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We provide additional material to supplement our work. Appendix A ver-
ifies the accuracy of our re-implementation of [1], which is, to our knowledge,
the only pre-existing work on few-shot 3D reconstruction. Appendix B further
examines ways of incorporating shape priors into the encoder-decoder architec-
ture of [1]. In Appendix C, we report performance on base classes for our three
considered methods and Wallace et al. [1]. Appendix D shows learned attention
maps obtained using the CGCE model, analyses similarities across classes, and
the choice of hyperparameters. Finally, we provide more qualitative examples in
Appendix E.

A Verifying Implementation of Wallace et al. [1]

In this section we validate that our re-implementation of [1] is correct. In Table 1
we observe performance to be very similar to the numbers reported in [1], with
small variations that can be reasonably attributed to random initializations.
Base class performance is not reported per class in [1]. Note that in the main
paper we report the results obtained using our implementation (Wallace(ours)),
including the results on classes not attempted in [1].

B Addition vs Concatenation of Shape Priors.

Since concatenation is a more widely used form of conditioning in deep models
than addition, we also trained a variation of [1] where the shape embedding is
concatenated to the 2D encoder but noticed a drop in performance and thus
decided to compare against the originally proposed architecture.

C Base Class Performance

We report in Table 2 the performance on base classes for all methods. Note that
performance is similar amongst methods. This is consistent with our observation
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cat  [Wallace [1][Wallace(ours)

base
plane N/A 0.57
car N/A 0.84
chair N/A 0.49
monitor N/A 0.50
cellphone N/A 0.74
speaker N/A 0.66
table N/A 0.52
mean_base 0.62 0.62

novel

bench | 0.37 (0%) | 0.37 (0%)
cabinet | 0.66 (0%) | 0.69 (0%)
lamp 0.19 (5%) | 0.20 (5%)
firearm |0.19 (58%)| 0.21 (58%)
couch |0.52 (4%) | 0.54 (4%)
watercraft [0.38 (15%)| 0.33 (16%)
lmean,novel‘ 0.39 ‘ 0.39 ‘
Table 1. Comparison of Wallace et al. [1] and our re-implementation validates our ex-
periments. N/A means numbers were not reported in [1]. Numbers in brackets indicate
percentage improvement over baseline.

that nearest neighbor can solve the problem when large number of classes is
provided. Thus most learning methods with enough capacity can expect to obtain
similar performance. On the other hand, as shown in the main paper, novel class
performance is improved for our proposals (GCE,CGCE,MCCE) demonstrating
they generalize better about shapes.

cat  [Wallace|[ GCE][CGCE|MCCE

base
plane 0.57 |0.58| 0.59 0.59
car 0.84 |0.84| 0.84 | 0.84

chair 0.49 |0.51| 0.49 | 0.50
monitor | 0.50 |0.52| 0.51 | 0.52
cellphone | 0.74 |0.71| 0.69 | 0.71
speaker 0.66 [0.67| 0.66 | 0.66
table 0.52 |0.54| 0.54 | 0.53
mean_base| 0.62 [0.62| 0.62 | 0.62
Table 2. Results on base classes for all methods. All methods perform similarly which is
consistent with our observation that for large number of classes the problem is reduced
to a simple nearest neighbor search.
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D Further Analysis of Compostional GCE

Attention Maps. As described in the main text, a learned attention vector
«; selects the most relevant codes from each of the 5 available codebooks. We
visualize these selections for each category as a heat map in Figure 1. Note that
we have previously obtained a similarity metric between classes (using nearest
neighbor proximity) as shown in Figure 7 in the main text. In Table 3 we further
illustrate some pairs which show high similarity. We observe in Figure 1 that
similar classes will often share codes. We further illustrate this by selecting 3
pairs of similar categories and 3 pairs of distant categories (see Table 3 and
Figure 2). Indeed this shows that CGCE model is learning to assign general
structure to each class which can be reused in similar classes. As expected,
however, not all codebooks for similar classes share exactly the same codes, thus
they can learn distinctions across classes.

object similar object distant object

|
L o

Table 3. We illustrate the categories found to be similar and dissimilar (based on our
nearest neighbor proximity metric). For example, the first row shows that laptops are
similar to monitors but distant from cars. Second row indicates sofas are similar to
chairs but distant from phones. Third row shows watercrafts are similar to cars but
distant from monitors.
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Choice of Hyperparameters. Most of the common hyperparameters (e.g.
conditioning size, architecture, optimization) are taken directly from [1]. For
CGCE, we empirically set M = 5 codebooks with ¢ = 6 codes each. Our pre-
liminary experiments showed that: (a) ¢ has to be smaller than the number of
categories. Larger ¢ values can result in each category being associated with a
separate set of codes, preventing parameter sharing and accurate modelling of
inter-class variability. (b) If M is very large (e.g. 1000), the information con-
tained in each code could be degraded due to summation. Future work may
consider alternative operators.

E Additional Qualitative Examples

We provide more visualizations of our reconstructions as compared to Zero-
Shot baseline and Wallace which demonstrate higher quality predictions obtained
using our proposed method.
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Fig. 1. Attention heat map depicting code selection for all base classes (columns 1-7)
and 3 novel ones (columns 8-10). We have used 5 codebooks each one having 6 codes.
Darker squares indicate higher attention given to a particular code. Note each codebook
J is indicated by CB J.
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Fig. 2. Attention heat map of similar and distant categories. Columns feature 3 similar
cases: (sofa and chair), (laptop and monitor), (watercraft and plane and car), and 3
distant ones: (sofa and phone), (laptop and car), and (watercraft and monitor). One
can see that for similar categories, similar codes are chosen as opposed to distant ones.
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2D view Zero-Shot Wallace CGCE
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Fig. 3. Qualitative examples of shape inference obtained by Zero-Shot baseline, Walalce
and proposed CGCE approach. We have used 2D views from random angles, but for
visualization purposes the views are aligned to the same angle.



8 Michalkiewicz et al.

References

1. Wallace, B., Hariharan, B.: Few-shot generalization for single-image 3d reconstruc-
tion via priors. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 3818-3827 (2019)



