
Feature Normalized Knowledge Distillation for
Image Classification

Kunran Xu1, Lai Rui1,∗, Yishi Li1, and Lin Gu2,3

1 School of Microelectronics, Xidian University, Xi’an Shaanxi 710071, China
aazzttcc@gmail.com; Corresponding author:rlai@mail.xidian.edu.cn;

yshlee1994@outlook.com
2 RIKEN AIP, Tokyo103-0027, Japan lin.gu@riken.jp

3 The University of Tokyo, Japan

Abstract. Knowledge Distillation (KD) transfers the knowledge from
a cumbersome teacher model to a lightweight student network. Since
a single image may reasonably relate to several categories, the one-hot
label would inevitably introduce the encoding noise. From this perspec-
tive, we systematically analyze the distillation mechanism and demon-
strate that the L2-norm of the feature in penultimate layer would be
too large under the influence of label noise, and the temperature T in
KD could be regarded as a correction factor for L2-norm to suppress
the impact of noise. Noticing different samples suffer from varying in-
tensities of label noise, we further propose a simple yet effective feature
normalized knowledge distillation which introduces the sample specific
correction factor to replace the unified temperature T for better reduc-
ing the impact of noise. Extensive experiments show that the proposed
method surpasses standard KD as well as self-distillation significantly
on Cifar-100, CUB-200-2011 and Stanford Cars datasets. The codes are
in https://github.com/aztc/FNKD
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1 Introduction

Convolutional Neural Network (CNN) has achieved great success in the field of
artificial intelligence in recent years, especially in computer vision [10, 39, 2, 8, 7,
16, 1]. However, this success is accompanied by high inference cost in computa-
tion and memory. Many works have devoted to reduce computational complexity,
such as model pruning [9, 5], lightweight network structure design [12, 28, 20] and
automated architecture search [31, 32]. One promising and widely used method
for model lightweight is Knowledge Distillation (KD) proposed by Hinton et
al. [11], which transfers ’dark knowledge’ from an ensemble or full model to a
single compact model via soft-target cross entropy loss function. Through distil-
lation, student model not only inherits better quality from the teacher, but also
be more efficient for inference due to its compactness.

Recently, KD has made huge success, some works have extended this ef-
fective idea to other application domains [13, 39, 18], others [37, 17, 24] improve
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the standard KD by kinds of techniques such as feature based distillation and
achieve better results. Researchers also attempt to seek for better understanding
about KD. For example, Lopez-Paz et.al [19] established the connection between
KD and privileged information, Yuan et al. [38] regarded KD as an special case
of Label Smoothing Regularization (LSD) which imposes constraint on student
training and Tang et al. [33] broke down the effects of KD into label smooth-
ing, example re-weighting and prior knowledge of optimal output layer geometry
three aspects. In this paper, we systematically analyze the mechanism of tem-
perature in KD from the perspective of label noise and introduce the L2-norm of
the feature in penultimate layer into soft-target to make a further improvement.

Fig. 1. The Overview for this paper. (a) Since there are visual similarities between
images, one-hot label which assumes classes are independent can’t always accurately
describe image’s real distribution over classes. The difference between one-hot label and
real distribution is a kind of label noise. LSD and KD can provide better supervisions.
(b) KD softens the label by reducing the L2-norm of the feature in penultimate layer
with a unified T while our method with a unique ‖f‖ for each sample.

Since there are visual similarities between images, one-hot label which as-
sumes classes are independent can’t always accurately describe image’s real dis-
tribution over classes [23], as shown in Fig 1.(a). The difference between one-hot
label and real distribution is a kind of label noise and harms model accuracy [6].
From the perspective of label noise, the methods like LSD [30] are actually in-
troducing the priors to reduce this noise. We show that KD could be regarded
that the teacher network learns noise information and produces better denoised
labels (Fig 1.(a)). Then, we demonstrate that the L2-norm of the feature in
penultimate layer would be too large under the influence of label noise, and
the temperature in KD could be regarded as a correction factor for L2-norm
to suppress the impact of noise. Since the L2-norm also indicates the intensity
of label noise, we introduce the L2-norm into soft-target as the sample specific
correction factor to replace the unified temperature T for better reducing the im-
pact of noise (Fig 1.(b)). Finally, we empirically show that our proposed method
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combines the advantages of both KD and Hypersphere Embedding (HE) [26, 35]
which is another effective regularization.

In summary, we make the following contributions:

1) We systematically analyzed the mechanism of temperature in Knowledge
Distillation from the novel perspective of one-hot label noise and verified
that the higher temperature is actually a correction factor for L2-norm of
penultimate layer’s feature which represents the intensity of label noise.

2) Based on our theoretical analysis and empirical findings, we proposed a sim-
ple yet effective innovative feature normalized KD for further refinement
of temperature mechanism. Extensive experiments on image classification
datasets support that our proposed method could improve over standard
KD.

3) We has shown the relationship between KD, LSD and HE and verified empir-
ically that the proposed feature normalized knowledge distillation benefits
from both KD and HE.

The rest of the paper is organized as follows. We review related works in
Section 2. The systematic demonstration and the proposed innovative method
is introduced in Section 3. Experimental results on image classification datasets
are presented and analyzed in Section 4 and followed by conclusions in Section
5.

2 Related Works

Since Hinton et al. [11] proposed Knowledge Distillation to implement knowl-
edge transfer, many works have extended this approach to other domains. For
example, by introducing KD, Zheng et al. [13] achieved fast and accurate super-
resolution with a compact CNN. Zhang et al. [39] distilled the knowledge from
multiple image parts into a single model to improve the performance of fine-
grained visual classification. Li et al. [18] attempted to learn from noisy data
with distillation which transfers the knowledge learned in small clean dataset.

In addition to exploring the application of KD in other fields, another im-
portant direction works on further improving the performance of knowledge dis-
tillation. Romero et al. [27] suggested that a student model could also imitate
intermediate representations (feature maps) learned by teacher model and pro-
posed to distill the knowledge by MSE loss and soft-label loss jointly. Guided
by this work, feature based distillation has made impressive developments. Yim
et al. [37] demonstrated that learning transform direction between two layers of
the teacher model instead of just mimicking the features would be more efficient.
Park et al. [24] introduced a novel approach that transfers relational properties
of different sample’s feature. Sun et al. [29] extended the FITNET [27] to min-
imise the mean-squared error between each individual layer of the student and
teacher, which is effective for BERT model compression.

Except for feature based distillation, there are methods to improve the train-
ing procedure. Since KD requires a two-phase training procedure, Lan et al. [17]
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presented an On-the-fly Native Ensemble model learning strategy for one-stage
online distillation to reduce the complexity of training phase. Yang et al. [36] ex-
tracted information from earlier epochs in the same generation to enable teacher-
student optimization in one generation, which could further improve the effi-
ciency of training. Mirzadeh et al. [21] found the student network performance
degrades when the gap between student and teacher is large and introduced an
assistant mechanism to bridge the gap.

Despite the large success of knowledge distillation, surprisingly few theoreti-
cal research has been done to better understand the mechanism of how it works.
Phuong et al. [25] provided the first insights into the working mechanisms of
distillation by studying the special case of deep linear classifiers and found three
key factors that determine the success of distillation, which is data geometry,
optimization bias and strong monotonicity. Müller et al. [22] found the conflict
between KD and LSD and argued that the resemblances between instances of
different classes is crucial for distillation. Moreover, Tang et al. [33] broke down
the effects of KD into label smoothing, example re-weighting and prior knowl-
edge of optimal output layer geometry three aspects which is similar to [25].
The most relevant work to ours is Yuan et al. [38], who also realized the relation
ship between KD and LSD, however they did not further reveal the underlying
causes of both methods. In addition, we are working on an improved KD while
they aimed for a teacher-free framework.

3 Method

In this section, we provide a systematic analyses for the mechanisms behind our
proposed method based on theoretical and empirical results. We start by intro-
ducing the ubiquitous label noise in one-hot label and analyzing the standard
KD from the perspective of label denoising. After that, we propose our feature
normalized knowledge distillation based on the finding that the L2-norm of the
feature in penultimate layer is a good estimation for label noise.

3.1 Noise in One-Hot Label

Label noise is a common problem in image classification. As suggested by Benôıt [6],
label noise has four main classes of potential sources. In this paper, we focus on
label encoding noise.

Considering K-way image classification, for a given x, the goal is to learn
a parametric mapping function σ(ψ(x; θ)) which generates a class distribution
p(k|x) to estimate the real distribution q̂(k|x), where k ∈ {1...K}, σ is the
softmax normalized function and ψ(x; θ) denotes the CNN consisting of stacked
convolution, pooling, relu, etc. In most cases, we don’t know q̂(k) exactly and
use the ont-hot encoded label q(k) = {1 k=t

0 k 6=t to approximate it, where t is the
ground-truth class of x and we omit x in conditional distribution for simplicity.
However, the approximation by q(k) would introduce label noise. Here, we show
some examples from datasets CUB-200-2011 [34] and ImageNet [4] in Figure 2.



Feature Normalized Knowledge Distillation for Image Classification 5

From the top row, we can see that although images in ”Black footed Albatross”
are very similar to those in ”Sooty Albatross”, the probabilities that they are
in class ”Sooty Albatross” are still assigned 0 by one-hot label. In addition, the
class ”Black footed Albatross” looks much closer to ”Sooty Albatross” than
”Pileated Woodpecker”, but one-hot label makes these two classes have the
same ”distance” to ”Sooty Albatross”. These phenomenons are more salient in
ImageNet which contains 1000 categories with more visually similar subclasses.
For instance, the images of the middle bottom row in Figure 2 could be classified
as either ”Laptop Computer” or ”Screen CRT”, however, they are eventually
assigned a hundred percent probability of being in category ”Laptop Computer”
out of some subjective reasons. This phenomenon is serious and common in this
dataset.

Fig. 2. The visual examples for label noise. From the top row, we could see that
although images belonging to ”Black footed Albatross” are very similar to images of
”Sooty Albatross”, the probability that they are in class ”Sooty Albatross” is still
assigned 0 by one-hot label. The class ”Black footed Albatross” looks much closer to
”Sooty Albatross” than ”Pileated Woodpecker”, but these three classes have the same
”distance” to each other hypothesized by one-hot label. Similar situation would be
observed in the ImageNet.

According to the above analysis, we could see that one-hot label assumes that
categories are independent of each other and every x has no correlation to non
ground-truth classes. However, images belonging to different classes often have
much visual similarities even though they are semantically independent. There-
fore, the strong hypothesis of one-hot label will bring about noise between q̂(k)
and q(k) (Fig 1.(a)). In view of this, we introduce a compensation distribution
η(k) and let

q̂(k) = q(k) + η(k). (1)

The −η(k) could be used to represent the noise caused by one-hot label, as
shown in Fig 1.(a). Although datasets with one-hot label often contain noise, it
is still difficult to find a more precise estimation for q̂(k) than q(k) manually.
So, the noise −η(k) would be present widely to varying degrees and causes some
troubles such as over-fitting.
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In addition to qualitative analysis above, we perform a simple experiment
on CUB-200-2011 to quantitatively measure the impact of label noise on model
accuracy. Although we don’t know the true q̂(k) so the real noise −η(k) can’t
be obtained, we can still introduce some priors to estimate it just like Label
Smoothing Regularization (LSD) [30]. LSD is an effective regularization that
softens one-hot label by mixing q(k) with an uniform distribution u(k), which
is mathematically formulated as

qlsd(k) = (1− ε1)q(k) + ε1u(k), (2)

where qlsd(k) is the modified label and ε1 controls its smoothness. Comparing
Equation 2 and Equation 1, we can regard ε1

1−ε1u(k) as an estimation for η(k),
so the LSD is actually a label denoising approach by using isotropic filtering
to produce a distribution approximating q̂(k). Considering that most images
exhibit varying degrees of visual similarities within each category instead of
uniform diversities hypothesized by LSD, we present an anisotropic LSD which
introduces another non-uniform distribution ρ(k) to estimate q̂(k) better. The
anisotropic LSD label qalsd(k) can be expressed as:

qalsd(k) = (1− ε1 − ε2)q(k) + ε1u(k) + ε2ρ(k)

ρ(k) =

{
1/|A(x)| k ∈ A(x),

0 k /∈ A(x),

(3)

where A(x) denotes the set containing classes more ’closer’ to the ground-truth
class of x. A(x) is decided by category’s name provided by the dataset. For
instance, CUB-200-2011 contains 5 different species of ”Woodpecker”, so the
probability for each ”Woodpecker” subclass will be ε1/5 more than other non
ground-truth classes. Due to the introduction of meta-information about cat-
egories, we could presume that qalsd(k) is a better estimation for q̂(k) than
qlsd(k) and will result in higher model accuracy.

To verify this, we use LSD and anisotropic LSD with ε1 = 0.2 and ε2 = 0.02
to train Resnet [10] and then compare their performance as shown in Table 1.
As expected, LSD outperforms one-hot label in terms of accuracy significantly
which is consistent with that reporterd by Szegedy et.al [30], our anisotropic
LSD further improves by introducing more information about q̂(k). This exper-
iment indicates that the noise in one-hot label indeed causes a decline in model
accuracy, as the estimation for η(k) becomes more accurate, we would obtain
a more ’clean’ target to alleviate the problem caused by one-hot label. Seeing
that LSD suppresses label noise via a pre-defined prior, we argue that learning
from data is another way to estimate the real distribution q̂(k) . In the following
section, we will explain that KD is actually one of such methods.

3.2 Standard Knowledge Distillation

As suggested by Li et al. [38], KD is a special case of LSR. In this section, we
will further discuss their relationship from the perspective of label denoising and
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Table 1. Training different architectures with different labels. LSD denotes the Label
Smoothing Regularization and anisotropic LSD is its improved version. These two
labels could be regarded as the denoised versions of original one-hot label and achieve
much better model accuracy, which indicates that the noise in one-hot label have serious
impact on model training. The last row shows the results of training by KD with a
Resnet50 teacher and a Resnet152 teacher respectively.

Label Resnet18 [10] Resnet50 [10]

one-hot label 77.23 83.49
LSD [30] 77.85 84.05
anisotropy LSD 78.21 84.45
KD T = 1 79.46 85.78

argue that the teacher in KD provides a more accurate estimation for label noise,
so KD could obtain a distribution approximating real distribution q̂(k) better
to help promote a student.

A CNN is usually trained by minimizing the cross-entropy loss H(q,p) =

−
∑K
k=1 q(k)log(p(k)) over the entire datasets. Instead of optimizing theH(q,p),

KD modified the objective by adding another regularization term. The optimiz-
ing objective is generally defined as

Lkd = (1− α)H(q, σ(ψ(x; θ))) + αH(qkd, σ(
ψ(x; θ)

T
)) (4)

qkd(k) =
exp(vk/T )∑K
i=1 exp(vi/T )

, (5)

where qkd(k) is another label generated by the teacher model based on its logits
v ∈ RK and α controls the balance between two terms. The temperature T
introduced by Hinton et al. [11] acts as a factor to smooth both the outputs of
teacher and student.

When T = 1, the Equation 4 can be simplified to

LT=1
kd = H(qt, σ(ψ(x; θ))) (6)

qt(k) = (1− α)q(k) + αqkd(k). (7)

Comparing Equation 7 with Equation 2 and Equation 3, it is easy to find that
these equations have the similar form. This implies that qt(k) here plays the
same role as qlsd(k) and qalsd(k). Based on the discussion above, we argue that
α

1−αqkd(k) is also a estimation for compensation distribution η(k) and the only
difference is that u(k) and ρ(k) is pre-defined while qkd(k) is learned by another
CNN from data. Therefore, from the perspective of label denoising, both LSD
and KD aim to remove noise in one-hot label and produce distributions closer to
real distribution q̂(k). To further compare KD and LSD quantitatively, we use
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Resnet152 and Resnet50 as teachers to train Resnet50 and Resnet18 respectively
using Equation 6 with α = 0.5. As shown in the bottom row in Table 1, KD
outperforms LSD and anisotropic LSD with a large margin in both settings,
which demonstrates that teacher could learn about label noise from training
data and thus provide a better compensation qkd(k) than the uniform prior
u(k).

To further suppress the noise’s influence, Hinton et al. [11] introduced an
simple yet effective way by raising the temperature T . With T increasing, the
distribution computed by Equation 5 is going to be softer. When T � vk, we can
Taylor expand both numerator and denominator in Equation 5 to approximate
qkd(k) as

qkd(k) ≈ 1 + vk/T

K +
∑
i vi/T

≈ 1

K
= u(k). (8)

Equation 8 illustrates that as temperature raises, qkd(k) becomes gradually
smooth until perfectly even. Previous works [17, 11] have found empirically that
a moderate T would yield a better student. From the perspective of label noise,
we argue that this is because the qkd(k) with small T is more noisy due to its
less diversity from one-hot label while the higher temperature would filter out
much noise’s influence and help student better. To make this argument more
clear, we will discuss what the logits v of teacher is and how it is affected by
one-hot label noise in the next section.

3.3 Feature in Penultimate Layer

In this section, we will at first show that the L2-norm of the feature in the
penultimate layer could effectively indicate the one-hot label noise. We further
demonstrate that the temperature T in KD could be regarded as an correction
factor for this noise.

The last layer of a CNN for classification is usually a K-way fully-connected
operation. It takes feature f ∈ RD as input and produces the logits v by a linear
transform v = Wf , where W ∈ RC×D is a parameter matrix. Note that

vi = Wi · f = ‖f‖‖Wi‖ cos(θi), (9)

where ‖·‖ denotes L2-norm, vi is the ith element of v, Wi is the ith row of matrix
W and θi is the angle between vector f and Wi. Since f has the same influence
on each vi, if we just want to know the class of a given sample, ‖Wi‖ cos(θi) is
sufficient, so what is the role of ‖f‖? Wang et al. [35] has proven that a feature
f with bigger L2-norm could produce a harder distribution and fit one-hot label
better. Since a softmax loss always encourages examples classified correctly to
have higher probability, so the L2-norm of the feature in penultimate layer would
be larger and larger in the training. In brief, the larger the ‖f‖ is, the closer the
output distribution will be to one-hot label. However, considering the fact that
there exists label noise as illustrated above, the real distribution q̂(k) is actually
softer than one-hot label, so large ‖f‖ is partially caused by noise and a shorter
f would be more appropriate. Therefore, we can see that why there is a T > 1
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in KD, in fact, the temperature T could be regarded as an correction factor for
L2-norm, which abates ‖f‖ to weaken the impact of label noise.

Since ‖f‖ is partially decided by label noise, we argue that the ‖f‖ could
be used to indicate the noise intensity. To study this empirically, we conduct a
experiment on CUB-200-2011 to select three categories and exhibit the images
with first two biggest and smallest ‖f‖ of each class. As shown in Fig 3, the images
with lower feature L2-norm have similar angles, illuminations, backgrounds and
very alike looking birds. Comparatively speaking, the images with larger ‖f‖
looks more characteristic and easier to tell apart. Rajeev [26] performed a similar
experiment to divide the images from IJB-A [14] dataset into 3 sets based on the
example’s ‖f‖ and found that the images with smaller ‖f‖ have poor quality and
are hard for model to classify correctly. These results demonstrate that although
one-hot label encourages f to have large L2-norm, these hard examples which
contain more label noise would still remain relatively small L2-norm on account
of some model priors. Noticing different samples suffer from varying intensities
of label noise, we propose a novel feature normalized KD by suppressing noise for
each sample according to their L2-norm instead of an identical T for all samples.

Fig. 3. Images with different feature L2-norm. The bottom row shows these examples
with lower feature L2-norm, it could be seen that these images have similar angle,
illumination, backgrounds and very similar looking birds. Comparatively speaking, the
images with larger L2-norm looks easier to tell apart. It indicates that the ‖f‖ could
be used to represent the noise intensity in one-hot label.

3.4 Feature Normalized Knowledge Distillation

As previously mentioned, the L2-norm of examples’s feature represents the noise
intensity in one-hot label, where the lower L2-norm indicates stronger noise
intensity. Therefore, we propose to weight every sample by the inverse of L2-
norm. With that in mind, we introduce a novel teacher’s supervision distribution
as
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qfn(k) =
exp( τvk

‖f‖ )∑K
i=1 exp(

τvi

‖f‖ )
, (10)

where τ is a parameter controlling the smoothness of distribution qfn(k) like the
original temperature T . For students, we let them to compute a similar output
following Equation 10 to mimic the teacher, so the final feature normalized KD
learning objective is

Lfn = H(q, σ(ψ(x; θ))) + λ2H(qfn, σ(
τψ(x; θ)

‖f‖
)), (11)

in which we take away the parameter α and add a new weight λ compared
to original soft-target cross-entropy loss expressed in Equation 4. To further
illustrate, we compute the loss gradient, ∂Lfn/∂zk, with respect to each logit
zk of the distilled student model. This gradient is given by

∂Lfn
∂zk

= p(k)− q(k) +
λ2τ

‖fs‖
(pfn(k)− qfn(k))

= p(k)− q(k) +
λ2τ

‖fs‖
(
exp( τzk

‖fs‖ )∑
i exp(

τzi

‖fs‖ )
−

exp( τvk

‖ft‖ )∑
i exp(

τvi

‖ft‖ )
).

(12)

Using a similar proof technique as Hinton et al. [11], assuming that
∑
i zi =∑

i vi = 0 and ‖fs‖ = ‖ft‖ � τzk, we Taylor expand both numerator and
denominator in the last term and get

∂Lfn
∂zk

≈ p(k)− q(k) +
λ2τ2

K‖ft‖2
(zk − vk). (13)

It is clear to see that Equation 13 introduces a teacher’s supervision vk to balance
the influence from the one-hot label and ‖ft‖ helps to control the contribution
of zk − vk which represents how different the student is from teacher.

Comparing Equation 13 and its counterpart in KD [11], we could find the
biggest difference is the presence of ‖ft‖ which assigns each sample a different
weights between one-hot label and teacher instead of a same weight given by
standard KD. When the noise in q(k) is strong, ‖ft‖ is going to be small and
the impact of zk − vk will be relatively higher. In turn, if the one-hot label has
less noise, ‖ft‖2 would reduce the effect of teacher to negligible and p(k)− q(k)
dominates. In brief, the feature normalized KD could determine adaptively how
much a student needs to trust the teacher according to the intensity of label
noise in examples.

As suggested by Hinton et al. [11], it is important to ensure that the relative
contributions of the hard and soft targets remain roughly the same order of
magnitude. Therefore, we keep λ2τ2/( ¯‖ft‖)2 ≈ 1, where ¯‖ft‖ is the mean over
the training set. To fairly compare with standard KD, we then let ¯‖ft‖/τ ≈ T .
The specific parameter setting will be introduced in the following experiments
section.
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4 Experiments

In this section, we will conduct extensive experiments on Cifar-100, Cifar-10,
CUB-200-2011 and Stanford Cars datasets to verify the effectiveness of our pro-
posed feature normalized knowledge distillation (KD-fn) for varying image clas-
sification tasks. On this basis, we will further compare KD-fn with standard
Knowledge Distillation (KD) and Hypersphere Embedding (HE) and discuss
the relationship between them.

4.1 Results on Cifar

Cifar-100 and Cifar-10 are two widely studied datasets for image classification,
both of which consist of 60000 32×32 color images. Cifar-100 involves 20 su-
perclasses, each of which contains 5 subclasses, for a total of 100 classes while
Cifar-10 only contains 10 distinct categories. To compare our approach with
standard KD, we respectively utilize Resnet110 and Resnet56 as the teacher
models to supervise the student models of Resnet56 and Resnet20. All models
are trained on a single NVIDIA GeForce 1080Ti GPU using MXNet [3] for 200
epochs on the training set with 128 examples per minibatch, and evaluated on
the test set. Learning rates start at 0.1 and are divided by 10 after 100 and 150
epochs for all models. We use SGD optimizer with momentum of 0.9, and weight
decay is set to 1e-4. In addition to mean subtraction and standard deviation nor-
malization, no more data augmentation or training strategies are used. We set
α = 0.5, T = 3 for KD and τ = 2, λ = 3 for our method.

Table 2. Results on Cifar-100 and Ciar-10

Model Method Cifar-100 Cifar-10

Resnet56 Teacher 81.73 93.63

Resnet20
Student 78.30 92.11
KD 80.34 92.86
KD-fn 81.19 92.67

Resnet110 Teacher 82.01 94.29

Resnet56
Student 81.73 93.63
KD 81.82 94.10
KD-fn 82.23 94.14

As represented by the scores in Table 2, our proposed KD-fn achieves 81.19%
high accuracy with Resnet20 student which surpasses KD with remarkable 0.85%
in Cifar-100 set. When Resnet110 is utilized as the teacher, KD only brings stu-
dent tiny improvement, by contrast, the student trained with KD-fn still achieves
a promotion of 0.5% accuracy and even outperforms the teacher surprisingly. In
Cifar-10, KD and KD-fn have very similar performances and both of them bring



12 K. Xu et al.

relatively less improvement when compared with results of Cifar-100. According
to the description of this dataset, the classes in Cifar-10 are completely mutually
exclusive. There is no overlap and less visual similarity between these 10 classes,
which means one-hot label is already a good approximation for real distribution
q̂(k) and introduces less noise. Since both KD and KD-fn could be regarded as
the method to suppress the noise in label based on our previous discussion, they
perform less effectively in Cifar-10 relative to Cifar-100.

4.2 Results on Fine-grained Visual Categorization

To verify the performance of our proposed KD-fn on fine-grained visual catego-
rization (FGVC) tasks, we conduct experiments on two classical benchmarks of
CUB-200-2011 [34] and Stanford Cars [15]. The CUB-200-2011 is a most widely
studied bird’s classification task with 5994 training images and 5794 test images
from 200 wild bird species. It is one of the most competitive datasets since each
category has only 30 images for training. The Stanford Cars dataset contains
8,144 training images and 8,041 test images over 196 classes.

During training, we set the batchsize to 72 and the initial learning rate as
0.05 with decay factor of 0.1 after every 30 epochs to train each model for
120 epoches. We use random cropping, brightness jitter and random flip data
augmentations which are provided as standard training setting by MXNet [3],
please refer to our code for more parameter settings. In the experiments, we set
α = 0.5, T = 3 for KD. Based on the principle of parameter setting discussed in
Section 3 as well as the experimental result that ‖f‖ is roughly 24, we set τ = 8
and λ = 3.

Considering that subordinate classes share most of the visual characteris-
tics except for subtle differences in particular regions, the images from different
classes always have more similarities than that in general image classification.
Therefore, the difference between real distribution q̂(k) and one-hot label is much
larger, i.e. the noise in one-hot label is stronger. In view of this, we could specu-
late that both KD and KD-fn would perform more effectively on FGVC datasets.
This is supported by our experimental results, Table 3 shows that teacher al-
ways brings about much promotion (at least 1.95%) in terms of accuracy, which
is consistent with our above speculation. Furthermore, this is also an evidence
that the effectiveness of KD is the suppression of one-hot label noise.

It is more noteworthy, the proposed KD-fn outperforms KD in all settings. On
the CUB-200-2011 with Resnet18 student and Resnet50 teacher, KD-fn achieves
81.52% accuracy which surpasses the KD with remarkable 1.15%. Although it’s
a little bit lower increasing (0.79%) of accuracy on Stanford Cars, the student
eventually surpasses its teacher significantly. Since distilling the knowledge to a
lightweight network is common and important in application, we compare the
performance of our proposed method with KD to distill the knowledge from
Resnet50 to Mobilenetv2 which is a typical lightweight model. It is obvious that
our approach also achieves good results and surpasses KD 0.92% and 0.61% re-
spectively on two datasets, which indicates that our approach also applies across
model family. Moreover, we have also tested the performance of our method
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Table 3. Results on CUB-200-2011 and Stanford Cars

Model Method CUB-200-2011 Stanford Cars

Resnet50 Teacher 83.30 90.89

Resnet18
Student 77.23 88.10
KD 80.37 90.74
KD-fn 81.52 91.53

Resnet50 Teacher 83.30 90.89

Mobilenetv2
Student 79.53 87.09
KD 81.48 90.49
KD-fn 82.40 91.10

Resnet152 Teacher 83.76 92.13

Mobilenetv2
KD 81.57 90.71
KD-fn 82.80 91.42

when there is a big gap between teacher and student. On CUB-200-2011, it can
be seen that when changing the teacher model from Resnet50 to Resnet152, the
student’s accuracy obtained by KD only increases 0.09% while that trained with
KD-fn improves 0.4%.

4.3 Self-distillation

Self-distillation refers to the special KD, where the student and teacher model
share the same architecture. The idea is to feed in predictions of the trained
model as teacher to provide new target values for retraining itself. When there
are constraints on training resources or when it is hard to find a better teacher
than the student, self-distillation is an effective option to obtain higher accuracy.
From the perspective of label denosing, we argue that since student can also
learn knowledge about the noise in one-hot label, it can use this knowledge to
suppress the noise’s influence and thus improve itself’s learning. We compare
self KD-fn and self KD on Cifar-100 and CUB-200-2011 with 5 different models.
Table 4 shows that self KD-fn surpasses self KD in all settings, which further
demonstrates the effectiveness of our proposed method.

Table 4. Results on self-distillation

Dataset Model Baseline self KD self KD-fn

Cifar-100
Resnet20 78.30 79.48 80.16
Resnet56 81.73 83.33 83.73

CUB-200-2011
Resnet18 77.23 79.15 79.61
Resnet50 83.30 83.92 84.24
Mobilenetv2 79.53 80.32 80.47
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4.4 The Relationship with Hypershpere Embedding

Hypershpere Embedding (HE) [26, 35] is a method to restrict the feature of
penultimate layer to lie on a hypersphere of a fixed radius, which is prevalent
in face verification. The method usually fine-tune a well-trained model using
cross-entropy loss with multiplying the L2-norm of the feature in penultimate
layer by r/‖f‖, r ∈ R. We directly write the gradient with respect to logit of this
method as

∂Lhe
∂zk

=
r

‖f‖
(phe(k)− q(k)) (14)

where phe(k) is the output computed following Equation 10. We can find that
this method is similar to KD-fn, which also weights each sample by ‖f‖ to pay
more attention to those hard examples with much label noise. The difference
with our method is that the phe(k)’s objective is still one-hot label while pfn(k)’s
objective is another teacher. So, KD-fn combines the strengths of both teacher
and ‖f‖ at the same time. Table 5 shows the comparison results. Due to the
presence of teacher, KD-fn outperforms HE significantly.

Table 5. Comparison to Hypershpere Embedding

Dataset Model (S+T) HE (S) KD-fn (S+T)

Cifar-100
Resnet20+Resnet56 78.96 81.19
Resnet56+Resnet110 81.65 82.23

CUB-200-2011
Resnet18+Resnet50 80.25 81.52
Mobilenetv2+Resnet50 80.55 82.40

5 Conclusions

In this paper, we propose a simple yet effective feature normalized distillation
strategy for image classification. Based on the systematically analysis from the
perspective of label denoising, we introduce the L2-norm of the feature in penul-
timate layer into soft-target as the sample specific correction factor to replace the
unified temperature of KD for better reducing the impact of noise in one-hot la-
bel. Comprehensive experiments show that the proposed method surpasses stan-
dard KD significantly on Cifar-100, CUB-200-2011 and Stanford Cars datasets.
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