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Abstract. The impressive performance of deep convolutional neural
networks in single-view 3D reconstruction suggests that these models
perform non-trivial reasoning about the 3D structure of the output space.
Recent work has challenged this belief, showing that complex encoder-
decoder architectures perform similarly to nearest-neighbor baselines or
simple linear decoder models that exploit large amounts of per-category
data, in standard benchmarks. A more realistic setting, however, involves
inferring 3D shapes for categories with few available training examples;
this requires a model that can successfully generalize to novel object
classes. In this work we experimentally demonstrate that naive baselines
fail in this few-shot learning setting, where the network must learn in-
formative shape priors for inference of new categories. We propose three
ways to learn a class-specific global shape prior, directly from data. Using
these techniques, our learned prior is able to capture multi-scale infor-
mation about the 3D shape, and account for intra-class variability by
virtue of an implicit compositional structure. Experiments on the pop-
ular ShapeNet dataset show that our method outperforms a zero-shot
baseline by over 50% and the current state-of-the-art by over 10% in
terms of relative performance, in the few-shot setting.

Keywords: 3D reconstruction, few-shot learning, compositionality

1 Introduction

Inferring the 3D geometry of an object, or a scene, from its 2D projection on
the image plane is a classical computer vision problem with a plethora of ap-
plications, including object recognition, scene understanding, medical diagnosis,
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Fig. 1: We tackle the problem of single-view 3D reconstruction in the few-shot learning
setup. [31] showed that naive baselines such as nearest neighbor, can outperform com-
plicated models when data is abundant. However, such baselines cannot generalize to
new classes for which only few training examples are available. We propose to use a deep
encoder-decoder architecture whose output is conditioned on learned category-specific
shape embeddings; our shape priors capture intra-class variability more effectively than
previous works, significantly improving generalization.

animation, and more. After decades of research this problem remains challenging
as it is inherently ill-posed: there are many valid 3D objects shapes (or scenes)
that correspond to the same 2D projection.

Traditional multi-view geometry and shape-from-X methods try to resolve
this ambiguity by using multiple images of the same object/scene from different
viewpoints to find a mathematical solution to the inverse 2D-to-3D reconstruc-
tion mapping. Notable examples of such methods include [27,14,36,11,10].

In contrast to the challenges faced by all these methods, humans can solve this
ill-posed problem relatively easily, even using just a single image. Through ex-
perience and interaction with objects, people accumulate prior knowledge about
their 3D structure, and develop mental models of the world that allow them to
accurately predict how a 2D scene could be “lifted” in 3D, or how an object
would look from a different viewpoint.

The question then becomes: “how can we incorporate similar priors into our
models?”. Some early works rely on CAD models[13,24,33,37], while Xu et al. [40]
use low-level priors and mid-level Gestalt principles such as curvature, symmetry,
and parallelism, to regularize the 3D reconstruction of a 2D sketch. The downside
of such methods is that they require an extremely specific specification of the
model priors, which often limits their applicability.

Motivated by the success of deep convolutional networks (CNN) in multiple
domains, the community has recently switched to an alternative paradigm, where
more sophisticated priors are directly learned from data. The idea is straightfor-
ward: given a an appropriate set of paired 2D-3D data, one can train a model
that takes as input a 2D image and outputs a 3D shape. Most of these works
rely on an encoder-decoder architecture, where the encoder extracts a latent
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representation of the object depicted in the image, and the decoder maps that
representation into a 3D shape [26,3,16]. Many works have studied ways to make
the 3D decoder more efficient and improve shape representation. The high quality
outputs obtained suggest that, indeed, these models learn to perform non-trivial
reasoning about 3D object structure.

Surprisingly, recent works [17,31] have shown that this is not the case. Tatar-
chenko et al. [31] argue that, because of the way current benchmarks are con-
structed, even the most sophisticated learning methods end up finding shortcuts,
and rely primarily on recognition to solve single-view 3D reconstruction. Their
experiments show that modern CNNs for 3D reconstruction are outperformed by
simple nearest neighbor (NN) or classification baselines, both quantitatively, and
qualitatively. Similarly, [17] showed that simple linear decoder models, learned
by PCA, are sufficient to achieve competitive performance. There is one caveat
though: to achieve good performance with these baselines, having a large dataset
is crucial. More importantly, true 3D shape understanding implies good gener-
alization to new object classes. This is trivial to humans –we reason about the
3D structure of unknown objects, drawing on our inductive bias from similar
objects we have seen– but still remains an open computer vision problem.

Based on this observation, we argue that single-view 3D reconstruction is
of particular interest in the few-shot learning setting. Our hypothesis is that
learning to recover 3D shapes using few examples, while promoting generalization
to novel classes, provides a good setup for the development and evaluation of
models that go beyond simple categorization and actually learn about shape.

To the best of our knowledge, the first work of that kind is by Wallace and
Hariharan [32]. Instead of directly learning a mapping from 2D images to 3D
shapes, they train a model that uses features extracted from 2D images to refine
an input shape prior into a final 3D output. Their framework allows one to
easily adapt the shape prior and use it when inferring new classes. However,
their approach has several restrictions. First, the shape prior for an object class
is computed either by i) averaging the available examples for that class or ii)
randomly selecting one of them. Both of these operations collapse intra-class
variability, failing to fully exploit the already limited available training data.
Second, the method does not explicitly force inter-class concepts to be learned.

In this work, we first demonstrate empirically that naive baselines that are
quite effective for general single-view object reconstruction [31] come up short
when generalizing to novel classes in a few-shot learning setup [32], highlight-
ing the importance of this setup for the design and evaluation of methods with
generalization capability. Furthermore, we address the shortcomings of [32] by
introducing three strategies for constructing the shape prior, focusing on mod-
elling intra-class variability, compositionality and multi-scale conditioning. More
specifically, we first learn a shape prior that captures intra-class variability by
solving an optimization problem involving all shapes available for the new class.
We then introduce a compositional bias in the shape prior that allows learning
concepts that can be shared across different classes or transferred to new ones.



4 Michalkiewicz et al.

Finally, we make use of conditional batch normalisation [22] to impose class
conditioning explicitly at multiple scales of the decoding process.

In summary, we make the following contributions:

– We investigate the few-shot learning setting for 3D shape reconstruction and
demonstrate that this setup constitutes an ideal testbed for the development
of methods that reason about shapes.

– We introduce three strategies for shape prior modelling, including a compo-
sitional approach that successfully exploits similarities across classes.

– We conduct experiments demonstrating that we outperform the state of the
art by a significant margin, while generalizing to new classes more accurately.

2 Related Work

2.1 Single-view 3D Reconstruction

Single- and multi-view 3D reconstruction have recently focused on improving
learning efficiency and generation quality by finding better alternatives to the
typically used 3D CNN decoder and voxelized shape representation [3,8,38,41,42].
Such alternatives include point clouds [5], meshes [34], and representations based
on the signed distance transform [21,18,2]. Although each one of these represen-
tations has its pros and cons, [31,17] showed that they do not beat naive baselines
such as nearest neighbor (NN) or linear decoder.

2.2 Few-shot Learning

Few-shot learning has become a highly popular research topic in computer vision
and machine learning [25,7]. Most works focus on the classification task, with few
investigating more complex problems such as segmentation [29] or object detec-
tion [39,35]. Our work considers the few-shot setting in the practical 3-d shape
reconstruction which has only been considered in [32].Existing methods can be
divided into two categories: meta-learning/meta-gradient based approaches [6],
and metric-learning/prototype based approaches [23,30]. The former aims to
teach models to adapt quickly, in a few gradient updates, to new unseen classes,
while the latter learns a distance metric such that the distance of a query image
to the few annotated examples of the same class is minimal.

3 Methods

Let Db = {(Ibi , Sb
i )} be a set of image-shape pairs, belonging to one of Nb base

object classes. We assume that |Db| is large, i.e., Db contains enough train-
ing examples for our purposes. We also consider a much smaller set of novel
classes, DK

n . Each class in DK
n comprises only a small set of K image-shape

pairs {(In1 , Sn
1 ), . . . , (InK , S

n
K)}, and a large set of test or query images.

Our objective is to use the abundant data in Db to train a model that takes a
2D input image I, containing a single object, and outputs its 3D reconstruction,
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Fig. 2: Comparison of [32] to GCE. The former collapses variability of new classes by
averaging. GCE is able to obtain a global shape representation for each class. Note
that we combine eI and eS by concatenation, instead of element-wise sum.

S̄. The model should also be able to leverage the limited data in DK
n to suc-

cessfully generalize to novel categories. Similar to previous works employing an
encoder-decoder architecture, we choose voxels as our 3D shape representation
(facilitating comparison to [32]) and propose three strategies to achieve this.

3.1 Shape Encoding and Global Class Embedding

Consider an encoder-decoder framework involving

– an encoder EI that takes a 2D image, I, and outputs its embedding, eI ;
– a category-specific shape embedding, eS ;
– a decoder D that takes the image and shape embeddings and outputs the

reconstructed 3D shape in the form of a voxelized 3D grid, S̄:

S̄ = D (eI , eS) = D (EI(I), eS) . (1)

This model can be trained using a binary cross-entropy loss between the pre-
dicted occupancy confidence pi at voxel i, and the respective label yi ∈ {0, 1}
from a ground truth shape S with Nv voxels:

L(S, S̄) = − 1

Nv

Nv∑
i

yi log(pi) + (1− yi) log(1− pi). (2)

In the rest of the text, we drop S for notational simplicity.
Figure 2 (top) illustrates the pipeline of [32]. eiS is computed with a shape

encoder ES that takes a category-specific shape prior, Sp
i , as input; i.e., eS =

ES(Sp
i ). For base class training, EI , ES , and D are learned by minimizing (2).

For inference on new classes, the 3D shape is recovered simply by feeding the
image and class specific prior (eS) to the trained network. The shape prior Sp

i is
defined either as a randomly selected shape from the training set DK

n associated
with class i, or the average, in voxel space, of all training shapes of class i.
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Fig. 3: Compositional GCE constructs a code by a composition of codes from different
codebooks, applying a different attention to each codebook based on the class.

Both choices have severe limitations: they cannot account for intra-class vari-
ability and are, therefore, intrinsically sub-optimal when more than one training
examples are available. To address this limitation, we propose to learn a global
class embedding (GCE), eiS , that conditions the network for object class-i, but is
dependent non-linearly on all available shapes.We expect this conditioning vector
that is a derived from all shapes to capture nuances (like intra-class variability)
more accurately than simple shape averaging.

Our framework is illustrated in Figure 2 (bottom). We first train the model
on base classes, jointly optimizing the parameters of the encoder EI , the decoder
D, and the base class embeddings eiS , by minimizing the objective in Eq. (2).
For novel classes with a small training set {(Ini , Sn

i )}Ki=1, all model parameters
of EI and D are fixed, and class specific embeddings eiS are obtained by solving

êiS = arg min
eiS

K∑
j=1

L(D(EI(Ij), e
i
S)). (3)

Our approach enjoys the following practical advantages: First, the optimiza-
tion problem in Eq. (3) can be solved in just a few iterations since it only involves
a small set of parameters (eiS) and a small number of novel category samples.
Second, the model can continually learn implicit shape priors for novel classes,
without compromising performance on the base classes, by construction, since
the weights of EI and D are frozen. Finally, we note that we combine eI and eS
by concatenation, instead of the element-wise sum used in [32].

3.2 Compositional Global Class Embeddings

GCE allows us to exploit all available training shapes to learn a representative
shape prior for a specific object class. However, the learned global embeddings
do not explicitly exploit similarities across different classes, which may result in
sub-optimal, and potentially redundant representations. As a result, exploring
inductive biases for sharing representations across classes has the potential to
increase robustness in the lowest data regimes. To this end, we introduce an
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extension of the GCE model, which we call Compositional Global Class Embed-
dings (CGCE), aiming to learn compositional representations between classes.
This model is illustrated in Figure 3.

Our objective is to explicitly encourage the model to discover “concepts”,
representing geometric or semantic parts, that are shared across different object
categories. Taking inspiration from work on compressing word embeddings [28],
we propose to decompose our class representation into a linear combination of
learned vectors that are shared across classes. More specifically, we learn a set
of M codebooks (or embedding tables), with each codebook Cj containing m
individual embedding vectors (codes) Cj = {cj,1, . . . , cj,m}, where cj,m ∈ RD.
Intuitively, each codebook can be interpreted as the representation of an abstract
concept which can be shared across multiple classes.

For each class i, we learn an attention vector αi that selects the most rele-
vant code(s) from each codebook. A weighted sum of all codes yields the final

embedding: eiS =
∑M

k=1

∑m
j=1 a

k,j
i ck,j , where aj,ki is the scalar attention on code

j at codebook k, while cj,k corresponds to the jth code of codebook k. During
base class training we learn both αi and cj,k. We highlight that codebooks are
shared across classes and therefore need only be trained on base classes. As a
result, αi is the only class-specific variable we need to infer for novel classes:

α̂i = arg min
αi

N∑
j=1

L(D(EI(Ij), e
i
S)).

A desirable property is that codebooks capture distinct and diverse class at-
tributes and that they contain meaningful codes, with minimal redundancies.
We encourage such behavior by having the model select only a sparse subset of
codes from each codebook, using a form of attention that relies on the sparsemax
operator [15]. Specifically, the attention vector for class i at codebook j is given
by aj

i = sparsemax(wj
i ), wherewj

i are learned parameters; sparsemax produces
an output that sums to 1, but will typically attend to just a few outputs.

3.3 Multi-scale Conditional Class Embeddings

The strategies proposed so far influence the shape reconstruction stage at the
input level by combining the 2D image embedding with a learned shape prior.
Another approach we propose to investigate is multi-scale conditioning through-
out the decoding process. An elegant way to do this is by applying the condi-
tional batch normalization technique [22] to the 3D decoder model. Conditional
batch normalization replaces the affine parameters in all batch-normalization
layers with layer-specific learned embeddings. Since 3D decoders have an in-
herently multi-scale structure with layers producing features at progressively
higher resolutions, each layer’s batch-norm parameters can be seen as condi-
tioning/constraining the reconstruction process at different scales. Similarly to
GCE, class-specific conditional batch normalization parameters are learned by
fine-tuning the model on novel classes, keeping the encoder and decoder frozen.
We refer to this approach as Multi-scale Conditional Class Embeddings (MCCE).
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3.4 Nearest Neighbor Oracle, Zero-Shot and All-Shot Baselines

We introduce three simple baselines we use in our experiments. First, we consider
an oracle nearest neighbor (ONN) [31] baseline. Given a query 3D shape, ONN
exhaustively searches a shape database for the most similar entry with respect
to a given metric (Intersection over Union in this case). Although this method
cannot be applied in practice, it provides an upper bound on how well a retrieval
method can perform on the task.

We also consider a zero-shot (ZS), and all-shot (AS) baseline. For the ZS
baseline, we train the encoder-decoder model as described in Eq. (1) and use it
to infer 3D shapes for novel classes, without using the category-specific shape
prior eS . We expect this to give a lower bound of performance, since it does not
make any use of shape prior information. For the AS baseline, we merge the base
class and novel class datasets, train the model on this joint dataset, and then
test only on novel class examples. We expect that this baseline will set an upper
bound on the performance of the vanilla encoder-decoder architecture, since the
model also has access to the examples from the novel classes in DK

n .

4 Experiments

4.1 Dataset and Evaluation Protocol

For our experiments we use the ShapeNetCore v1.0 [1] dataset and the few-
shot generalization benchmark of [32]. As in [32], we use 7 categories as our base
classes: plane, car, chair, display, phone, speaker, table; and 10 categories
as our novel classes: bench, cabinet, lamp, rifle, sofa, watercraft, knife,
bathtub, guitar, laptop. Note that we have added additional categories to
the standard benchmark, for a more extensive evaluation. Out data comes in the
form of pairs of 128 × 128 images rendered using Blender [4], and 32 × 32 × 32
voxelized representations obtained using Binvox [20,19]. Each 3D model has 24
associated images, rendered from random viewpoints. For evaluation, we use the
standard Intersection over Union (IoU) score to compare predicted shapes S̄ to
ground truth shapes S: IoU = |S ∩ S̄|/|S ∪ S̃|.

4.2 Implementation Details

All methods are trained on the 7 base classes except for the AS-baseline which
is trained on all 17 categories. All methods share the same 2D encoder and 3D
decoder architectures. We use the same 2D encoder as in [26,32], a ResNet [9] that
takes a 128×128 image as input, and outputs a 128-dimensional embedding. Our
3D decoder consists of 7 convolutional layers, followed by batch-normalization,
and ReLU activations. For training, we use the same 80-20 train-test split as in
R2N2 [3,32]. Unless otherwise stated, we use lr = 0.0001 as the learning rate and
ADAM [12] as the optimizer. All networks are trained with binary cross entropy
on the predicted voxel presence probabilities in the output 3D grid.
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ZS-Baseline is trained on the 7 base categories for 25 epochs. We use the trained
model to make predictions for novel classes without further adaptations.
AS-baseline is trained on all 17 categories for 25 epochs. We do not use any
pre-trained weights, but train this baseline model from a random initialization.
Wallace et al. [32]. To ensure a fair comparison, we re-implemented this frame-
work, using the exact same settings reported in [32]. In the supplemental material
we include a comparison only on the subset of classes used in [32], validating
that our implementation yields practically identical results.
GCE. We use the same architecture as in the baseline models in [32]. Contrary
to the element-wise addition used in [32], we concatenate the 128-d embeddings
from the 2D encoder and the conditional branch, and we feed the resulting 256-
d embedding into the 3D decoder. The class conditioning vectors are initialized
randomly from a normal distribution ∼ N (0, 1). After training the GCE on the
base classes, we freeze the parameters of EI and D and initialize the novel class
embeddings as the average of the learned base class encodings. We then optimize
them using stochastic gradient descent (SGD) with momentum set to 0.9.
CGCE. The conditional branch is composed of 5 codebooks, each containing
6 codes of dimension 128, and an attention array of size 17 × 5 × 6; i.e., one
attention value per (class, codebook, code) triplet. The codes and attention values
are initialized using a uniform distribution U(−0.4, 0.4). During training, we
push the attention array to focus on meaningful codes by employing sparsemax
[15]. After training the CGCE on the base classes, we freeze the parameters of
EI and D, as well as the codebook entries cj,k. We initialize the novel class
attentions αi from a uniform distribution U(−0.4, 0.4). We then optimize αi

using stochastic gradient descent (SGD) with momentum set to 0.9.
MCCE We replace all batch normalization (bnorm) layers in the 3D decoder
with conditional batch normalization (cond-bnorm) [22]. More precisely, the
affine parameters γi and βi are initialized from a normal distribution∼ N (1, 0.2),
and conditioned on the class i. For novel class adaptation only the aforemen-
tioned γi and βi for new classes are learned. We use SGD as optimizer with
momentum set to 0.9 for this novel class adaptation.

4.3 Comparing Baselines in the Few-Shot Regime

Tatarchenko et al. [31] showed that naive 3D reconstruction baselines not only
perform well, but manage to surpass in performance more complicated, state
of the art approaches. We show that such baselines, however, perform poorly
in a few-shot learning setup [32], where a more nuanced understanding of 3D
shape is required for generalization to novel examples. In Table 1 we compare
the ONN, ZS, and AS baselines, described in Section 3.4. We consider several
versions of ONN, with access to varying numbers of examples in the few-shot
spectrum, ranging from a “1-shot” (ONN-1) to “full-shot” (ONN-full - access to
all shapes for that class). We observe that ONN-full outperforms AS, which has
been trained on all available data, supporting the findings of [32]. However, once
the number of shots decreases, performance for ONN quickly deteriorates, and
drops below that of even the ZS baseline.
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cat ZS-Baseline AS-baseline ONN-1 ONN-2 ONN-3 ONN-4 ONN-5 ONN-10 ONN-25 ONN-full

bench 0.366 0.524 0.238 0.240 0.245 0.271 0.276 0.360 0.420 0.708
cabinet 0.686 0.753 0.400 0.458 0.460 0.461 0.480 0.495 0.631 0.842
lamp 0.186 0.368 0.153 0.162 0.177 0.189 0.194 0.223 0.282 0.515

firearm 0.133 0.561 0.377 0.396 0.420 0.425 0.434 0.510 0.550 0.707
sofa 0.519 0.692 0.445 0.458 0.459 0.530 0.534 0.579 0.616 0.791

watercraft 0.283 0.560 0.259 0.286 0.317 0.354 0.372 0.479 0.527 0.697

mean novel 0.362 0.576 0.312 0.333 0.346 0.371 0.381 0.441 0.504 0.710

Table 1: Zero-shot (ZS), All-shot (AS), and Oracle Nearest Neighbor (ONN-K) IoU
results for different number of shots, K. ONN outperforms an encoder-decoder model
when the full dataset is available. However, in the low-shot regime, even the zero-shot
variant shows better generalization, outperforming ONN.

Note that the ZS baseline already achieves relatively high performance on
select classes (sofa and cabinet). We hypothesize that this is due to the simi-
larity of these classes to some of the base categories. To test the validity of our
hypothesis, we compute a similarity score between each novel class and the base
class set. Let C be the set of all shapes S in a novel class. We compute its near-
est neighbor with respect to all base classes: IoU(S,Db) = maxSb∈Db

IoU(S, Sb).
We then compute an inter-class proximity between C and all base classes as the
average of these IoU scores: P(C,Db) = 1

|C|
∑

Si∈C IoU(Si,Db).

Figure 4 shows the IoU scores of novel classes, sorted by decreasing proximity
scores to the base set. To better study the effect of proximity to IoU performance,
we have included four (4) additional novel classes from ShapeNet, highlighted
in blue. Note that ZS performs better for classes with higher proximity to base
classes, supporting our original hypothesis. This also means that novel classes
with low proximity have much higher potential for improvement using few-shot
learning, with respect to ZS.

4.4 Evaluating Few Shot-Generalization

In Table 2 we evaluate the three methods described in Sec. 3, on 1-shot recon-
struction. We report both the IOU as well as the relative improvement over the
ZS baseline. Note that as the ZS-baseline provides strong performance for easy
classes, the average IOU is dominated by these, thus relative improvement is a
more meaningful metric for aggregation across classes. Please note that GCE
improves performance over [32], particularly for classes with low proximity to
the base set, obtaining 45% relative improvement over ZS, overall, compared to
[32]. The compositional and multiscale priors lead to further improvements of
54% and 52%, respectively, compared to the simple shape prior of [32].



Few-Shot Single-View 3-D Object Reconstruction with Compositional Priors 11

cabinet sofa bench watercraft knife bathtub laptop guitar lamp firearm
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Zero-Shot IOU for Decreasing Class Proximity

Fig. 4: Zero-shot IoU for decreasing proximity between ot the base set. The higher the
proximity of a novel class to the base set, the better ZS performs. To make this point
clear, we add more classes of low proximity (blue color) to our evaluation.

1-shot 10-shot 25-shot
20

30

40

50

60

70

Im
pr

ov
em

en
t o

ve
r b

as
el

in
e 

(%
)

40.2

46.5

51.953.7
58.3

69.8

Performance with Increasing Samples
Wallace
CGCE

Fig. 5: Percentage gains for 1, 10 and
25 shot over ZS baseline. The gains of
our method increase, relative to [32],
with greater number of shots (larger
intra-class variability).

cat ZS AS GCE GCE rand
plane 0.580 0.572 0.582 0.198
car 0.835 0.830 0.837 0.412

chair 0.504 0.500 0.510 0.284
monitor 0.516 0.508 0.520 0.346

cellphone 0.704 0.689 0.710 0.497
speaker 0.648 0.659 0.670 0.505
table 0.536 0.537 0.540 0.376

Table 4: Performance drops sig-
nificantly when the class embedding
is randomly selected, validating that
the class conditioning is being used
by the GCE model.

In Table 3 we evaluate the CGCE variant (which performs best in 1-shot
evaluation) on the 10- and 25-shot settings, and compare to [32]. We observe
that, similarly to the 1-shot case, most methods do not significantly improve the
performance for classes with high proximity to the base set. For distant classes,
on the other hand, we see substantial performance improvements (sometimes
200%+ in IoU). Table 3 also shows the increased gap in performance between
CGCE and [32], as the number of shots increases, supporting our argument that
the global conditional embedding can better capture intra-class variability and
thus remains effective beyond the 1-shot setting.
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Zero-shot All-shot 1 shot

cat ZS AS Wallace [32] GCE CGCE MCCE

cabinet 0.69 0.75 0.69 (0.00) 0.69 (0.01) 0.71 (0.03) 0.69 (0.01)
sofa 0.52 0.69 0.54 (0.04) 0.52 (0.00) 0.54 (0.04) 0.54 (0.03)

bench 0.37 0.52 0.37 (0.00) 0.37 (0.00) 0.37 (0.00) 0.37 (0.00)
watercraft 0.28 0.56 0.33 (0.16) 0.34 (0.19) 0.39 (0.39) 0.37 (0.29)

knife 0.12 0.60 0.30 (1.47) 0.26 (1.13) 0.31 (1.5) 0.27 (1.19)
bathtub 0.24 0.46 0.26 (0.05) 0.27 (0.09) 0.28 (0.13) 0.27 (0.11)
laptop 0.09 0.56 0.21 (1.30) 0.27 (1.85) 0.29 (2.10) 0.27 (1.87)
guitar 0.23 0.69 0.31 (0.38) 0.30 (0.31) 0.32 (0.42) 0.30 (0.31)
lamp 0.19 0.37 0.20 (0.05) 0.20 (0.07) 0.20 (0.05) 0.22 (0.16)

firearm 0.13 0.56 0.21 (0.58) 0.24 (0.83) 0.23 (0.70) 0.30 (1.26)

mean (relative to ZS) 40.2% 44.7% 53.7% 52.2%

Table 2: IoU scores for single-image 3D reconstruction in the 1-shot setting. Numbers
in parentheses indicate relative performance gains over ZS. Note the marked improve-
ment, especially for novel classes with low proximity to the base set, indicating much
better generalization of our method.

Zero-shot All-shot 10 shot 25 shot

cat ZS AS Wallace CGCE Wallace CGCE

cabinet 0.69 0.75 0.69 (0.00) 0.71 (0.03) 0.69 (0.01) 0.71 (0.04)
sofa 0.52 0.69 0.54 (0.04) 0.54 (0.04) 0.54(0.04) 0.55 (0.06)

bench 0.37 0.52 0.36 (-0.01) 0.37 (0.03) 0.36 (-0.01) 0.38 (0.04)
watercraft 0.28 0.56 0.36 (0.26) 0.41 (0.45) 0.37 (0.29) 0.43 (0.53)

knife 0.12 0.60 0.31 (1.52) 0.32 (1.62) 0.31 (1.57) 0.35 (1.87)
bathtub 0.24 0.46 0.26 (0.05) 0.28 (0.16) 0.26 (0.06) 0.30 (0.23)
laptop 0.09 0.56 0.24 (1.53) 0.30 (2.24) 0.27 (1.85) 0.32 (2.45)
guitar 0.23 0.69 0.32 (0.39) 0.33 (0.47) 0.32 (0.42) 0.37 (0.62)
lamp 0.19 0.37 0.19 (0.04) 0.20 (0.05) 0.19 (0.03) 0.20 (0.07)

firearm 0.13 0.56 0.24 (0.83) 0.23 (0.75) 0.26 (0.95) 0.28 (1.08)

mean (relative to ZS) 46.5% 58.3% 51.9% 69.8%

Table 3: IoU scores for K-shot evaluation (K ∈ {10, 25}). Numbers in parentheses
are performance gains over ZS. Improvements for CGCE widen as K increases.

Validating the contribution of the shape prior. To validate that our GCE
framework (and by extension, CGCE and MCCE) does not simply ignore the
conditioning on the shape prior, we perform a simple ablation in which we ran-
domly select the class of the corresponding global embedding for a given input;
we call this variant GCE-rand. As shown in Table 4, performance drops drasti-
cally, validating that the model learns to use the class-specific shape priors.

Analysis of the Compositional GCE. We analyze the CGCE codes learned
by our model through visualizations that unveil associations of codebook entries
with object parts. Given a 2D input image, we generate its 3D reconstruction,
after randomly removing the contribution of selected codebook entries in the
compositional shape prior. Figure 6 shows the results. We observe that removing
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GT

CGCE

CGCE-cb

Fig. 6: 3D reconstructions with our compositional GCE (CGCE) model. Eliminating
the contribution of a selected codebook in the shape prior (CGCE-cb) deletes object
parts, such as table legs or plane wings, from the reconstructed shape, indicating that
the learned codebooks capture meaningful semantic attributes.

certain codes results in the removal of semantically meaningful portions of the
reconstructed object, such as table legs or plane wings.

We also explicitly analyze the learned attention over the codebook entries.
We start by using the IOU-based class proximity metric described in Sec. 4.3 to
associate each novel class to its closest base classes (see Figure 7). We observe
a positive correlation of high proximity scores and alignment of the attention
distribution over codes for novel and base classes. Finally, in Figure 8 we visually
compare CGCE reconstructions to those of [32], in the 25-shot case, confirming
that numerical performance gains translate into higher reconstruction quality for
our approach. For more visualizations we refer to the supplementary material.

5 Conclusions

We have identified few-shot 3D reconsruction as an ideal benchmark for study-
ing 3D deep learning models and their ability to reason about object shapes
and generalize to new categories. We have addressed several key weaknesses of
previously proposed models in this setting, particularly in capturing intra-class
variability, and have proposed compositional and multi-scale shape priors that
improve performance and interpretability. Plans for future work in this area
include whether incorporating alternative shape representations can further im-
prove generalization, especially for higher resolution shapes.
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Fig. 7: Proximity between base classes (y-axis) and novel classes (x-axis). Distance is
measured, as a mean IoU of nearest neighbors.

2D view Zero-Shot Wallace CGCE GT

Fig. 8: Qualitative analysis on 3 different examples using novel classes with 25-shots.
We show predictions by different models and the ground truth (GT). Our model ex-
hibits qualitatively better reconstructions than [32] and the Zero-Shot baseline.
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