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Fig. 1: Our blind inpainting method on raindrop removal (left, from [29]), face (top
right, from FFHQ [17]), and animal (bottom right, from ImageNet [6]). No masks are
provided during inference, and these filling patterns are not included in our training.

Abstract. Blind inpainting is a task to automatically complete visual
contents without specifying masks for missing areas in an image. Pre-
vious work assumes known missing-region-pattern, limiting the applica-
tion scope. We instead relax the assumption by defining a new blind in-
painting setting, making training a neural system robust against various
unknown missing region patterns. Specifically, we propose a two-stage
visual consistency network (VCN) to estimate where to fill (via masks)
and generate what to fill. In this procedure, the unavoidable potential
mask prediction errors lead to severe artifacts in the subsequent repair-
ing. To address it, our VCN predicts semantically inconsistent regions
first, making mask prediction more tractable. Then it repairs these esti-
mated missing regions using a new spatial normalization, making VCN
robust to mask prediction errors. Semantically convincing and visually
compelling content can be generated. Extensive experiments show that
our method is effective and robust in blind image inpainting. And our
VCN allows for a wide spectrum of applications.

Keywords: Blind image inpainting · visual consistency · spatial nor-
malization · generative adversarial networks

1 Introduction

Image inpainting aims to complete missing regions of an image based on its
context. Generally, it takes a corrupted image as well as a mask that indicates
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missing pixels as input, and restore it based on the semantics and textures of
uncorrupted regions. It serves applications of object removal, image restoration,
etc. We note the requirement of having accurate masks makes it difficult to
be practical in several scenarios where masks are not available, e.g., graffiti
and raindrop removal (Fig. 1). Users need to carefully locate corrupted regions
manually, where inaccurate masks may lead to inferior results. We in this paper
analyze blind inpainting that automatically finds pixels to complete, and propose
a suitable solution based on image context understanding.

Existing work [3, 24] on blind inpainting assumes that the missing areas are
filled with constant values or Gaussian noise. Thus the corrupted areas can be
identified easily and almost perfectly based on noise patterns. This oversimpli-
fied assumption could be problematic when corrupted areas are with unknown
content. To improve the applicability, we relax the assumption and propose the
versatile blind inpainting task. We solve it by taking deeper semantics of the in-
put image into overall consideration and detecting more semantically meaningful
inconsistency based on the context in contrast to previous blind inpainting.

Note that blind inpainting without assuming the damage patterns is highly
ill-posed. This is because the unknown degraded regions need to be located based
on their difference from the intact ones instead of their known characteristics,
and the uncertainties in this prediction make the further inpainting challenging.
We address it in two aspects, i.e., a new data generation approach and a novel
network architecture.

For training data collection, if we only take common black or noise pixels
in damaged areas as input, the network may detect these patterns as features
instead of utilizing the contextual semantics as we need. In this scenario, the
damage for training should be diverse and complicated enough so that the con-
textual inconsistency instead of the pattern in damage can be extracted. Our
first contribution, therefore, is the new strategy to generate diverse training data
where natural images are adopted as the filling content with random strokes.

For model design, our framework consists of two stages of mask prediction
and robust inpainting. A discriminative model is used to conduct binary pixel-
wise classification to predict inconsistent areas. With the mask estimated, we use
it to guide the inpainting process. Though this framework is intuitive, its spe-
cific designs to address the biggest issue in this framework are non-trivial: how
to neutralize the generation degradation brought by inevitable mask estimation
errors in the first stage. To cope with this challenge, we propose a probabilis-
tic context normalization (PCN) to spatially transfers contextual information
in different neural layers, enhancing information aggregation of the inpainting
network based on the mask prediction probabilities. We experimentally validate
that it outperforms other existing approaches exploiting masks, e.g., concate-
nating mask with the input image and using convolution variants (like Partial
Convolution [22] or Gated Convolution [44]) to employ masks, in evaluation.

Though trained without seeing any graffiti or trivial noise patterns (e.g. con-
stant color or Gaussian noise), our model can automatically remove them without
manually annotated marks, even for complex damages introduced by real im-
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ages. This is validated in several benchmarks like FFHQ [17], ImageNet [6], and
Places2 [49]. Besides, we find our predicted mask satisfyingly focuses on visual
inconsistency in images as expected instead of inherent damage patterns when
these two stages are jointly trained in an adversarial manner. This further im-
proves robustness for this very challenging task, and leads to the application of
exemplar-guided face-swap (Sec. 4.3). Also, such blind inpainting ability can be
transferred to other removal tasks such as severe raindrop removal as exemplified
in Fig. 1 and Sec. 4.2. Many applications are enabled.

Our contribution is twofold. First, we propose the first relativistic general-
ized blind inpainting system. It is robust against various unseen degradation
patterns and mask prediction errors. We jointly model mask estimation and in-
painting procedure, and address error propagation from the computed masks to
the subsequent inpainting via new spatial normalization. Second, effective tai-
lored training data synthesis for this new task is presented with comprehensive
analysis. It makes our blind inpainting system robust to visual inconsistency,
which is beneficial for various inpainting tasks.

2 Related Work

Blind Image Inpainting Conventional inpainting methods employ external or
internal image local information to fill missing regions [2, 4, 5, 14, 18, 19, 32]. For
the blind image setting, existing research [3, 24, 7, 41, 36, 47] assumes contamina-
tion with simple data distributions, e.g. text-shaped or thin stroke masks filled
with constant values. This setting makes even a simple model applicable by only
considering local information, without understanding the semantics of the input.

Generative Image Inpainting Recent advancement [1, 26, 46, 34] in the con-
ditional generative models makes it possible to fill large missing areas in images
[28, 13, 20, 42, 43, 37, 40, 39, 48, 31, 38, 45, 39, 48, 35, 23]. Pathak et al. [28] learned
an inpainting encoder-decoder network using both reconstruction and adversar-
ial losses. Iizuka et al. [13] proposed the global and local discriminators for the
adversarial training scheme. To obtain more vivid texture, coarse-to-fine [42, 43,
40] or multi-branch [37] network architecture, and non-local patch-match-like
losses [42, 37] or network layer [43] were introduced.

Specifically, Yang et al. [42] applied style transfer in an MRF manner to
post-process the output of the inpainting network, creating crisp textures at the
cost of heavy iterative optimization during testing. Further, Yu et al. [43] con-
ducted the neural patch copy-paste operation with full convolutions, enabling
texture generation in one forward pass. Instead of forcing copy-paste in the test-
ing phase, Wang et al. [37] gave MRF-based non-local loss to encourage the
network to model it implicitly. To better handle the generation of the missing
regions, various types of intermediate representations (e.g. edges [27] and fore-
ground segmentation [40]) are exploited to guide the final fine detail generation
in a two-stage framework. Meanwhile, some researches focus on generating plu-
ralistic results [48] or improving generation efficiency [31].
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Fig. 2: Our framework. It consists of sequentially connected mask prediction and robust
inpainting networks, trained in an adversarial fashion.

Also, research exists to study convolution variants [30, 33, 22, 44]. They ex-
ploit the mask more explicitly than simple concatenation with the input. Gen-
erally, the crafted networks learn upon known pixels indicated by the mask.
Other Removal Tasks A variety of removal tasks are related to blind in-
painting, e.g. raindrop removal [29]. Their assumptions are similar regarding
the condition that some pixels are clean or useful. The difference is on feature
statistics of noisy areas subject to various strong priors.

3 Robust Blind Inpainting

For this task, the input is only a degraded image I ∈ Rh×w×c (contaminated
by unknown visual signals), and the output is expected to be a plausible image
Ô ∈ Rh×w×c, approaching ground truth O ∈ Rh×w×c of I.

The degraded image I in the blind inpainting setting is formulated as

I = O� (1−M) + N�M, (1)

where M ∈ Rh×w×1 is a binary region mask (with value 0 for known pixels and 1
otherwise), and N ∈ Rh×w×c is a noisy visual signal. � is the Hadamard product
operator. Given I, we predict Ô (an estimate of O) with latent variables M and
N. Also, Eq. (1) is the means to produce training tuples< Ii,Oi,Mi,Ni >|i=1,...,m.

3.1 Training Data Generation

How to define the possible image contamination (N indicates what and M indi-
cates where in Eq. (1)) is the essential prerequisite for whether a neural system
could be robust to a variety of possible image contamination. Setting N as a
constant value or certain kind of noise makes it and M easy to be distinguished
by a deep neural net or even a simple linear classifier from a natural image patch.
This prevents the model to predict inconsistent regions based on the semantic
context, as drawing prediction with the statistics of a local patch should be
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much easier. It converts the original blind inpainting problem into a vanilla in-
painting one with a nearly perfect prediction of M. It becomes solvable with the
existing techniques. But its assumption generally does not hold in the real-world
scenarios, e.g., graffiti removal shown in Fig. 1.

In this regard, the key for defining N is to make it indistinguishable as much
as possible from I on image pattern, so that the model cannot decide if a local
patch is corrupted without seeing the image context. Then a neural system
trained with such data has the potential to work on unknown contamination.

In this paper, we use real-world image patches to form N. This ensures that
local patches between N and I are indistinguishable, enforcing the model to
draw an inference based on contextual information, which eventually improves
the generalization ability for real-world data. Further, we alleviate any priors
introduced by M in training via employing free-form strokes [44]. Existing blind
or non-blind inpainting methods often generate the arbitrary size of a rectangle
or text-shaped masks. However, this is not suitable for our task, because it may
encourage the model to locate the corrupted part based on the rectangle shape.
Free-form masks can largely diversify the shape of masks, making the model
harder to infer corrupted regions with shape information.

Also, we note that direct blending image O and N using Eq. (1) would lead to
noticeable edges, which are strong indicators to distinguish among noisy areas.
This will inevitably sacrifice the semantic understanding capability of the used
model. Thus, we dilate the M into M̃ by the iterative Gaussian smoothing in
[37] and employ alpha blending in the contact regions between O and N.

3.2 Our Method

We propose an end-to-end framework, named Visual Consistent Network (VCN)
(Fig. 2). VCN has two sub-modules, i.e. Mask Prediction Network (MPN) and
Robust Inpainting Network (RIN). MPN is to predict potential visually incon-
sistent areas of a given image, while RIN is to inpaint inconsistent parts based
on the predicted mask and the image context. Note that these two submod-
ules are correlated. MPN provides an inconsistency mask M̂ ∈ Rh×w×1, where
M̂p ∈ [0, 1], helping RIN locate inconsistent regions. On the other hand, by lever-
aging local and global semantic context, RIN largely regularizes MPN, enforcing
it to focus on these regions instead of simply fitting our generated data.

Our proposed VCN is robust to blind image inpainting in the given relativis-
tic generalized setting. Its robustness is shown in two aspects. MPN of VCN can
predict the regions to be repaired with decent performance even the contami-
nation patterns are new to the trained model. More importantly, RIN of VCN
synthesizes plausible and convincing visual content for the predicted missing
regions, robust against mask prediction errors. Their designs are detailed below.
Mask Prediction Network (MPN) MPN aims to learn a mapping F where
F (I)→M. MPN is with an encoder-decoder structure using residual blocks [11],
and takes binary cross-entropy loss between M̂ and M as the optimization goal.
To stabilize its learning, a self-adaptive loss is introduced to balance positive-
and negative-sample classification, because clear pixels outnumber the damages
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(a) (b) (c) (d) (e)

Fig. 3: Visualization of learned masks with different training strategies. (a) Input
ground truth. (b) Input face image whose central part is replaced by another face
with the rectangle mask. (c) Estimated mask with training MPN alone. (d) Estimated
mask with joint training with inpainting network. (e) Output image of VCN. The used
MPN is trained with free-form stroke masks [44].

ones (|{p|Mp = 1}| = ρ|{p|Mp = 0}| where ρ = 0.56± 0.17). This self-adaptive
loss is expressed as

Lm(M̂,M) = −τ
∑
p

Mp · log(M̂p)− (1− τ)
∑
q

(1−Mq) · log(1− M̂q), (2)

where p ∈ {p|Mp = 1}, q ∈ {q|Mq = 0}, and τ = |{p|Mp = 0}|/(h× w).

Note that M̂ is an estimated soft mask where 0 ≤ M̂p ≤ 1 for ∀p, although
we employ a binary version for M in Eq. (1). It means the damaged pixels
are not totally abandoned in the following inpainting process. The softness of
M̂ enables the differentiability of the whole network. Additionally, it lessens
error accumulation caused by pixel misclassification, since pixels whose status
(damaged or not) MPN are uncertain about are still utilized in the later process.

Note that the objective of MPN is to detect all corrupted regions. Thus it
tends to predict large corrupted regions for an input corrupted image, which
is shown in Fig. 3(c). As a result, it makes the subsequent inpainting task too
difficult to achieve. To make the task more tractable, we instead propose to
detect the inconsistency region of the image, as shown in Fig. 3(d), which is
much smaller. If these regions are correctly detected, other corrupted regions can
be naturally blended to the image, leading to realistic results. In the following,
we show that by jointly learning MPN with RIN, the MPN eventually locates
inconsistency regions instead of all corrupted ones.
Robust Inpainting Network (RIN) With the M̂ located by MPN, RIN
corrects them and produces a realistic result O – that is, RIN learns a mapping G
where G(I|M̂)→ O. Also, RIN is structured in an encoder-decoder fashion with
probabilistic contextual blocks (PCB). PCB is a residual block variant armed
with a new normalization (Fig. 4), incorporating spatial information with the
predicted mask.

With the predicted mask M̂, repairing corrupted regions requires knowledge
inference from context, and being skeptical to the mask for error propagation
from the previous stage. A naive solution is to concatenate the mask with the
image and feed them to a network. However, this way captures context semantics
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Fig. 4: Left: T (·) in probabilistic context normalization (PCN, defined in Eq. (3)).
Right: probabilistic contextual block (PCB). X and M̂ denote the input feature map
and the predicted mask, respectively. XP = X� M̂ and XQ = X� (I− M̂).

only in deeper layers, and does not consider the mask prediction error explicitly.
To improve contextual modeling and minimize mask error propagation, it would
be better if the transfer is done in all building blocks, driven by the estimated
mask confidence. Hence, we propose a probabilistic context normalization (PCN,
Fig. 4) to transfer contextual information in different layers.

Our PCN module is composed of the context feature transfer term and feature
preserving term. The former transfers mean and variance from known features
to unknown areas, both indicated by the estimated soft mask M̂ (H defined
below is its downsampled version). It is a learnable convex combination of feature
statistics from the predicted known areas and unknowns ones. Feature preserving
term keeps the features in the known areas (of high confidence) intact. The
formulation of PCN is given as

PCN(X,H)=[β ·T (X,H)�H+(1−β)X�H]︸ ︷︷ ︸
Context feature transfer

+ X�H̄︸ ︷︷ ︸
Feature preserving

, (3)

and the operator T (·) is to conduct instance internal statistics transfer as

T (X,H) =
XP − µ(XP,H)

σ(XP,H)
· σ(XQ, H̄) + µ(XQ, H̄), (4)

where X is the input feature map of PCN, and H is nearest-neighbor down-
sampled from M̂, which shares the same height and width with X. H̄ = 1−H
indicates the regions that MPN considers clean. XP = X�H and XQ = X�H̄.
β is a learnable channel-wise vector (β ∈ R1×1×c and β ∈ [0, 1]) computed from
X by a squeeze-and-excitation module [12] as

β = f(x̄), and x̄k =
1

h′ × w′
h′∑
i=1

w′∑
j=1

Xi,j,k, (5)

where x̄ ∈ R1×1×c is also a channel-wise vector computed by average pooling X,
and f(·) is the excitation function composed by two fully-connected layers with
activation functions (ReLU and Sigmoid, respectively).
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µ(·, ·) and σ(·, ·) in Eq. (4) compute the weighted average and standard de-
viation respectively in the following manner:

µ(Y,T) =

∑
i,j (Y �T)i,j

ε+
∑

i,j Ti,j
, σ(Y,T) =

√∑
i,j (Y �T− µ(Y,T))2i,j

ε+
∑

i,j Ti,j
+ ε, (6)

where Y is a feature map, T is a soft mask with the same size of Y, and ε is a
small positive constant. i and j are the indexes of height and width, respectively.

Prior work [8, 15] showed that feature mean and variance from an image are
related to its semantics and texture. The feature statistics propagation by PCN
helps regenerate inconsistent areas by leveraging contextual mean and variance.
This is intrinsically different from existing methods that implicitly achieve this
goal in deep layers, as we explicitly accomplish it in each building block. Thus
PCN is beneficial to the learning and performance of blind inpainting. More
importantly, RIN keeps robust considering potential errors in M̂ from MPN,
although RIN is guided by M̂ for repairing. This is validated in Section 4.3.

Other special design in RIN includes feature fusion and a comprehensive opti-
mization target. Feature fusion denotes concatenating the discriminative feature
(bottleneck of MPN) to the bottleneck of RIN. This not only enriches the given
features to be transformed into a natural image by introducing potential spa-
tial information, but also enhances the discriminative learning for the location
problem based on the gradients from the generation procedure.

The learning objective of RIN considers pixel-wise reconstruction errors, the
semantic and texture consistency, and a learnable optimization target by fooling
a discriminator via generated images as

Lg(Ô,O) = λr||Ô−O||1︸ ︷︷ ︸
reconstruction

+ λs||V l
Ô − V

l
O||1︸ ︷︷ ︸

semantic consistency

+ λfLmrf (Ô,O)︸ ︷︷ ︸
texture consistency

+ λaLadv(Ô,O)︸ ︷︷ ︸
adversarial term

,

(7)

where Ô = G(I|M̂). V is a pre-trained VGG19 network. V lO means we extract
the feature layer l (ReLU3 2) of the input O when O is passed into V . Besides,
λr, λs, λf , and λa are regularization coefficients to adjust each term influence,
and they are set to 1.4, 1e−4, 1e−3, and 1e−3 in our experiments, respectively.

ID-MRF loss [37, 25] is employed as our texture consistency term. It computes
the sum of the patch-wise difference between neural patches from the generated
content and those from the corresponding ground truth using a relative similarity
measure. It enhances generated image details by minimizing discrepancy with
its most similar patch from the ground truth.

For the adversarial term, WGAN-GP [10, 1] is adopted as

Ladv(Ô,O) = −EÔ∼PÔ
[D(Ô)], (8)

where P denotes data distribution, and D is a discriminator for the adversarial
training. Its corresponding learning objective for the discriminator is given as

LD(Ô,O) = EÔ∼P
Ô

[D(Ô)]− EO∼PO [D(O)] + λgpEÕ∼P
Õ

[(||∇ÕD(Õ)||2 − 1)2], (9)

where Õ = tÔ + (1− t)O, t ∈ [0, 1], and λgp = 10.
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3.3 Training Procedure

Generation of training data is given in Eq. (1), where production of M is adopted
from [44] as free-form strokes. The final prediction of our model is G(I|F (I)).
All input and output are linearly scaled within range [−1, 1].

There are two training stages. MPN and RIN are separately trained at first.
After both networks are converged, we jointly optimize minθF ,θGλmLm(F (I),M)+
Lg(G(I|F (I)),O) with λm = 2.0.

4 Experimental Results and Analysis

Our model and baselines are implemented using Tensorflow (v1.10.1). The eval-
uation platform is a Linux server with an Intel Xeon E5 (2.60GHz) CPU and an
NVidia TITAN X GPU. Our full model (MPN + RIN) has 3.79M parameters
and costs around 41.64ms to process a 256× 256-size RGB image.

The datasets include FFHQ (faces) [17], CelebA-HQ (faces) [16], ImageNet
(objects) [6], and Places2 (scenes) [49]. Our training images are all with size
256× 256 unless otherwise specified. For FFHQ, images are downsampled from
the original 1024×1024. For ImageNet and Places2, central cropping and padding
are applied. When training on FFHQ, its corresponding noisy images are drawn
from the training sets of CelebA-HQ and ImageNet. For training on ImageNet
and Places2, these two datasets are the noisy source for each other.

Our baselines are all based on GAN [9] frameworks. We construct four al-
ternative models to show the influence brought by the network architecture and
module design. For a fair comparison, they are all equipped with mask predic-
tion network (MPN) in front of their input, and are trained from scratch (MPNs
are trained in the same way explained in Section 3.3). The first two alterna-
tives are built upon the contextual attention (CA) model [43] and generative
multi-column (GMC) model [37]. The input of these two inpainting variants is
the concatenation of the estimated soft mask and the noisy image. The last two
baselines are by employing the partial convolution (PC) [22] and gated con-
volution (GC) [44] as their basic building blocks, respectively, to construct the
network, intending to explore how the used neural unit affects this blind inpaint-
ing. Compared with our VCN (3.79M), the model complexity of these CA, GMC,
PC, and GC baselines is high as 4.86M, 13.7M, 4.69M, and 6.06M, respectively.
All these numbers already include the model complexity of MPN (1.96M).

4.1 Mask Estimation Evaluation

We evaluate the mask prediction performance of all used methods based on their
computed binary cross-entropy (BCE) loss (the lower the better) on the testing
sets. As shown in Table 1, our VCN achieves superior performance compared to
GC [44], PC [22], GMC [37], and CA [43], except that our SSIM in ImageNet-
4K is slightly lower than GMC. It shows that different generative structures
and modules affect not only generation but also the relevant mask estimation
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Table 1: Quantitative results on the testing sets from different methods.

Method
FFHQ-2K Places2-4K ImageNet-4K

BCE↓ PSNR↑ SSIM↑ BCE↓ PSNR↑ SSIM↑ BCE↓ PSNR↑ SSIM↑
CA [43] 1.297 16.56 0.5509 0.574 18.12 0.6018 0.450 17.68 0.5285

GMC [37] 0.766 20.06 0.6675 0.312 20.38 0.6956 0.312 19.56 0.6467
PC [22] 0.400 20.19 0.6795 0.273 19.73 0.6682 0.229 19.53 0.6277
GC [44] 0.660 17.16 0.5915 0.504 18.42 0.6423 0.410 18.35 0.6416

Our VCN 0.400 20.94 0.6999 0.253 20.54 0.6988 0.226 19.58 0.6339

(a) Input image (b) CA [43] (c) GMC [37] (d) PC [22] (e) GC [44] (f) Our results

Fig. 5: Visual comparison on synthetic data from FFHQ (top), Places2 (middle), and
ImageNet (bottom). The ground truth masks (shown in the first column) and the
estimated ones (in binary form) are shown on the bottom right corner of each image.

performance. Clearly, VCN with spatial normalization works decently, benefiting
mask prediction by propagating clean pixels to the damaged areas.

Partial convolution (in PC [22]) yields relatively lower performance, and di-
rect concatenation between the estimated mask and the input image (used in
CA [43] and GMC [37]) is least effective. Visual comparison of the predicted
masks of different methods is included in Fig. 5, where the results from PC and
VCN are comparable. They look better than those of CA, GMC, and GC.

4.2 Blind Inpainting Evaluation

Synthetic Experiments Visual comparison of the used baselines and our
method on the synthetic data (composed in the way we describe in Sec. 3.1)
are given in Fig. 5. Our method produces more visually convincing results with
fewer artifacts, which are not much disturbed by the unknown contamination
areas. On the other hand, the noisy areas from CA and GMC baselines manifest
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(a) Input (b) Our result (a) Input (b) Our result

Fig. 6: Our results on facades and faces with other shaped masks.

Fig. 7: Visual results on FFHQ with masks filled with different contents. First row:
input; second row: corresponding results from our model. Last two images are filled
with content drawn from the testing sets of CelebA-HQ and ImageNet respectively.

that concatenation of mask and input to learn the ground truth is not an effec-
tive way for blind inpainting setting. More cases are given in the supplementary
file.

About randomly inserted patches or text shape masks, Fig. 6 shows that
our method can locate the inserted car, complete the facade (train/test on Paris
Streetview [28]), and restore text-shape corrupted regions on the testing image
from FFHQ.

Robustness against Various Degradation Patterns Our training scheme
makes the proposed model robust to fill content, as shown in Fig. 7. It can
deal with Gaussian noise or constant color filling directly, while these patterns
are not included in our training. This also shows such a training scheme makes
the model learn to tell and inpaint visual inconsistency instead of memorizing
synthetic missing data distribution.

PSNR and SSIM index evaluated on the testing sets of the used datasets are
given in Table 1 for reference. Generally, VCN yields better or comparable re-
sults compared with baselines, verifying the effectiveness of spatial normalization
about image fidelity restoration in this setting.

Further, pairwise A/B tests are adopted for blind user studies using Google
Forms. 50 participants are invited for evaluating 12 questionnaires. Each has 40
pairwise comparisons, and every comparison shows results predicted from two
different methods based on the same input, randomized in the left-right order.
As given in Table 2, our method outperforms the CA, PC, and GC in all datasets



12 Y. Wang et al.

Table 2: User studies. Each entry gives the percentage of cases where results by our
approach are judged as more realistic than another solution. The observation and
decision time for users is unlimited.

Methods VCN > CA VCN > GMC VCN > PC VCN > GC

FFHQ 99.64% 80.83% 77.66% 92.15%
Places2 81.39% 51.63% 70.49% 78.15%

ImageNet 91.20% 50.09% 77.92% 83.30%

(a) Input (b) Our result (a) Input (b) Our result

Fig. 8: Blind inpainting on the real occluded faces from COCO dataset with VCN. Red
ellipses in the pictures highlight the regions to be edited.

Fig. 9: Visual evaluation on raindrop removal dataset. Left: Input image. Middle: At-
tentiveGAN [29]. Right: Ours (Best view in original resolution).

and GMC in FFHQ, and yields comparable visual performance with GMC on
ImageNet and Places2 with a much smaller model size (3.79M vs. 13.70M).

Blind Inpainting on Real Cases Fig. 8 gives blind inpainting (trained on
FFHQ) on the occluded face from COCO dataset [21]. Note VCN can automat-
ically, and at least partially, restore these detected occlusions. The incomplete
removal with red strip bit in the mouth may be caused by similar patterns in
FFHQ, as mentioned that the detected visual inconsistency is inferred upon the
learned distribution from the training data.

Model Generalization We evaluate the generality of our model on raindrop
removal with a few training data. The dataset in [29] gives paired data (noisy
and clean ones) without masks. Our full model (pre-trained on Places2 with
random strokes) achieves promising qualitative results (Fig. 9) on the testing
set, which is trained with a few training images (20 RGB images of resolution
480×720, around 2.5% training data). In the same training setting, testing results
by AttentiveGAN [29] (a raindrop removal method) yield 24.99dB while ours is
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Table 3: Quantitative results of component ablation of VCN on FFHQ (ED: Encoder-
decoder; fusion: the bottleneck connection between MPN and RIN; -RM: removing the
estimated contamination as G(I� (1− M̂)|M̂); SC: semantic consistency term).

Model ED VCN w/o MPN VCN w/o fusion VCN w/o SC VCN-RM VCN full

PSNR↑ 19.43 18.88 20.06 20.56 20.87 20.94
SSIM↑ 0.6135 0.6222 0.6605 0.6836 0.7045 0.6999
BCE↓ - - 0.560 0.653 0.462 0.400

(a) (b) (c) (d) (e) (f)

Fig. 10: Visual comparison on FFHQ using VCN variants. (a) Input image. (b) VCN
w/o MPN. (c) VCN w/o skip. (d) VCN w/o semantics. (e) VCN-RM. (f) VCN full.

Fig. 11: Visual editing (face-swap) on FFHQ. First row: image with coarse editing where
a new face (from CelebA-HQ) is pasted at the image center; Second row: corresponding
results from our model. Best viewed with zoom-in.

26.22dB. It proves the learned visual consistency ability can be transferred to
other similar removal tasks with a few target data.

4.3 Ablation Studies

w and w/o MPN Without MPN, fidelity restoration of VCN degrades a lot in
Table 3. The comparison in Fig. 10(b) shows VCN w/o MPN finds obvious arti-
facts like blue regions. But it fails to completely remove the external introduced
woman face. Thus our introduced task decomposition and joint training strat-
egy are effective. Compared with the performance of ED, VCN variants show
the superiority of the module design in our solution.
Fusion of Discriminative and Generative Bottlenecks Improvement of
such modification on mask prediction (BCE), PSNR, and SSIM is limited. But
this visual improvement shown in Fig. 10(c) and (f) is notable. Such a shortcut
significantly enhances detail generation.
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Input for Inpainting Since the filling mask is estimated instead of given,
removing possible contamination areas may degrade the generation performance
due to the mask prediction error. Fig. 10(e) validates our consideration.
Loss Discussion Significance of the semantic consistency term that affects VCN
is given in Table 10. It shows that this term benefits the discrimination ability
and fidelity restoration of the model since removing it leads to a decrease of
PSNR (from 20.94 to 20.56) and SSIM (from 0.6999 to 0.6836), and increase of
BCE (from 0.4 to 0.653). Removing this term leads to hair and texture artifacts
as shown in Fig. 10(d). Other terms have been discussed in [43, 37].
Study of PCN In the testing phase, we adjust ρ (instead of using the trained
one) manually in PCN to show its flexibility in controlling interference of pos-
sible contamination (in the supplementary file). With increasing ρ, VCN tends
to generate missing parts based on context instead of blending the introduced
‘noise’.
Applications on Image Blending Our blind inpainting system also finds
applications on image editing, especially on blending user-fed visual material
with the given image automatically. Our method can utilize the filling content
to edit the original ones. The given material from external datasets is adjusted
on its shape, color, shadow, and even its semantics to appeal to its new context,
as given in Fig. 11. The editing results are natural and intriguing. Note the
estimated masks mainly highlight the outlines of the pasted rectangle areas,
which are just inconsistent regions according to context.
Limitation and Failure Cases If contaminated areas in images are large
enough to compromise main semantics, our model cannot decide which part is
dominant and the performance would degrade dramatically. Some failure cases
are given in the supplementary file. Moreover, if users want to remove a cer-
tain object from an image, it would be better to feed the users mask into the
robust inpainting network to complete the target regions. On the other hand,
our method cannot repair the common occlusion problems (like human body
occlusion) because our model does not regard this as an inconsistency.

5 Conclusion

We have proposed a robust blind inpainting framework with promising restora-
tion ability on several benchmark datasets. We designed a new way of data
preparation, which relaxes missing data assumptions, as well as an end-to-end
model for joint mask prediction and inpainting. A novel probabilistic context
normalization is used for better context learning. Our model can detect incom-
patible visual signals and transform them into contextual consistent ones. It is
suitable to automatically repair images when manually labeling masks is hard.
Our future work will be to explore the transition between common inpainting
and blind inpainting, e.g. using coarse masks or weakly supervised hints to guide
the process.
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