stride=1 is followed in each downsample
block.

Optimization We use the Adam optimizer with cycle learning decay. The
maximum learning rate is 3e-3 and weight decay is 0.001. We train 60 epoches
and 80 epoches for nuScenes dataset and Lyft dataset, respectively; the batch
size is 2 for nuScenes and 1 for Lyft dataset.
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Table 1. Results of multi-class 3D detection on nuScenes dataset. “Trail”, “CV”,
”Ped” , “MC”, “Bicy”, “TC”, “Bar” indicates the trailer, construction vehicle, pedes-
trian, motorcycle, bicycle, traffic cone, and barrier respectively. Bold-face and underline
numbers denote the best and second-best respectively for single model

Methods Modality Car Truck Bus Trail CV Ped MC Bicy TC Bar mAPNDS

Mono [29] RGB 47.8 22.0 18.8 17.6 7.4 37.0 29.0 24.5 48.7 51.1 30.4 38.4

Second [36] Lidar 73.1 25.2 30.5 31.5 8.5 59.3 21.7 4.9 18.0 43.3 31.6 46.8

PP [13] Lidar 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9 30.5 45.3

Painting [30]Lidar&RGB 77.9 35.8 36.1 37.3 15.873.3 41.5 24.1 62.460.2 46.4 58.1

SSN Lidar 80.7 37.5 39.943.9 14.6 72.3 43.7 20.1 54.2 56.3 46.3 56.9

SSN + TTA Lidar 82.4 41.8 46.1 48.1 17.5 75.6 49.0 24.6 60.1 61.2 51.0 61.7

4.3 Results

Results on nuScenes dataset. In this experiment, we test our model on
nuScenes dataset and report the performance on the test set from official eval-
uation server. The results are shown in Table. 1. We give the detailed AP of
each category and other metrics. It can be found that SSN achieves about 15%
improvement in mAP and 10% in NDS compared to these lidar-based methods,
even for some small objects, such as pedestrian and traffic cone. Even compared
with the Lidar&RGB fusion method [30], our lidar-based model also achieves
comparable performance and performs better in the main categories of traffic
scenarios, such as Car, Truck, Bus and Motorcycle, etc. Note that the results
of PointPillar and Painting [30] are copied from the original papers and for Sec-
ond, we re-implement it under our setting and hyper-parameters are followed
with SSN. For bicycle, due to its sparsity and low height, it is difficult to specify
in the point cloud while it can be accessed in the image, thus the result of Bicy-
cle in image detection is better than the 3D detection. We further use the Test
Time Augmentation (TTA) to boost results, where we flip the input in x-axis,
y-axis and x-y-axis and fuse all four inputs to obtain the final results.

Results on Lyft dataset. For Lyft dataset, there is no official split of train-
ing set and validation set. Hence, we report the results on Kaggle competition
(30% test data is used for public validation but the host does not provide the
ground truth. We submit the outputs of SSN and our baseline model to obtain
the results). As Lyft dataset is a very new dataset, there is no official implemen-
tation. We re-implement PointPillar and Second to perform experiment on Lyft
dataset, and optimization method and anchor matching strategy follow the SSN.
Table. 2 shows the results of SSN and other existing methods on the test set.
SSN consistently achieves the better performance with about 5% improvement
compared to existing methods. Due to the strict metric (mAP-3D under IoU 0.5
to 0.95), the result on Lyft dataset is lower than nuScenes. Note that we only

3 https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles

https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles
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report the results of single model with single-scale training. The result on the
official websites is 18.1% which is applied with multi-scale training.
TSNE visualization. We use the TSNE to visualize the distribution of shape
signature in Figure. 4. Four categories in nuScenes, including Car, Truck, Mo-
torcycle and Ped, are sampled to display for a clearly visual effect. We sample 50
instances for each category, where 25 of them are with distance < 40 meters and
others are with distance > 40 meters. It can be observed that the discrepancy
across different classes is clear, which indicates the capability of our shape sig-
nature to separate the shape distribution across different categories. Meanwhile,
the distribution of shape signature within the same class differs with different
distance (points with distance < 40m and points with distance > 40m cluster
at different regions accordingly), which demonstrates the shape signature acts
as a soft (not hard) constraint and keeps the shape distribution consistent (not
same).

Table 2. Results on test set of Lyft
dataset

Methods Modality mAP-3D

PointPillar [13] Lidar 13.4

Second [36] Lidar 13.0

SSN Lidar 17.9

SSN + TTA Lidar 20.1

Table 3. Experimental results of ablation
studies on two key components on nuScenes
dataset

Methods mAP NDS

PointPillar [13] 29.4 44.9

+ Shape-aware Grouping Heads 40.6 51.3

+ Shape Signature 45.3 57.0

4.4 Ablation Studies

In this section, we perform the thorough ablation experiments to investigate the
effect of different components in our method, including shape-aware grouping
heads and shape signature, the scalability of the proposed shape signature with
various backbone networks, and comparison with other shape signature.
Effect of Different Components. In this experiment, we choose the Point-
Pillar as the backbone, and perform the ablation study by adding the compo-
nents step-by-step. Due to the limited submissions in the evaluation server, we
report the results on the official validation set of nuScenes dataset. As shown
in Table. 3, it can be found that two key components, shape-aware grouping
heads and shape signature, achieve the significant performance gain, with 6.4%
and 5.7% improvements in NDS respectively, which demonstrates that the shape
information does improve the multi-class detection.
Scalability of Shape Signature. To investigate the scalability of the pro-
posed shape signature, we perform a thorough study, where the shape signature
is combined with different backbone networks and tested on different datasets.
The detailed results are shown in Table. 4. For different backbone networks, we
use PointPillar and Second, which utilize the 2D convolution and 3D convolution
networks, respectively, and cover the mainstream in 3D object detection. It can
be found that the shape signature could greatly improve the performance for dif-
ferent backbone networks on various datasets. Furthermore, it also achieves the
consistent performance gain across different datasets, i.e. nuScenes, Lyft and
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Fig. 4. We show the distribution of our shape signature via TSNE. (Best viewed in
color).

Kitti [7] dataset. Note that the mAP-3D in Lyft is similar to COCO dataset,
which is much difficult than mAP in nuScenes and Kitti. From these two per-
spectives, we can find that the proposed shape signature does possess good
scalability and the exploration of shape information does improve the capability
of detection networks in the discrimination of multiple categories.

Shape-aware Grouping Heads v.s. One-to-One Heads. To verify the
effectiveness of the shape-aware grouping heads, we compare the shape-aware
heads to the one-to-one heads, in which each head covers one category. The dif-
ference between two types of heads is the shape information investigation. From
the results shown in Table. 5, it can be found that the shape-aware grouping
heads perform much better than one-to-one heads in both metric terms, which
further demonstrates the shape information benefits the multi-class discrimi-
nation. Moreover, the shape grouping strategy is also more effective than the
one-to-one strategy, which groups the objects with similar shape and scale to
aid the exploration of shape information.

Comparison with other Shape Signature. The previous work [9] pro-
vides an implicit shape representation for instance segmentation. We adapt this
approach into the point cloud segmentation and obtain the implicit shape signa-
ture with same dimension (“IS” is the notation). We compare the “IS” with our
shape signature (“SS”) in Table. 5. It can be found that our shape signature out-
performs the implicit shape signature with a large margin because “SS” better
handles difficulties from point cloud by completion and robustness enhancement.
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Table 4. Experimental results of ablation studies on the scalability of shape signature.
We perform the ablation with different backbones (PointPollar and Second) on three
datasets (nuScenes, Lyft and Kitti). Note that for nuScenes, we report the results on
the validation set and for Lyft, we report the results on the public test set in Kaggle.
For Kitti, we report the moderate mAP with IoU=0.7 on two categories (car and
pedestrian). “PP” denotes PointPillar and “SS” denotes our shape signature

Dataset Methods mAP NDS Dataset mAP-3D Dataset mAP@car mAP@ped

nuScenes

PP[13] 29.4 44.9

Lyft

13.4

Kitti

74.3 41.9
+ SS 36.6 49.8 16.2 76.2 43.5
Second[36] 31.1 46.9 13.0 73.7 42.6
+ SS 34.3 48.9 15.4 75.4 44.1

Table 5. Experimental results of Shape-aware grouping heads v.s. One-to-one heads
and Implicit shape signature v.s. our shape signature. O-to-O Heads and SG Heads
denote the one-to-one heads and shape-aware grouping heads, respectively

Methods PP [13] PP + O-to-O Heads PP + SG Heads PP + IS[9] PP + SS

mAP 29.4 32.0 39.1 31.4 36.6

NDS 44.9 46.2 51.0 46.7 49.8

Dimension of Shape Signature. We use top 3 coefficients of Chebyshev
approximation, because they principally and effectively cover the shape function.
For example, for the bird-view shape vector of a car (we show full coefficients),
[1.93, -0.65, 0.083, 4.68e-03, 1.064e-05, . . . ], it can be found that top 3 coefficients
contain the main knowledge and are appropriate as objective.

5 Conclusion

In this paper, we design a novel shape signature which acts as a soft constraint,
and thus aid the feature capability of multi-class discrimination. Two appeal-
ing properties are carried, i.e. compact and effective as the objective and ro-
bust against the sparsity and noise. Based on the proposed shape signature, we
develop the shape signature networks for object detection from point clouds,
which makes use of shape information to promote the multi-class detection,
through shape-aware heads and shape signature objective. We conduct exten-
sive experiments and ablation studies, which demonstrate our model achieves
state-of-the-art and the proposed shape signature keeps good scalability on var-
ious backbones.
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