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Abstract. Low-bit Deep Neural Networks (low-bit DNNs) have recently
received significant attention for their high efficiency. However, low-bit
DNNs are often difficult to optimize due to the the saddle points in
loss surfaces. Here we introduce a novel feature-based knowledge trans-
fer framework, which utilizes a 32-bit DNN to guide the training of a
low-bit DNN via feature maps. It is challenge because feature maps from
two branches lie in continuous and discrete space respectively, and such
mismatch has not been handled properly by existing feature transfer
frameworks. In this paper, we propose to directly transfer information-
rich continuous-space feature to the low-bit branch. To alleviate the neg-
ative impacts brought by the feature quantizer during the transfer pro-
cess, we make two branches interact via centered cosine distance rather
than the widely-used p-norms. Extensive experiments are conducted on
Cifar10/100 and ImageNet. Compared with low-bit models trained di-
rectly, the proposed framework brings 0.5% to 3.4% accuracy gains to
three different quantization schemes. Besides, the proposed framework
can also be combined with other techniques, e.g. logits transfer, for fur-
ther enhacement.
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1 Introduction

The gains of Deep Neural Networks (DNNs) in various pattern analysis tasks
have been accompanied by dramatic increases in model complexity. To mitigate
this problem, Network quantization [8, 21, 15, 34, 30, 11, 10, 23], which converts
32-bit weights and activations into low-bit, has been proposed to deploy models
to mobile platforms. For example, XNOR-net [21] can achieve 58× faster convo-
lutional operations and 32× smaller model size. However, optimizing a low-bit
DNN is often more difficult due to the noise in gradients [28] and the saddle
points in its loss surface [23]. Various techniques have been developed to better
train a low-bit model. Incremental quantization [33] gradually decreases the bit-
width of the model to better adapt to the quantization noise. Logits Transfer [18,
20] supervises low-bit DNNs with soft labels from 32-bit DNNs to make use of
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the correlation between labels. Attention Transfer [17] encourages low-bit DNNs
to produce high quality attention maps for better training. And Feature Trans-
fer [35, 27] guides low-bit DNNs via feature maps from 32-bit ones. Methods
from different categories assist the optimization of low-bit DNNs from different
aspects, and can be combined for further enhancement.

In this paper, we focus on the feature transfer approach. For non-quantized
DNNs, a variety of feature transfer frameworks [26, 14, 16, 1, 25, 6] have been
proposed, which directly minimizes the distance between feature maps from two
DNN branches. Nevertheless, feature maps from low-bit DNNs lie in discrete
space. Hence, the above studies cannot be directly applied to low-bit ones. To
resolve this mismatch, [35, 27] quantizes the continuous knowledge to the same
discrete space before transferring. However, transferring discrete knowledge has
two main drawbacks. Firstly, regularization in discrete space introduces abrupt
changes to gradients, especially for lower bit-width, which leads to unstable
training process. Secondly, to convert 32-bit feature maps to discrete space,
the specific form of the quantizer is needed. However the quantizer is adaptive
for advanced quantization schemes [30, 11] and has no explicit expression. It
is desired to design an universal framework, which can handle the mismatch
problem for all low-bit DNNs.

To resolve the above problem, this paper explores to directly transfer knowl-
edge from a 32-bit DNN to low-bit one without quantization. In other word, we
propose to perform knowledge transfer before the quantizer. Since the quantizer
is sensitive to distribution fluctuations during training, we introduce centered co-
sine similarity to replace the widely-used p-norms as the distance function, which
focuses on the relative numerical relationship between feature elements and can
better maintain the data distribution. We further reveal that the training of a
low-bit DNN can be regarded as minimizing its distance to the corresponding
32-bit version. Because low-bit DNNs have much lower learning capacity than
the 32-bit ones and may fail to follow its guidance, we further explore to relax
the guidance of the 32-bit branch during training. It’s worth noting that the
proposed method is independent of the form of the quantizer. Therefore, it is an
universal framework applicable to all low-bit DNNs.

To demonstrate the effectiveness of the proposed method in improving the
performance of low-bit DNNs, we experiment with different benchmark datasets
(i.e. Cifar-10/100 [13] and ImageNet [3]), different models (i.e. Alexnet, Vg-
gnet and Resnet), different bit-width and different quantization algorithms (i.e.
BNN [8], DoReFa-Net [34], LQ-Nets [30]). The proposed method consistently
achieves 0.5% to 3.4% accuracy gains, and reaches state-of-the-art performance
when taking LQ-Net [30] as the base model. Furthermore, experimental results
show that FTL can be combined with other approaches, e.g. logits Transfer[7],
for further enhancement.

Below we summary the main contributions of this paper.

– We propose to guide a low-bit DNN before its feature quantizer, which leads
to more stable training process and more accurate guidance.
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– We introduce centered cosine similarity for feature transfer, which ensures
the consistency of guidance when going through the feature quantizer.

– We explore to relax the guidance when the learning capacities of the low-bit
DNN prevent it from absorbing the knowledge from the 32-bit DNN.

2 Related Work

The proposed algorithm aims to enhance the classification performance of low-bit
DNNs, leveraging a special case of knowledge transfer frameworks.

2.1 Low-bit DNNs

For smaller model size and higher computational efficiency, both weights and
activations of low-bit DNNs lie in discrete space [21]. According to bit-width,
low-bit DNNs can be divided into two categories. With bit-width of 8 or 16, the
low-bit DNNs can directly be obtained from the 32-bit DNN without additional
training [10, 32, 19]. However, with bit-width equal or less than 4 bits [21, 15, 34,
30, 11], re-training considering quantization effect is required to mitigate accu-
racy degradation, namely quantization-aware training. In this paper, all low-bit
DNNs refer to the second category unless otherwise specified. BNN [8] is one
of the earliest work for extreme low-bit quantization. To improve the represen-
tational capacity of low-bit models, XNOR-Net [21] assigns scaling weights to
each layer. Dorefa-net [34] extends XNOR-Net from binarization to arbitrary
bit-width. LQ-nets further adopt adaptive quantizer to enhance the flexibility of
the model. In [11], network pruning technique is adopted to optimize the quan-
tization interval. In order to prove that our method can be applied to various
quantization algorithms, we choose BNN [8], DoReFa-net [34] and LQ-nets [30]
as our base models.

2.2 Knowledge Transfer

DNNs learn ‘knowledge’ from training data, and the ‘knowledge’ can be trans-
ferred from one DNN to another. In logits-based Knowledge Transfer [7], knowl-
edge can be viewed as the soft label from the pre-trained teacher DNN, which is
absorbed by student DNN via minimizing the Kullback-Leibler divergence be-
tween outputs of two DNNs. Such process can be repeated for multiple times
for further enhancement [4]. In mutual learning [31], DNNs can learn from each
other, rather than one way transfer from teacher to student.

Knowledge can also be transferred via feature maps. Since feature maps have
much higher dimensions, it is more challenging to align two DNNs in middle layer
than logits. To transfer knowledge, previous frameworks empirically minimize the
p-norms between feature maps from two DNNs, without further explanation.
Some methods [27, 26, 14] add ‘attention’ to original feature maps, or directly
transfer the attention maps between different DNNs [29]. And generative adver-
sarial learning is adopted in [16] to better align different branches. However,
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Fig. 1. Subfigure (a) is the overall framework of FTL. Subfigure (b) and (c) are further
demonstration of gradient rescaling module in FTL.

most frameworks can not be applied to transfer feature-based knowledge from
32-bit DNNs to low-bit DNNs, because it is nontrivial to align feature maps with
different numerical precision.

3 Feature Transfer for Low-bit DNNs

This section introduces the proposed method, which is specially designed for low-
bit DNNs to overcome the space mismatch problem. Below we first introduce
the overall framework, then the key components will be addressed in details.

3.1 Overall Framework

We attempt to utilize a 32-bit DNN to guide the training of a low-bit DNN via
feature maps. Both two DNN branches are trained from scratch. This training
scheme enables the low-bit DNN to learn the path to convergence [18]. For the
sake of simplicity, the 32-bit DNN is constructed with the same hyper-parameters
of the low-bit DNN. The only difference between two DNNs is that the low-bit
one quantizes its weights and feature maps in each layer to discrete space.

Fig. 1 shows the overall framework of FTL. Intuitively, the low-bit DNN
should learn from multiple layers of the 32-bit DNN to achieve more accuracy
gains. However, feature maps of the first few layers often have weaker semantic
information and more redundant details, which makes interaction via these layers
a universal challenge for Knowledge Transfer frameworks. Since the focus of this
paper is to alleviate the problem caused by the mismatch between continuous
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space and discrete space, we only make two DNNs interact via the output of the
last convolution layer, which follows the practice in previous frameworks [12, 27].
We do not need to explicitly define the form of the quantizer Q(·) because the
proposed framework is independent of Q(·). The interaction between two DNN
branches is achieved by minimizing a distance function in continuous space. For
clear description, we denote the training data set as St = {(xi, yi)}Ni=1, where
{xi}Ni=1 are the inputs and {yi}Ni=1 are corresponding targets. We further denote
the feature maps in the 32-bit and low-bit branch as f32 and flow respectively.
Note that flow is in continuous space. And it will be converted to discrete space
via quantizer Q(·) before further forward computation. To design the distance
function, two factors need to be taken into account. On the one hand, since flow is
followed by quantizer Q(·), the knowledge transferred to flow may be degraded
by Q(·). On the other hand, the guidance of f32 may cause flow to deviate
from the optimal numerical range for quantization operation. To handle both
issues, we implement the distance function based on centered cosine similarity.
Different from the widely-used p-norms, the centered cosine distance focuses on
the relative numerical relationship between feature elements, rather than their
numerical differences. The overall optimization object is to obtain:

min LC32
+ LClow

+ λ ·R(flow, f32), (1)

where the first two terms LC32
and LClow

denote the widely-used cross entropy
losses for the 32-bit DNN and the low-bit DNN respectively. The third term
R(flow, f32) denotes the distance function, which is designed to add additional
supervision on low-bit DNNs and can be viewed as regularization. λ ≥ 0 is a
balancing parameter.

In our framework, knowledge is transferred from f32 to flow. It seems straight-
forward to make f32 not influenced by flow (equivalent to set ∂R

∂f32
= 0). However,

due to its limited representational capacity, the low-bit DNN may fail to follow
the strong guidance from the 32-bit DNN and the 32-bit DNN should ‘realize’
it and make some concessions, which in turn requires ∂R

∂f32
6= 0. To balance

these two requirements, we should control how much ∂R
∂f32

is retained. Therefore,
Gradient Rescaling Module is designed to balance the ‘guidance’ and ‘conces-
sions’ from the 32-bit DNN. Next, we will introduce the design of regularization
function in detail, and further combine it with Gradient Rescaling Module.

3.2 Distance Function

Definition In this section, we explore the design of distance function for the
low-bit branch. The goal is to transfer knowledge from f32 to Q(flow), where
Q(·) is the feature quantizer. Since f32 and Q(flow) lies in continous space and
discrete space respectively, it is nontrivial to minimize the distance between
Q(flow) and f32. Previous methods [35, 27] first quantize f32 and then utilize
Q(f32) to guide Q(flow). However, minimizing the distance in discrete space
brings abrupt changes to gradients, and quantization operation on f32 can lead
to a loss of information for the knowledge. We instead directly minimize the
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distance between flow and f32, and focus on their mismatch probability [22,
24]. To be specific, given any pair of feature elements f i32 ≤ f j32 in the 32-bit

branch, it is desired that the low-bit branch produces f ilow ≤ f
j
low, so that feature

elements in flow and f32 have a high positive correlation. To achieve this purpose,
we define the distance function based on centered cosine similarity, as shown in
Eq.(2).

R(f32, flow) = 1− (flow − flow) · (f32 − f32)∥∥flow − flow∥∥2 ∥∥f32 − f32∥∥2 , (2)

The distance function defined by Eq.(2) enables flow to produce a high cen-
tered cosine similarity with f32. Note that due to the non-decreasing property of
Q(·), if f ilow ≤ f

j
low, the quantized feature maps in the low-bit branch also satisfy

Q(f ilow) ≤ Q(f jlow), which ensures the consistency of knowledge passing through
Q(·). Compared with p-norms, centered cosine distance only constrains the rela-
tive numerical relationship between elements of flow rather than the magnitude
of each element, which brings negligible changes to the data distribution of flow
during training. Such property is beneficial for the low-bit branch to converge,
because flow should maintain certain distribution to match with the quantizer
Q(·), and the distribution fluctuation will be amplified by Q(flow) due to its
coarse feature pixel values.

Relationship with Mutual Information We assume that feature maps flow
and f32 are generated by variables vlow and v32 respectively. Since previous
works [9, 2] have shown that both flow and f32 follow a data distribution sim-
ilar to Gaussian, we model both vlow and v32 as Gaussian variables vlow ∼
N (µlow, σ

2
low) and v32 ∼ N (µ32, σ

2
32). On this basis, the Mutual Information

between vlow and v32 can be explicit formulated as Eq.(3) [5], where ρ is the
correlation coefficient between vlow and v32, ranging from -1 to 1. Note that ρ
can be estimated by the centered cosine similarity between f32 and flow. There-
fore, the minimizing the centered cosine distance can be viewed as to increase
of Mutual Information between vlow and v32.

MI(vlow,v32) = −1

2
log(1− ρ2). (3)

The question arising naturally is that can we directly maximize the Mutual
Information in Eq.(3) rather than centered cosine similarity for guidance? Below
we demonstrate two main drawbacks of Eq.(3). The first is gradients explosion,
which can lead to unstable training process, as is shown in Eq.(4). The second
problem is that maximizing Eq.(3) may induce ρ → −1, which indicates that
vlow and v32 have a strong negative correlation. However, vlow and v32 should
instead have a positive correlation to ensure both of them are activated (or
clipped), because most quantizers and activation functions only activate larger
values while clipping smaller ones. Therefore, it is inappropriate to directly utilize
Eq.(3) to guide the low-bit DNN.
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lim
|ρ|→1

∣∣∣∣∂ log(1− ρ2)

∂ρ

∣∣∣∣ = +∞. (4)

3.3 Gradient Rescaling Module

In the field of knowledge transfer, two (or more) DNNs interact typically by two
modes: teacher-student mode and mutual learning mode. The former transfers
knowledge unidirectionally from ‘teacher’ DNN to ‘student’ DNN, while The
latter allows DNNs to learn from each other.

Nevertheless, neither mode is optimal for the proposed algorithm. In this
paper, we aim to transfer knowledge from the 32-bit DNN to the low-bit DNN,
however, the latter may fail to absorb knowledge from the former due to its lim-
ited representational capacity and slow convergence speed. Simply with teacher-
student mode, the 32-bit DNN cannot adjust itself according to the feedback
from the low-bit DNN. Simply with mutual learning mode, the 32-bit DNN
makes too many concessions and the noise from the low-bit DNN may worsen
its performance, which in turn degrades its guidance for the low-bit DNN.

For the reasons above, Gradient Rescaling Module is designed to combine
the advantages of both strategies, as is shown in Fig. 1(b)(c). In feed-forward
process, Gradient Rescaling Module is simply an identity function and can be
ignored. In back-propagation process, gradients of R(flow, f32) can be obtained,
and Gradient Rescaling Module scales this gradients by the factor of 1−w and
w for the low-bit DNN and the 32-bit DNN respectively. w is a hyper-parameter,
with the range of 0 to 0.5. Then the gradients of Eq.(1) with respect to flow and
f32 can be denoted as Eq.(5) and Eq.(6):

∆flowL =
∂LClow

∂flow
+ (1− w) · λ · ∂R

∂flow
(5)

and

∆f32L =
∂LC32

∂f32
+ w · λ · ∂R

∂f32
. (6)

Following the same notation in Eq.(1), the low-bit DNN absorbs knowledge
from the 32-bit DNN through ∂R

∂flow
in Eq.(5), while the latter receives feedback

from the former via ∂R
∂f32

in Eq.(6). It can be seen that both teacher-student mode

(when w = 0, f32 is not influenced by flow.) and mutual learning mode (when
w = 0.5, f32 and flow affect each other to the same extent.) can be viewed as
the extreme cases of Gradient Rescaling Module. With proper choice of hyper-
parameter w (0 to 0.5), the 32-bit DNN can make ‘appropriate’ adjustments
and concessions based on the feedback, which can relax its regularization on the
low-bit DNN.

4 Experiments

In this section, we present experimental analysis on two widely used bench-
mark datasets, Cifar-10/100 [13] and ImageNet (ILSVRC12) [3]. Cifar-10 has
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60,000 32×32 colour images in 10 classes, with 50,000 training images and 10,000
test images. Cifar-100 further divides Cifar-10 dataset to 100 classes. ImageNet
(ILSVRC12) is a large scale dataset containing about 1.2 million training images
and 50,000 validation images in 1,000 classes.

4.1 Implementation Details

To verify the effectiveness of the proposed algorithm, we experiment with three
well-known low-bit DNNs: BNN [8], DoReFa-Net [34] and LQ-Nets [30]. To
better expose the problem of space mismatch, we first experiment with simple
quantization method BNN and Dorefa-Net, because simple methods suffer more
from the mismatch problem. We further verify the performance on LQ-nets, one
of the state-of-the-art quantization methods. All experiments are implemented
based on the corresponding officially released source codes. To eliminate other
distractions, we keep all experiment settings (e.g. network structure, data aug-
mentation, hyper-parameters) consistent between standard low-bit DNNs (base-
line) and guided low-bit DNNs (ours). The proposed algorithm has two hyper-
parameters, i.e. λ and w. λ is a balancing parameter between empirical loss and
regularization loss. We choose proper λ to make the gradients of the two loss
functions comparable, so that both of them can contribute to the training. w in
Gradient Rescaling Module controls the interaction mode between two DNNs,
which ranges from 0 to 0.5. With a larger w, the low-bit DNN is more likely to
converge while the 32-bit DNN suffers more noise from the low-bit DNN, which
in turn degrades its guidance for the low-bit one. Thus, we start with w = 0.5
and reduce it by 10x each time until no significant performance degradation is
observed for the 32-bit DNN. In fact, the significant performance of FTL is not
due to excessive hyper-parameter adjustment. We set w = 0.005 (unless other-
wise stated) for all experiments rather than searching for better choice for each
model. And λ ranges from 1 to 3.

4.2 Performance Evaluation

The proposed algorithm aims to use the 32-bit DNN to guide training of the low-
bit DNN. In this section, we evaluate the performance of the proposed algorithm
on Cifar-10/100 [13] and ImageNet [3].

Performance on Cifar-10/100 Table 1 presents the experimental results of
Resnet-small model and Vgg-small model. Since advanced low-bit DNNs (e.g.
DoReFa-Net [34] and LQ-Nets [30]) have already achieved excellent performance
on small scale datasets like Cifar-10/100, we only experiment with BNN [8],
a naive quantization algorithm. Table 1 shows that the proposed algorithm
brings 0.79% to 3.00% accuracy gains over the baseline for Cifar-10/100, where
“W/A/G” denotes the bit-width of weights/activations/gradients.
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Table 1. Top-1 accuracy (average of 5 runs) on Cifar10/100. “W/A/G” denotes the
bit-width of weights/activations/gradients. “Full precision” denotes the classification
accuracy of the 32-bit DNN. “Baseline” represents the low-bit DNN trained without
guidance.

Dataset Model Bit-width(W/A/G) Baseline Ours Accuracy gain Full precision

Cifar10
Resnet-small 1/1/32 88.16 90.88 +2.72 93.7

Vgg-small 1/1/32 88.98 89.82 +0.84 93.0

Cifar100
Resnet-small 1/1/32 61.20 64.20 +3.00 70.9

Vgg-small 1/1/32 63.76 64.55 +0.79 69.1

Table 2. Top-1 accuracy on ImageNet. “Quantizer type” refers to the type of quan-
tizer in certain quantization method. “Method” means different quantization algorithm.
“W/A/G” denotes the bit-width of weights/activations/gradients. “Full precision” de-
notes the classification accuracy of the 32-bit DNN. “Baseline” represents the low-bit
DNN trained without FTL.

Method Model Bit-width(W/A/G) Baseline Ours Accuracy gain Full precision

BNN
Alexnet 1/1/32 36.6 37.9 +1.3 60.6

Resnet-18 1/1/32 46.3 46.9 +0.6 69.6

DoReFa-Net

Alexnet 1/2/32 52.6 54.0 +1.4 59.7
Alexnet 1/2/4 41.5 44.9 +3.4 59.7

Resnet-18 1/2/32 56.1 57.0 +0.9 69.6
Resnet-18 1/2/4 52.1 53.7 +1.6 69.6

LQ-Net

Alexnet 1/2/32 55.7 56.3 +0.6 61.8
Resnet-18 1/2/32 62.6 63.1 +0.5 70.3
Resnet-34 1/2/32 66.3 67.4 +1.1 73.8
Resnet-50 1/2/32 68.7 69.6 +0.9 76.4
Resnet-50 2/2/32 70.3 71.4 +1.1 76.4

Performance on ImageNet Table 2 presents the experimental results on the
ImageNet. Though various quantization algorithms have been developed, low-bit
DNNs still struggle to achieve satisfying performance on such large scale dataset.
Hence, we conduct various experiments on ImageNet with different qunatization
methods, different models and different bit-width. Experimental results show
0.5% to 3.4% accuracy gains. The enhancement for different models varies a little,
which is mainly because we simply assign the same hyper-parameter value for all
experiments without further tuning. Note that with quantized gradients of 4-bit
(equivalent to adding more noise to gradients), the proposed algorithm can bring
more accuracy gains. This phenomenon demonstrates that additional supervision
on middle layers can alleviate the negative impact of noise in gradients [28].

Comparison with the State-of-the-art As is introduced above, various tech-
niques have been proposed to better train a low-bit DNN, which can be divided
into Incremental quantization [33], Logits Transfer [18, 20], Attention Trans-
fer [17] and Feature Transfer [35, 27]. Since different kinds of methods can be
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Table 3. Comparison between the state-of-the-art and ours on Cifar-10. “JGT” denotes
the framework proposed in [35]. Since no experiment is conducted based on BNN in
the original paper, we implement “JGT” ourselves. All results are average of 5 runs.

Model Baseline JGT Ours

Resnet-small 88.16 88.89 90.88

Vgg-small 88.98 89.10 89.82

Table 4. Comparison between the state-of-the-art and ours on ImageNet with Alexnet.
“JGT” and “JGT*” denotes the guided framework proposed in [35] with different
training strategy. We directly quote the experimental results for JGT and JGT* from
the original paper.

Top-1 Top-5 Top-1 Top-5

JGT 50.0 74.1 Baseline (JGT) 48.8 72.2
JGT* 51.6 76.2 Baseline (JGT*) 50.9 74.9
Ours 54.0 77.2 Baseline (Ours) 52.6 76.0

applied simultaneously for further enhancement, it is proper to only make com-
parison within the same category. This paper focuses on the Feature Transfer
approach. Jointly Guided training (JGT) proposed in [35] is the state-of-the-art
framework to guide the low-bit DNN via feature maps. In this section, we make
a comparison between JGT and FTL. There is no results related to TCO [27]
because TCO is specially designed for object detection task. Table 3 and Table 4
demonstrate the results implemented on BNN [8] and DoReFa-Net [34] respec-
tively. No experiment is conducted on LQ-nets [30] because JGT framework
is not applicable to low-bit DNNs with adaptive quantizers (e.g. LQ-nets [30]),
which is a serious limitation compared with our framework. More than that,
experimental results show that FTL can even bring more accuracy gains when
training BNN and DoReFa-Net. The gains are mainly from the information-rich
continuous-space knowledge.

4.3 Ablation Study

FTL consists of Centered Cosine Distance and Gradient Rescaling Module. To
verify their effectiveness, ablation study is conducted based on BNN [8].

Centered Cosine Distance

Results To analyze the effectiveness of centered cosine distance implemented
with centered cosine similarity, we make a comparison between the centered
cosine distance and the widely used p-norm ‖·‖p. Following [12, 35], we take
p = 1 for ‖·‖p, denoted as L1 norm. Since the performance of each distance
function is greatly affected by the balancing parameter λ in Eq.(1), we search
for the ‘optimal’ λ for L1 norm in {0.04, 0.2, 1, 5, 25, 100} and demonstrate the
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Fig. 2. Effectiveness of centered cosine distance. “CCD(continuous)” represents the
proposed centered cosine distance, which is applied in continuous space. “L1(discrete)”
and “L1(continuous)” curves represent L1 norm applied in discrete and continuous
space, while “Baseline” is standard training of the low-bit DNN. Compared to “Base-
line”, “MIR(continuous)”, “L1(continuous)” and “L1(discrete)” achieve 0.84%, +0.45%
and -0.07% accuracy gains respectively.

best performance. In order to reduce random fluctuations in training, each curve
is obtained by averaging 5 runs. In our framework, centered cosine distance is
applied in continuous space. So we also implement L1 norm in continuous space,
which is denoted as “L1(continuous)” in Fig. 2. It can be seen that our centered
cosine distance (CCD) obviously outperforms L1 norm when both applied in
continuous space.

Besides that, in order to verify whether guiding the low-bit branch in con-
tinuous space can bring more performance gains, we also experiment with L1
norm in discrete space, which is represented as “L1(discrete)” in Fig. 2. It can
be seen that “L1(discrete)” can hardly bring performance gains over “Baseline”
while “L1(continuous)” achieve better performance, which is consistent with our
analysis in Introduction section.

Further analysis Below we further analyze why centered cosine distance outper-
forms p-norm. The feature maps from the low-bit DNN and the 32-bit DNN are
denoted as flow and f32, respectively. According to Eq.(2), centered cosine dis-
tance inclines flow to mimic the relative numerical relationship in f32. However,
regularized by p-norm, flow tends to learn the magnitude of each element in f32,
which is a stronger regularization than centered cosine distance. In consequence,
p-norm may affect the overall distribution of flow. In low-bit DNNs, the distribu-
tion of flow is of vital importance and it should match the pre-defined quantizer.
Otherwise the quantization noise will increase and degrade the performance of
low-bit DNNs.

An empirical experiment is conducted to demonstrate the difference between
centered cosine distance and p-norm. We initialize a low-bit DNN with a pre-
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Fig. 3. Curves of centered cosine distance (CCD) and p-norm during fine-tuning. Gra-
dients of both regularization are not back-propagated. Results are averaged of 5 runs.

trained 32-bit DNN, and fine-tune it without any feature guidance. Such ini-
tialization is to make flow and f32 have certain similarities at the beginning.
As the fine-tuning progresses, the low-bit DNN gradually adapts itself to the
pre-defined quantizer. We report the loss value of centered cosine distance and
p-norm between flow and f32 at every epoch in Fig. 3. Note that no gradients
of both guidance are back-propagated. We observe an interesting phenomenon
that p-norm curve shows an upward trend, which suggests that p-norm nega-
tively impacts the adaptation of low-bit DNNs to the pre-defined quantizer. In
contrast, centered cosine distance decreases as the fine-tuning progresses. Since
we do not back-propagate the gradients of the centered cosine distance (CCD),
intuitively, the curve of CCD should increase or remain stable at best. However,
only trained with empirical loss, the feature maps of the low-bit branch can also
minimize its centered cosine distance with the 32-bit branch, which provides
some insights for explaining the training of low-bit DNNs. In Fig. 3, the CCD
between two branches is converged to ≈ 0.4. In the proposed framework, since
we back-propagate the gradient of CCD, it can further decrease to ≈ 0.2. Due to
their differences between CCD and p-norms, the former can bring more accuracy
gains to low-bit DNNs.

Gradient Rescaling Module In this section, we analyze whether Gradient
Rescaling Module can explore better interaction modes between two DNNs than
teacher-student mode [7] and mutual learning mode [31]. We conduct experi-
ments on Cifar-10 with vgg-small variant (only 0.5× channel numbers to save
training time). All experimental results are average of 5 runs. As is shown in
Fig. 4, we change w (hyper-parameter in Gradient Rescaling Module) from 1e-5
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to 5e-1 while other conditions remain unchanged, which corresponds to point
“A” to point “G” respectively. Among them, G (w = 0.5) is equal to mutual
learning mode, and A (w ≈ 0) can be approximately considered as teacher-
student mode. Both modes fail to bring performance gains. This can be ex-
plained from two aspects. On the one hand, low-bit DNNs have much smaller
representational capacity than 32-bit DNNs. Merely with teacher-student mode
(w = 0), the low-bit DNN fails to mimic the feature maps from the latter since
the 32-bit one makes no concession and adjustments. On the other hand, with
mutual learning mode (w = 0.5), the 32-bit DNN absorbs a large amount of
feedback (can be viewed as noise) from the low-bit DNN, which in turn worsens
its guidance to the latter. However, our Gradient Rescaling Module enables the
exploration (different choices of w) for better interaction modes (e.g. point “C”
and “D”) instead of having to choose between “A” and “G”.
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Fig. 4. Impact of Gradient Rescaling Module. The X-axis is the hyper-parameter w in
Gradient Rescaling Module. A to G represent w =1e-5, 5e-4, 2e-3, 5e-3, 1e-2, 5e-2 and
5e-1 respectively. “Baseline” represents directly training for the low-bit DNN. Com-
pared to “Baseline”, “A” to “G” achieve -0.04%, +0.15%, +0.29%, +0.21%, +0.12%,
-0.05%, -0.61% accuracy gains respectively.

4.4 Combination with other Methods

Except the proposed algorithm, there exist other methods to assist training
of low-bit DNNs such as Logits Transfer and fine-tuning from pre-trained 32-
bit DNN. Since these techniques and our FTL enhance performance of low-bit
DNNs from different aspects, we explore whether combining FTL with these
methods leads to better performance. We conduct experiments on Cifar-10 with
Vgg-small model, as is shown in Table 5. For “Fine-tuning” and ”Fine-tuning
+ ours” method, we only train for 60 epochs (200 in others) since it has better
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Table 5. Combination with other Methods. “Logits Transfer” denotes Knowledge Dis-
tillation propsed in [7]. “Fine-tuning” denotes fine-tuning from a pre-trained 32-bit
DNN. All methods are trained for 200 epochs except “Fine-tuning” and “Fine-tuning
+ Ours”.

Method Validation accuracy

Baseline 88.98

Ours 89.82

Fine-tuning (60 epochs) 89.31
Fine-tuning + Ours (60 epochs) 89.62

Logits Transfer 89.49
Logits Transfer + Ours 89.96

initialization. All experimental results are average of 5 runs. It can be seen that
the proposed algorithm can be combined with other methods for fast training
or better performance.

5 Conclusion

We analyze the difficulty in optimizing low-bit DNNs and propose a universal
framework named FTL to assist its training. In FTL, an auxiliary 32-bit DNN
is constructed to provide middle layer supervision for the low-bit one. Differ-
ent from traditional discrete space supervision, we make two DNNs interact in
continuous space. Considering the quantization operation in the low-bit DNN,
we guide the low-bit DNN with centered cosine distance, which has better per-
formance compared to empirically used p-norms. Besides, Gradient Rescaling
Module is designed to coordinate the training of two DNNs, which can combine
the advantages of teacher-student mode and mutual learning mode.

Experimental results suggest that with FTL, the classification accuracy of
three different low-bit DNNs increases by 0.5% to 3.4%. Moreover, our framework
can be well combined with other existing methods (e.g. Knowledge Distillation)
to train a more accurate low-bit DNN. For future work, we plan to provide
supervision for multiple middle layers to better guide training. Furthermore,
the ‘attention’ mechanism can also be considered to improve the quality of the
guidance.
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