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Abstract. Blind deblurring methods are sensitive to outliers, such as
saturated pixels and non-Gaussian noise. Even a small amount of out-
liers can dramatically degrade the quality of the estimated blur kernel,
because the outliers are not conforming to the linear formation of the
blurring process. Prior arts develop sophisticated edge-selecting steps
or noise filtering pre-processing steps to deal with outliers (i.e. indirect
approaches). However, these indirect approaches may fail when massive
outliers are presented, since informative details may be polluted by out-
liers or erased during the pre-processing steps. To address these problems,
this paper develops a simple yet effective Outlier Identifying and Discard-
ing (OID) method, which alleviates limitations in existing Maximum A
Posteriori (MAP)-based deblurring models when significant outliers are
presented. Unlike previous indirect outlier processing methods, OID tack-
les outliers directly by explicitly identifying and discarding them, when
updating both the latent image and the blur kernel during the deblurring
process, where the outliers are detected by using the sparse and entropy-
based modules. OID is easy to implement and extendable for non-blind
restoration. Extensive experiments demonstrate the superiority of OID
against recent works both quantitatively and qualitatively.
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1 Introduction

Single image blind deblurring is a well-known and ill-posed problem. It has drawn
a lot of attention due to large requirements in digital image processing. Image
blurring can be seen as a low-pass filtering process, resulting in distortion as
well as irreversible degradation of high-frequency information in images such as
edges and details [27]. Recent studies have shown promising results to deal with
the deblurring problem [2, 3, 7, 8, 13, 14, 17, 18, 20, 23–25, 28–30], which mainly
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(a) Inputs (b) Chen et al. [2]4 (c) Pan et al. [22] (d) Dong et al. [5] (e) Ours

Fig. 1. Comparisons of deblurring results when outliers are presented. Inputs in the first
and second rows contain impulsive noise and saturated pixels respectively. State-of-the-
art method [2] is ineffective encounter outliers. Recent outlier handling methods [5,22]
can ease the blur to some extent, but they are not as effective as our approach.

focus on two aspects including the MAP-based models that explore statistical
priors for natural images, and other models that select informative edges. Despite
the effectiveness of these methods, they are not able to recover blurred images
that contain significant amounts of outliers, as presented in Fig. 1. The main
reasons are that extracting edges in the presence of massive outliers is difficult,
and outliers tend to violate the linear formation assumption of the blurring
process [4, 22] given by,

B = I ⊗K + η, (1)

where B, I,K, and η represent the blurred image, latent sharp image, blur kernel,
and additive Gaussian noise, respectively. We use ⊗ to denote the convolution
operator.

There are two main types of outliers remain to be solved, including non-
Gaussian noise (e.g. impulsive noise) [1] and saturated pixels. Recent state-of-
the-art outlier-handling models [5,22] develop sophisticated edge-selecting skills
or designed specific fidelity term to cope with outliers. These techniques showed
their effectiveness in many cases. However, when the informative edges in the
images are difficult to extract, the edge-selecting approach will eventually fail
(Fig. 1 (c)). In the meantime, specially designed fidelity functions may not be
appropriate to fit the additive noise, which would lead to artifacts in the esti-
mated latent images when the noise is not properly handled [25]. This explains
the ineffectiveness of the method from [5] in the given examples (Fig. 1 (d)).

Instead of seeking useful edges or designing indirect functions to deal with
outliers, we solve the problem by resorting to a more effective framework, namely
outlier identifying and discarding (OID). To completely and precisely avoid the
side-effect brought by outliers, OID explicitly targets at polluted elements in
the fidelity term during the deblurring process and assigns predefined minimum
values for these elements. In this way, outliers are guaranteed not to contribute
within the MAP-framework. At the same time, the additive Gaussian noise can

4 Note that the input with impulsive noise is preprocessed with Gaussian filter for this
method before the deblurring process as reported in their paper.
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still be properly fitted using an l2 noise model. To be more specific, OID is in-
tegrated into both the updating steps of the latent image and the blur kernel in
an iterative manner during the deblurring process. OID is capable of revealing
potential outliers as well as neutralizing them during the deblurring process.
Compared to prior arts, OID does not require complicated pre-processing steps
or heuristic goodness-of-fit in function, and it enables massive outliers to be re-
moved as shown in Fig. 1 (f). Extensive evaluations on benchmark datasets and
real-world images demonstrate the superiority of OID against state-of-the-art
outlier deblurring methods, especially when the blurred image contains signifi-
cant outliers. The contributions of this work are three-fold.

• We propose outlier identifying and discarding (OID), a new strategy that
iteratively identifies and discards outliers in both the processes of updat-
ing the latent image and the blur kernel. Further theoretical explanation
validates the rationality of OID.

• OID employs continuous weights to indicate the probabilities of outliers,
which can well target at polluted pixels without sacrificing a proper noise
fitting model.

• OID can be effectively extended to the non-blind deblurring task. Exten-
sive experiments demonstrate the superiority of OID against state-of-the-art
methods in benchmark datasets and real-world blurry images.

2 Related Works

Outlier-handling blind deblurring methods. Many works [4–6, 10, 22, 26]
have been proposed to deal with outliers in the deblurring task. We review some
highly related blind deblurring approaches in this section.

Pan et al. [22] adopt a specially designed edge selecting strategy to find infor-
mative edges during image estimation step, and they also propose to cover more
potentially polluted areas after outliers are detected. However, problems come
with these strategies. When there exist massive outliers, selecting useful edges
turns out to be quiet difficult, and this method tends to overcover unpolluted
areas, leaving insufficient details to reveal the correct kernel. To avoid detecting
outliers directly, Dong et al. [5] develop a sophisticated data fidelity term to
suppress the side effect brought by outliers during deblurring steps. However,
this scheme neglects the contribution of a decent noise fitting model, which will
result in ringing artifacts in the estimated latent images [25]. In contrast to pio-
neer works, OID does not require any heuristic designs or strong regularization
priors, and it shows comparable or even better performance confronting outliers.
Outlier detection skills. Locating outliers in the deblurring process is not as
challenging as removing the side-effects brought by which. Intuitively, outliers
are highly correlated with residuals between blurred images and convolution
results of latent images and blur kernels: the higher the residuals values, the
more likely the corresponding elements are outliers. In this work, we propose to
indicate inliers and outliers in a more reliable approach. To be more specific,
elements are not assigned with binary weights, but positive weights ranging
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from 0 to 1, which can equally be viewed as probabilities of entries classified
as inliers. To predict the probabilities more faithfully, we employ a maximum
entropy regularization term, which serves to minimize the prediction bias [9]. The
final sigmoid alike weighting function complies with the intuitional assumption,
and it is replaceable with more potential outlier detecting methods.

3 Our Approach

In the real-world, blurry images are frequently degraded by other gross corrup-
tions besides small additive noise. The most common degradations are saturated
pixels and non-Gaussian noise [4]. While outliers often have significant effects
on the goodness-of-fit in (1) [5], both the kernel and latent image updating pro-
cesses will be misled by the incorrect elements in the fidelity term, the overall
framework is destined to fail ultimately. Meanwhile, the edge selecting work may
also fail since the edges of outliers are often more remarkable than inliers.

To make the MAP-based framework workable, a reasonable approach is to
explicitly exclude the polluted elements in the fidelity term. This idea can be
fulfilled by assigning different weights to elements: those classified as outliers are
assigned with weights equal to zero to make sure they do not contribute to the
deblurring process and vise versa for inliers. To avoid the overall optimization
framework to be stuck in bad local minima, we propose to use a continuous
weighting strategy instead of binary weights. The proposed strategy can also be
viewed as classifying with probabilities.

With regularization terms imposed on the latent variables, the solutions can
be obtained by optimizing the following equation,

{I,K,W} = argmin
∑
i

Wi|Bi − (I ⊗K)i|2 +RI(I) +RK(K) +RW (W ), (2)

where W denotes the weighting matrix, and i represents pixel location; RI(·),
RK(·) and RW (·) are regularization terms imposed on latent images, blur kernels
and weighting masks respectively. Here we use the l2 norm to fit the additive
noise same as the strategies from [2,19,23,29]. Compared to existing arts [5,22],
the formulation of OID is more simple, and it enables the additive noise to be
well modeled by an l2 function. Taking the straightforward formation of OID,
questions may be raised about its effectiveness. We show in the next subsection
that this model can easily fail unless it is solved with a proper updating strategy.

3.1 Observations

In this subsection, we show that locating outliers is not the only factor
that leads to the success of OID. Different updating strategies will re-
sult in totally different results. A naive approach to solve (2) is by updating
the three variables in a sequence (i.e. {I,K,W}) until converge. This approach
can be equally viewed as adding an outlier detecting step within the conventional
MAP framework. However, this naive strategy has an intrinsic defect. Take the
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Illustration of the proposed updating strategy and a naive approach mentioned
in Section 3.1. (a) Blurry input. (b)-(c) Intermediate outputs using the naive approach
and the proposed strategy. (d)-(e) Detected outliers (dark pixels) corresponding to (b)
and (c). (f)-(g) Outputs of the last updating sequence using the naive approach and the
proposed strategy. The naive approach detects incorrect outliers with multiple useful
edges, which accordingly leads to the failure case for the final results.

step of updating I for example, every optimization step will lead to the change
of the convolution output (i.e. I⊗K). Consequently, the residual (i.e. B−I⊗K)
and the corresponding outlier information (i.e. W ) change with the convolution
output, because the outlier information is highly associated with the residual as
mentioned in Section 2. Thus, the outdated outlier information is not applicable
for the next updating step (i.e. updating K). As a result, the kernel misled by
the incorrect outliers can be entirely different from the ground truth. Worse still,
the overall deblurring process may fail with its output kernel in a delta function
form. An example in Fig. 2 shows the limitation of this naive approach, where
the detected outliers (Fig. 2 (d)) deviates from what is correct, and the overall
process results in a delta kernel in the end (Fig. 2 (f)). More explanations of this
strategy are presented in Section 4.1.

Based on the findings, we propose to remove the side-effects of outliers with a
new updating approach. Especially, outliers should be re-identified in both steps
of kernel and image updating processes, and they are calculated as soon as the
latent variables (i.e. I and K) are updated. Moreover, because the re-identified
outliers may reversely lead to the change of the latent variables, we propose to
iteratively update the latent variables and outliers until convergence. The overall
updating strategy can be viewed as iteratively updating two inner loops (i.e.
{{W, I} , {W,K}},). Note that with this strategy, the outliers can be initialized
to be any value. The example shown in Fig. 2 illustrates the effectiveness of our
observations, in which outliers in the blurry image are detected substantially
correct (Fig. 2 (e)), and the final outputs (Fig. 2 (g)) are barely affected by the
outliers. Additionally, we give an extensive explanation to validate the rationality
of the proposed updating strategy in Section 4.1.

3.2 Proposed Method

Regularization terms for the image and blur kernel are not influential factors to
the problem. For a fair comparison, we impose the hyper-Laplacian prior [15]
on latent image the same as [5, 22], and we use a smooth constraint on the
blur kernel for computational simplicity. As for the weighting mask (i.e. W ),
we assume that the corresponding classification probability should follow the
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maximum entropy rule [9], and outliers (i.e. elements with small weights) are
sparse. The final OID model can be expressed as follows,

min
I,K,W

∑
i

Wi|Bi − (I ⊗K)i|2+λ‖∇I‖0.8 + θ‖K‖22 + α‖W‖1 + β
∑
i

(Wi logWi +Wi logWi),

s.t. Wi +Wi = 1,
{
Wi,Wi

}
∈ [0, 1] ,

(3)

where ∇ denotes gradient operator in horizontal and vertical dimensions (i.e.,
∇ = {∇h,∇v}); λ, θ, α and β are weighting parameters.

OID is developed to take advantage of clean elements while discarding ele-
ments polluted by outliers during the deblurring process, and it can benefit both
kernel and latent image updating processes. Questions may be raised about the
selection of sparse constraint on outliers. Although l0 norm is ideal for hosting
outliers, we use the l1 norm in our formulation with reasonable modification and
the computation complexity consideration. Please refer to our supplementary
material for more illustrations.

3.3 Optimization

As described in Section 3.1, the optimization process of OID is carried out by
iteratively minimizing following models,

min
I,W

∑
i

Wi|Bi − (I ⊗K)i|2 +RI(I) +RW (W ), (4)

min
K,W

∑
i

Wi|Bi − (I ⊗K)i|2 +RK(K) +RW (W ). (5)

We solve (4) by alternatively updating I and W while fixing the other, and
K is fixed during the phase. We use the same updating strategy to solve (5).
The overall process contains three individual optimization parts: the problems
referring to update I,K and W , respectively. We give a description for the
optimization details in the following subsections.

Optimizing the problem referring to I While fixing K and W , the problem
referring to I is given by,

min
I

∑
i

Wi|Bi − (I ⊗K)i|2 + λ|(∇I)i|0.8. (6)

We use the iteratively reweighted least squares (IRLS) method [15] to minimize
(6) for simplicity. At each iteration, we have the following equation to solve,

min
It

∑
i

Wi|Bi − (It ⊗K)i|2 + λPi|(∇It)i|2, (7)

where Pi = min{|(∇It−1)i|−1.2, ε}, the constant ε here is used to prevent 0 in
the denominator, and t represents the iteration index. When Pi are fixed, (7)
becomes a quadratic function, and we can efficiently solve it with a conjugate
gradient (CG) method. The whole process of IRLS can be seen as iteratively
updating weights (Pi) and the latent image.
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Fig. 3. Main steps of the proposed algorithm. The red and black dash lines denote
outer and inner iteration during the process, respectively. Note the weight map in the
kernel estimation step is different with which in the image updating step because it is
calculated in the gradient domain. We only show the map in the horizontal dimension.

Optimizing the problem referring to K To improve the accuracy of the
estimated kernel [3, 25, 29], we replace the intensity domain in the data fidelity
term by gradient domain. Removing the irrelevant terms, the blur kernel can be
obtained by solving the following equation,

min
K

∑
i

Wi|(∇B −∇I ⊗K)i|2 + θ‖K‖22. (8)

We use the CG method to solve the problem. We set its negative elements of K
to be 0 and normalize it after obtaining the kernel.

Optimizing the problem referring to W Picking out the terms relevant to
W and W results in the following optimization problem,

min
W,W

∑
i

Wi|Bi − (I⊗K)i|2 + α‖W‖1 + β
∑
i

(Wi logWi +Wi logWi),

s.t. Wi +Wi = 1,
{
Wi,Wi

}
∈ [0, 1] .

(9)

Decomposing (9) into a set of independent sub-problems, and meeting the first
constraint (i.e. replacing Wi with 1−Wi), we have,

min
Wi

Wi|Bi − (I ⊗K)i|2 + α(1−Wi) + β(Wi logWi + (1−Wi) log(1−Wi)). (10)

The closed-form solution of (10) can be given as,

Wi =

(
exp

(
|Bi − (I ⊗K)i|2 − α

β

)
+ 1

)−1

. (11)

Note that the solution in (11) meets the second constraint in (9) (i.e. Wi ∈ [0, 1]),
and it is in a standard sigmoid function form, which complies with our intuitive
assumption that the probabilities of elements being outliers vary inversely with
their corresponding residuals.

3.4 Overall algorithm

Our algorithm is implemented in a coarse-to-fine framework [3]. Since the out-
liers are largely removed by the down-sampling procedure, handling outliers in
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Algorithm 1: Blind image deblurring with massive outliers

Input: Image pyramid {B1, B2, ..., Bn} obtained by down-sampling the
input image B which is severely corrupted, and B1 = B.

1: Estimate coarse kernels (from Kn to K2) by iteratively updating
latent image and blur kernel without weighting matrix updating steps.

2: Upsample K2 as an initial kernel for the full resolution deblurring
process.

while iter = 1:maxiter do
repeat

3: Updating latent image using (6)
4: Updating weighting matrix using (9)

until I1 converges;
repeat

5: Updating blur kernel using (8)
6: Updating weighting matrix using (9)

until K1 converges;

end
7: With blur kernel K, we use the proposed non-blind deblurring method
to recover the final image I (i.e. conducting step 3 and 4 iteratively).

Output: Blur kernel K and sharp image I.

coarse image pyramids is unnecessary [31], and thus we deblur the coarse im-
age pyramids without the outlier detecting step. Only for the original resolution
pyramid B1, we apply the OID method. After the blur kernel is obtained, the
sharp image is recovered by our non-blind deblurring method. The overall de-
blurring steps are described in Algorithm 1. Our non-blind deblurring method
is by iteratively updating the latent image and weighting matrix as described in
steps 3 and 4. Main steps of the proposed algorithm are illustrated in Fig. 3.

4 Analysis

In this section, we give more explanations of the proposed updating strategy and
further provide an analysis of the effectiveness of the outlier handling method.
Please refer to our supplementary material for further analyses.

4.1 Explanation of the updating strategy

As described in Section 3.1, our proposed updating strategy is the main reason
that leads to the success of this method. Besides the intuitive explanation pro-
vided in Section 3.1, we here analyze the intrinsic differences between different
strategies.

Taking the process of solving (4) for an instance. For an individual element,
we here only focus on the fidelity term because it is most affected by the outlier.
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Fig. 4. (a) Energies of the data fidelity term correspond to different residua value (i.e.
Res(I) = B − I ⊗K) from different updating strategies. (b) Evaluations of different
outlier handling methods [4, 22] on the dataset [16] with increasing impulsive noise
(density from 0 to 0.95). (c) Average energy of (4). (d) Average kernel similarity [11].

(a) Input (b) Weights fixed (c) W/O iteration (d) Ours

Fig. 5. Deblurring results of different updating strategies. (b) is the naive approach
that iterates {I,K,W} in a sequence. (c) is the proposed approach without inner
iteration which iterates {W, I,W,K} in a sequence.

Replacing Wi with its formation in (11), we have,

min
Ii,Wi

Wi|Bi − (I ⊗K)i|2 = min
Ii

|Bi − (I ⊗K)i|2

exp( |Bi−(I⊗K)i|2−α
β

) + 1

= min
Res(Ii)

|Res(Ii)|2

exp( |Res(Ii)|
2−α

β
) + 1

s.t. Res(Ii) = Bi − (I ⊗K)i.

(12)

As shown in Fig. 4 (a) (black line), when the value of the residual (i.e. Res(·))
is large enough, which is the case for salient outliers, the corresponding energy
stabilizes at a small value. In this case, the polluted element does not affect
the deblurring process. In another view, minimizing the energy of (12) will lead
to two different solutions, for the inlier, the minimizing procedure reduces the
residual to 0, which serves to smooth the residual; for the potential outlier, the
solution amplifies the residual towards +∞, and this solution can promote the
saliency of potential outliers. These properties guarantee that inliers contribute
fully while outliers are discarded during the deblurring process.
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(a) Input (b) [22] (c) [4] (d) Interim I of [4] (e) W from [4]

(f) [5] (g) [26] (h) OID (i) Interim I of OID (j) W from OID

Fig. 6. Comparison of different outlier handling methods. Here the methods from [4]
and [26] are originally designed for the non-blind deblurring task, and we extend them
using the kernel updating strategy from OID.

In comparison, if the updating process is conducted while the weighting ma-
trix is fixed, the outlier will cause a large offset for the fidelity term. As illustrated
in Fig. 4 (red dot), this approach is incapable of identifying pixels according to
their types (e.g. inlier or outlier) intrinsically. Besides the example given in Fig.
2, we here present another example with impulsive noise in Fig. 5. We note that
both the results generated from the naive approach and the proposed method
without inner iteration contain significant artifacts and residuals, while the pro-
posed strategy generates results with clearer details and sharper edges. The
results validate the effectiveness of the proposed strategy.

4.2 Differences from other outlier handling methods

Relation with Dong et al. [5]. The differences between OID and [5] are as fol-
lows. First, compared with OID, the method [5] uses a more sophisticated fidelity
function to inexplicitly cope with outliers. Despite the complicated formation of
this strategy, it may not be appropriate for the additive noise, which will affect
both the latent image and kernel updating processes during deblurring [25]. In
contrast, OID adopts a more reasonable l2 norm to fit the additive Gaussian
noise. A real-world example in Fig. 6 shows the limitation of this model, where
their result contains significant artifacts and blur residue compared to ours.

Second, this method uses the outlier detection method from [22]. Compared
to the proposed outlier identifying scheme, their function is more complex yet
less persuasive. We verify the effectiveness of these two outlier detecting methods
by conducting non-blind deblurring experiments on the given dataset [16] with
different outlier detecting strategies. As shown in Fig. 4 (b), the same MAP
model with our outlier detecting skill performs more efficiently than which from
[22] when there exist massive outlies (Details can be found in our supplementary
material). The results explain the reason why OID performs better than [5] in
blind deblurring with outliers.

Relation with Cho et al. [4]. The method from Cho et al. [4] is mainly
designed for the non-blind deblurring task. We show that with the kernel up-
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dating strategy presented in (4), this method can be easily extended for blind
deblurring. As shown in Fig. 7 (b), the extension of [4] performs favorably against
state-of-the-art outlier handling methods [5,22], which validates the effectiveness
of the proposed kernel updating strategy.

The main difference between our approach and the extension of [4] is the se-
lection of different outlier detecting methods. The approach [4] uses an Expectation-
Maximization (EM) method to estimate outliers in the residual. Although effec-
tive on most occasions as it is, this method requires an evaluation of the outlier
density before the deblurring process, which may encounter setbacks in some
scenarios. Fig. 6 shows one example where the extension of [4] does not perform
well. The main reason is that the outliers are not correctly detected (Fig. 6 (c)).
In contrast, the proposed method detects correct outliers and generates results
with fine details. Moreover, the results in Fig. 4 (b) also show that the outlier
detection method from [4] is less effective than which from OID when massive
outliers exist. The results validate the superiority of OID over the extension
of [4].

Relation with other outlier handling methods [22, 26]. Although Pan
et al. [22] propose to explicitly identify outliers during deblurring, they only
conduct the detecting process once in an iteration sequence. Their method can
be viewed as the naive approach we introduce in Section 3.1. To mitigate the
problem, they use an ad-hoc edge-selecting step during latent image estimation
step, and they also suggest to cover more potential outlier regions during kernel
estimation. Example in Fig. 6 (b) shows the ineffectiveness of this approach
compared to OID when salient edges are difficult to extract.

The non-blind deblurring method from Whyte et al. [26] extends the Richardson-
Lucy algorithm by specific functions, and it is designed for saturated images.
We note that this method can be straightforwardly extended to blind deblur-
ring with the kernel updating strategy from OID, where the intermediate latent
image estimation derives from their proposed non-blind deconvolution methods.
As shown in Fig. 6 (g), although the extension can ease the blur to some extent,
it is less effective than OID.

4.3 Convergence of the proposed algorithm

As our algorithm involves the non-convex optimization of lp norm, a natural
question is whether the model converges. We empirically evaluate the conver-
gence property using the dataset from [16]. We compute the values of the ob-
jective function (4) and average kernel similarity [11] at the finest image scales.
Results shown in Fig. 4 (b) and (c) demonstrate that our algorithm converges
less than 20 iterations.

5 Experimental Results

The method is implemented in the MATLAB platform on a computer with an
Intel Core i5 CPU and 12 GB RAM. We set λ and θ in (3) as 0.008 and 5, while
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Fig. 7. Quantitative evaluations with state-of-the-art methods on synthetic datasets.
(a) Dataset with impulsive noise. (b) Robustness to impulsive noise. (c) Dataset with
saturated pixels [21]. (d) Dataset without outliers [12].

α and β are fixed as 0.0018 and 0.0002 (analyses are given in supplementary
material). We empirically set the maximum iteration number (i.e. maxiter in
Algorithm 1) to be 4 as a trade-off between speed and accuracy).

We evaluate the performance of OID on both synthetic and real images and
compare it with different state-of-the-art methods. We first evaluate OID on
two synthetic image datasets with different types of outliers. Then, we quan-
titatively test OID on two benchmark datasets [12, 16] which does not contain
outliers. Finally, we examine OID on real captured images with significant out-
liers. To ensure fair comparisons, we use the same non-blind deblurring method
introduced in Section 3.4 for all methods unless otherwise mentioned. For more
examples, please refer to our supplementary material.
Blurry images with impulsive noise: To better demonstrate the superiority
of OID, we provide a challenging image set containing 15 sharp images with a
size of 800×800 and 8 blur kernels from [16], and in which we add impulsive
noise with a density of 10%. Thus, a total of 120 blurry and noisy images are
used to evaluate the effectiveness of different methods. Several state-of-the-art
algorithms [3,28,29] are compared including the outlier handling methods [5,22]
and the method tailored to noise [31]. The cumulative ssd error ratio [16] is
illustrated in Fig. 7 (a). OID takes lead with 69% of the results under error
ration 2, while the figure for the second-best [5] is 47%.

(a) Input (b) [29] (c) [31] (d) [22] (e) [5] (f) Ours

Fig. 8. An example with impulsive noise.

An example from this dataset is shown in Fig. 8. Due to the effect of outliers,
the conventional deblurring method [29] fails to estimate the blur kernel (Fig. 8
(b)). The method from [31] uses different filters for noise, but it is less effective
when massive noise is presented (Fig. 8 (c)). Moreover, because of the significant
amount of outliers, state-of-the-art outlier handling methods [5,22] are also un-
able to estimate the correct blur kernels, which leads to lots of ringing artifacts
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(a) (b) (c) (d)

Fig. 9. Deblurring results of images with increasing impulsive noises. (a) GT. (b)-(d)
Images with noise densities of 0.1, 0.3, 0.5 and their corresponding results using OID.

(a) Blurry input (b) [21] (c) [22] (d) [5] (e) Ours

Fig. 10. Comparison on a synthetic saturated regions. Results generate by our method
contain finer details.

in the final recovered latent images (Fig. 8 (d) and (e)). In contrast, the blur
kernel estimated by OID is visually closer to the ground truth, and the restored
sharp image contains clearer details and fewer ringing artifacts (Fig. 8 (f)).

We also evaluate the proposed method using images with different densities
of noise. We add impulsive noise to the dataset from [16] with increasing noise
density (from 15% to 50%). Note in this test, only three methods that can handle
outliers [5, 22, 31] are compared. Fig. 7 (b) shows that OID is more robust to
outliers. Deblurring examples using OID are shown in Fig. 9.

Blurry images with saturated pixels: To further evaluate the proposed
method, we test OID on a provided saturated dataset [21], which contains 6
low-light images and 8 blur kernels from [16]. We add 1% random noise to
the blurry images the same as the steps in [5, 22]. We compare with 6 generic
image deblurring methods [2, 3, 5, 21, 22, 29]. Note that although the method
from [10] can deal with images containing saturated pixels in many cases, we
do not compare with it since most images from this dataset do not contain
detectable light streaks. Average PSNR values are illustrated in Fig. 7 (c). OID
achieves favorable results against the state-of-the-art methods.

We also use a challenging synthetic example to demonstrate the effective-
ness of the proposed method intuitively. As shown in Fig. 10, the conventional
method [21] fails to deal with the blurry image contains outliers, and state-of-
the-art outlier handling methods [5, 22] perform not well when given the vast
scope of saturated regions. Both of these methods fail to generate blur kernels
approximate to the ground truth. Consequently, the corresponding deblurring
results contain lots of artifacts. In contrast, our method generates a high-quality
blur kernel, and the final recovered image is more visually pleasing.

Images without outliers: OID can also be applied to images without outliers.
We verify the effectiveness of OID by conducting experiments on the benchmark
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(a) Input (b) [23] (c) [2] (d) [10] (e) [22] (f) [5] (g) Ours

Fig. 11. Real examples contain significant outliers. The kernels estimated by our
method are visually closer to the motion trajectories shown in the images (Parts eclosed
in green boxes contain artifacts, best viewed on high-resolution displays with zoom-in).

dataset [12]. Average PSNR values are taken as a comparison criterion for the
dataset, and the final result is shown in Fig. 7 (d). Although OID is focused on
the outlier deblurring area, it also achieves comparable results against several
state-of-the-art methods. Evaluation result on another benchmark dataset [16]
is given in our supplementary material.
Real-world images: As shown in Fig. 11, state-of-the-art deblurring methods
[2, 23] fail to recover sharp images due to the outliers. Although the method
from [10] can extract informative light streaks in these cases, some detrimental
trajectories bring side-effects to the kernel estimation processes at the same time,
resulting in artifacts in final recovered images. Moreover, the outlier-handling
methods [5,22] are less effective than OID when there contain massive saturated
regions. In contrast, the kernels estimated by OID are visually more similar to the
light streaks appear in the blurry images, which demonstrates the effectiveness
of OID.

6 Conclusion

In this paper, we introduce an effective framework for deblurring blurry images
with massive outliers. To recap briefly, our work is based on a robust outlier
identifying and discarding strategy, which enforces continuous weighting mask
on elements to indicate their types. By integrating the weighting mask updat-
ing process into both the latent image and the blur kernel updating steps in an
iterative manner, this strategy shows its effectiveness in identifying and penal-
izing outliers intrinsically. In contrast to recent art, our model does not require
any heuristic edge selecting steps or sophisticated noise filtering preprocesses.
Extensive evaluations on provided datasets and real images demonstrate the
effectiveness of the proposed method against state-of-the-art methods.
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