
What makes fake images detectable?
Understanding properties that generalize:

Supplementary Materials

Lucy Chai1, David Bau1, Ser-Nam Lim2, and Phillip Isola1

1 MIT CSAIL, Cambridge MA, 02139
{lrchai,davidbau,phillipi}@csail.mit.edu

2 sernam@gmail.com

In the Supplementary Materials we include additional details on our dataset
extraction process for both real and fake images (Sec. 1.1–1.2) and details on
training the classifiers and visualization (Sec. 1.3–1.5). We also include a number
of additional experiments and visualizations. Namely, classifiers for generated
images are extremely sensitive to subtle differences in preprocessing, and minor
differences will allow the classifier to easily learn preprocessing artifacts rather
than forensic signals, which gives the appearance of high generalization capability
– we include results that demonstrate this effect in Sec. 2.1. We also investigate
additional training configurations and visualizations in Sec. 2.2–2.7.

1 Supplementary Methods

1.1 Dataset Construction

Real Images

CelebA-HQ: We prepare the CelebA-HQ images following the dataset preparation
pipeline in the PGAN repository.3. This saves the images in various resolutions
from 4x4px to 1024x1024px in a tfrecord format, which are then subsequently
used to train the PGAN generators. For our real CelebA-HQ dataset, we extract
the images from the tfrecord format, similar to during PGAN training, at the
same resolution of the generator – i.e., if the fake images are generated from a
128px PGAN, then the real images used for comparison are extracted from the
128px tfrecord. This is to avoid any resizing operations that are different from
the subsampling used during GAN training. We partition the images into training
and validation images following the CelebA partitions, which yields 24183 images
for training and 2993 for validation, and 2824 for testing. All images are resized
to 128x128 resolution using Lanczos interpolation and saved in PNG format.

FFHQ: We download the prepared images in tfrecord format directly from the
FFHQ repository4 and extract them at 1024 resolution for comparison with 1024
resolution generator models. Following the suggested partition in the repository,

3 https://github.com/tkarras/progressive growing of gans
4 https://github.com/NVlabs/ffhq-dataset

2 Chai et al.

we reserve the first 60000 images as the training set, the next 5000 for validation
and the final 5000 for testing. All images are resized to 128x128 resolution using
Lanczos interpolation and saved in PNG format.

CelebA: We follow the data transformation pipeline used to train the CelebA
GMM model.5, which includes a crop operation to localize the face and bilinear
resize to 64 pixel resolution for comparison to the fake images generated by the
GMM. We use the testing split of 19962 images for classifier evaluation. All
images are resized to 128x128 resolution using Lanczos interpolation and saved
in PNG format. The CelebA dataset is a superset of the faces in CelebA-HQ,
although at a lower resolution and with a slightly different facial crop.

Generated Images

PGAN: We download the pretrained 1024px resolution CelebA-HQ generator
from the PGAN repository.3 Separately, we train PGANs on the CelebA-HQ
dataset to 128px, 256px, and 512px final resolutions. We change the random
initialization seed and train 3 additional PGANs to 128px resolution. We also
train a PGAN to 1024px resolution on the FFHQ dataset. All images are sampled
from the generator, resized to 128x128 resolution using Lanczos interpolation,
and saved in PNG format. We sample the same number of images as used in
each split of the corresponding real dataset.

SGAN/SGAN2: We download the pretrained 1024px resolution generators trained
on the CelebA-HQ and FFHQ datasets from the StyleGAN repository,6 and the
the pretrained 1024px resolution generator trained on the FFHQ dataset from
the StyleGAN2 repository.7 Images are sampled from the generator, resized to
128x128 resolution using Lanczos interpolation, and saved in PNG format. We
sample the same number of images as used in each split of the corresponding real
dataset.

GMM: We train the Mixture of Factor Analyzers Gaussian Mixture model based
on [7] using the default training settings provided in the source code.5 Images
are sampled from the generator, resized to 128x128 resolution using Lanczos
interpolation, and saved in PNG format. We sample the same number of images
as used in each split of the corresponding real dataset.

Glow: We sample images from the 1024px resolution pretrained model in the
Glow repository.8 We perform random manipulation of attributes by selecting
an attribute tag and a manipulation amount within the range [−1, 1] uniformly
at random, and apply this to each sample. Images are then resized to 128x128
resolution using Lanczos interpolation and saved in PNG format. We sample the
same number of images as used in each split of the corresponding real dataset.

5 https://github.com/eitanrich/torch-mfa
6 https://github.com/NVlabs/stylegan
7 https://github.com/NVlabs/stylegan2
8 https://github.com/openai/glow

What makes fake images detectable? Supplementary Material 3

FaceForensics

We download the Deepfakes, Face2Face, FaceSwap, NeuralTextures, and original
videos from the FaceForensics++ dataset [8]9 in compressed format. We use the
training and validation splits suggested by the authors. To localize the face, we
use the dlib face detector10 to extract eyes, nose, and mouth landmarks, and
based on these detected landmarks, align and crop the the frames using the
CelebA-HQ alignment approach (the CelebA images are annotated with these
landmarks a priori, which are then used to generate the CelebA-HQ images; here,
we automate that process). For training images, we extract all frames in the
corresponding training videos. For validation and testing images, we extract 100
frames per video to prevent any video from have more influence than the others.

1.2 Reprojecting Fake Images

Apart from generating fake samples by sampling from a generative model, we
can also create hard negative examples by generating fake GAN images that are
most similar to a given real target image – i.e., we project real images to the
output manifold of the generative model. To create these images, we use the
approach in [2], which uses a hybrid encoder and optimization approach. First,
given an image x, an encoder E is trained layer-wise such that G(E(x)) ≈ x. This
provides a latent code initialization z = E(x) for the second optimization step,
which uses an LBGFS optimizer over z to minimize |x − G(z)|. We add these
reprojected examples to the fake image dataset when training the classifier, but
also conduct experiments in which the classifier is trained 1) without reprojected
images and 2) only on reprojected images as fake samples in Sec. 2.4.

Table 1. Model receptive field and parameter count calculations.

Truncated Model RF # Params Full Model # Params

Resnet Layer 1 43 0.158 M [4] Resnet-18 11.178 M
Xception Block 1 19 0.055 M [1] MesoInception4 0.029 M
Xception Block 2 43 0.191 M [3] Xception 20.811 M
Xception Block 3 91 1.108 M [9] CNN (p=0.1) 23.510 M
Xception Block 4 187 2.722 M [9] CNN (p=0.5) 23.510 M
Xception Block 5 263 4.336 M

1.3 Patch Classifiers Architecture

Truncating a classifier reduces the receptive field and number of parameters
of the model. Effectively, it increases the ratio of data to model size, as the
same model weights are used across all patches of an input image. In Table 1,
we provide calculations on the receptive field size and number of parameters

9 https://github.com/ondyari/FaceForensics/
10 https://github.com/davisking/dlib

4 Chai et al.

for each model used in our experiments. We construct truncated classifiers
using Resnet [4] and Xception [3] models as backbones. The Resnet architecture
consists of four layers containing residual skip connections – in our experiments
we observe that truncating after the first residual layer often performs best.
The Xception architecture consists of 12 blocks with residual connections and
separable convolutions, we conduct experiments truncating after the first five
blocks.

1.4 Additional Training Details

We train all models using the Adam optimizer with default parameters and
learning rate (0.001). We use a batch size of 32 images, consisting of 16 real and
16 fake images. After every epoch, we measure raw patch-wise prediction accuracy
(without ensembling patch decisions) on validation images corresponding to the
training dataset. We stop training when validation accuracy does not improve
for a patience parameter of 5 ∗ p epochs - we use p = 50 for the Xception Block
1 patch classifier, p = 20 for the Xception Block 2 patch classifier, and p = 10
for the deeper models. We use the checkpoint with the highest raw validation
accuracy to evaluate on the test data split. For training, we resize all images
to native size for each model – 299 for Xception architectures, 224 for Resnet
architectures, and 256 for MesoNet architectures.

When training with reprojected images, we have paired examples of the
original image and the reprojected image. When creating batches, we sample
both the original and the reprojection within the batch. We use a similar approach
for the FaceForensics++ dataset, where we have paired examples of the original
and manipulated images. This creates hard negative samples, which we found
to improve classification performance. When training with the FaceForensics++
dataset, we do not use information about the manipulated region – rather, the
classifier’s objective is simply to predict all patches in the real image as real and
all patches in the fake image as fake. Because the background is unlearnable, the
classifier’s predictions in the background region for the FaceForensics++ datasets
remain uncertain. However, [6] notes that using the additional mask location as
learning supervision improves classification.

1.5 Facial Segmentation Model

To visualize the patch-wise model decisions, we use a facial segmentation network
and cluster patches by semantic category. Precisely, for each real or fake image,
we take the most predictive patch in the image and label it by semantic category.
For the segmentation task, we use a BiSeNet pretrained on the CelebAMask-HQ
dataset.11 The network output assigns each input pixel to one of 19 categories:
background, skin, left/right brow, left/right eye, eyeglasses, left/right ear, earring,
nose, mouth, upper/lower lip, neck, necklace, clothes, hair, and hat. We group
together the left/right brow classes into a brow category, left/right eye and

11 https://github.com/zllrunning/face-parsing.PyTorch

What makes fake images detectable? Supplementary Material 5

eyeglasses into eyes, left/right ear and earring into ears, mouth and upper/lower
lip into mouth, and neck and necklace into neck, which yields 11 semantic
categories in total.

Given an image, we use the segmentation network to obtain a semantic class
prediction for each pixel. To assign the patch to a cluster, we tally the number
of pixels in the patch belonging to each segmentation class, and normalize by
the total number of pixels labelled as that class in the image. We assign the
patch to the cluster with the highest normalized proportion. This normalization
step helps to appropriately weight classes of small features – e.g. in a patch
containing eyebrows, the most common cluster assignment will be skin, but the
most common normalized cluster assignment will be eyebrows since the total
number of eyebrow pixels in the full image is lower.

2 Additional Experiments

2.1 Preprocessing

One critical step of the real vs. fake classification task is to make sure that the
classifier is not simply learning differences in the preprocessing of real or fake
images, especially since we do not know the exact preprocessing steps taken in
the real image datasets. The solution we use is to pass the real images through
the data transformation used to train the generator, so that we can construct
the real image dataset in a manner as similar as possible to the fake images
output from the generator. In our early experiments, we found that a few subtle
differences in this preprocessing pipeline will allow the model to learn differences
in preprocessing. If all real and fake datasets (training and testing) have this
discrepancy, then this will lead to artificially high generalization performance.

Table 2. Slight differences in the preprocessing for real or fake images leads to seemingly
increases generalization, as the classifier ends up exploiting these differences. We report
average precision for a classifier trained on PGAN fake images on the CelebA-HQ
dataset and tested on the remaining datasets. AP on the test set corresponding to
training images is colored in gray.

Architectures FFHQ dataset

Preprocessing PGAN SGAN GLOW GMM PGAN SGAN SGAN2

identical preprocessing 100.00 64.80 47.06 54.69 79.20 51.15 52.37
different interpolation 99.93 99.33 99.76 85.40 99.44 99.08 99.09
different initial size 100.00 100.00 100.00 97.81 100.00 100.00 100.00
different image format 100.00 100.00 100.00 100.00 100.00 100.00 100.00

The standard pipeline that we use in the main text for training the fake-image
classifier consists of the following steps for real images:

6 Chai et al.

1. We pass real images through generator data transform.
2. All images are resized to the same size (128px) before saving in PNG format.
3. When loading the image during training, we resize the image to the classifier’s

native resolution, perform mean centering, and then input to the classifier.

For the fake images, we replace step 1 with sampling and renormalizing the
output from the generator.

We experiment with 3 small variations on the preprocessing pipeline, and
apply these variations consistently across the CelebA-HQ, FFHQ, and CelebA
real-image datasets.

– interpolation: Before saving to file, real and fake images undergo different
interpolation methods (bilinear vs. lanczos).

– initial size: Real and fake images are saved to file in different resolutions.
– image format: Real and fake images are saved in different image codecs (JPG

vs PNG).

Average precision results using the full Resnet-18 model (generally the weaker
model in our generalization experiments) are shown in Table 2. When controlling
for image format, interpolation, and size differences, the performance of the
classifier decreases when tested on different datasets. However, training the same
model in which the real dataset is differently processed from the fake dataset
leads to the appearance of very high generalization, when in fact the classifier
is just learning the differences in preprocessing. These results show that subtle
artifacts in preprocessing are in fact easy to learn, and that these classifiers are
very sensitive to the types of preprocessing used during training and inference
time. Note that these preprocessing artifacts are still learnable even despite a
second resizing step which converts real and fake images to the same size with
the same interpolation method prior to being input to the classifier.

2.2 Additional Training Variations

Alignment vs Cropping. In our main experiments, we train with all patches
of aligned facial image and ensemble patch-wise predictions to obtain a binary
prediction. We also experimented with random cropping and random resized
cropping augmentations during training by resizing the image to 333px resolution,
and take a random crop (or random resized crop) of 299 pixels for Xception
network training. We compare the classification results on aligned faces, random
crops, and random resized crops in Tables 3, 4, and 5 respectively. The results
with added cropping are somewhat mixed – random cropping boosts Glow
generalization, although not as much as training without reprojected images (in
Table 9), and random resized cropping helps slightly in the GMM case, while the
FFHQ datasets fare better without cropping augmentation.

A possible explanation for this behavior is that faces are naturally structured
and can be aligned via facial landmarks – CelebA-HQ and FFHQ datasets are
already aligned, whereas we automatically align the FaceForensics dataset using
a facial landmark detector (see Table 6 for a comparison). Secondly, truncated

What makes fake images detectable? Supplementary Material 7

Table 3. Average precision on test datasets when trained on CelebA-HQ PGAN images.
AP on the test set corresponding to training images is colored in gray.

Architectures FFHQ dataset

Model PGAN SGAN GLOW GMM PGAN SGAN SGAN2

Xception Block 1 100.00 98.68 82.39 76.21 99.68 81.35 77.40
Xception Block 2 100.00 99.99 46.35 91.38 100.00 90.12 90.85
Xception Block 3 100.00 100.00 64.77 80.96 100.00 92.91 91.45
Xception Block 4 100.00 99.99 51.80 42.82 100.00 95.85 90.62
Xception Block 5 100.00 100.00 58.18 48.92 100.00 93.09 89.08

Table 4. Average precision on test datasets when trained on CelebA-HQ PGAN images.
Random cropping is applied during training.

Architectures FFHQ dataset

Model PGAN SGAN GLOW GMM PGAN SGAN SGAN2

Xception Block 1 100.00 97.87 89.60 84.00 99.48 79.00 76.64
Xception Block 2 100.00 99.93 47.02 82.47 99.99 88.40 89.58
Xception Block 3 100.00 99.97 41.24 86.76 100.00 86.69 87.25
Xception Block 4 100.00 99.85 56.84 66.14 100.00 91.60 88.36
Xception Block 5 100.00 99.63 54.39 84.52 99.99 89.56 88.86

Table 5. Average precision on test datasets when trained on CelebA-HQ PGAN images.
Random resized cropping is applied during training.

Architectures FFHQ dataset

Model PGAN SGAN GLOW GMM PGAN SGAN SGAN2

Xception Block 1 100.00 93.22 63.99 74.13 98.81 76.83 71.04
Xception Block 2 100.00 99.78 46.35 56.80 99.98 85.93 85.71
Xception Block 3 100.00 99.91 50.46 56.34 99.99 90.10 90.11
Xception Block 4 100.00 99.80 36.94 80.88 100.00 88.69 86.80
Xception Block 5 100.00 99.79 64.22 92.75 99.99 89.99 89.22

models can tolerate minor shifts, as the same model weights are applied over
local patches in a sliding fashion over the image.

2.3 Receptive field vs. number of parameters

There are two main differences between a shallow truncated model and a deeper
one – receptive field and number of parameters. Hypothetically, both factors could
reduce overfitting and improve generalization. In Table 7 we seek disentangle
these two components when evaluating generalization on test datasets. We take

8 Chai et al.

Table 6. Average precision on test datasets when trained on Face2Face manipulated
images. Images are automatically aligned using facial landmarks. We compare average
precision on test images when trained on aligned patches (left four columns) and random
crops of patches (right four columns).

Face Alignment Random Cropping

Model DF NT F2F FS DF NT F2F FS

Xception Block 1 77.65 80.88 93.84 61.62 76.46 79.11 92.44 60.08
Xception Block 2 84.04 79.51 97.40 63.21 83.19 80.61 97.01 63.59
Xception Block 3 76.10 74.77 97.33 63.10 76.15 75.23 98.00 63.17
Xception Block 4 67.18 61.72 97.19 63.04 71.91 68.01 98.60 62.01
Xception Block 5 81.25 61.91 96.45 55.15 76.44 62.78 96.10 52.63

Table 7. Comparing the effect on model size and receptive field on test datasets.
The Extended block2 model adds two additional Xception blocks modified with 1x1
convolutions to increase parameter count without increasing receptive field. AP on the
test set corresponding to training images is colored in gray.

Architectures FFHQ dataset

Model PGAN SGAN GLOW GMM PGAN SGAN SGAN2

Xception Block 2 100.00 99.99 46.35 91.38 100.00 90.12 90.85
Extended Block 2 100.00 99.99 39.23 91.54 100.00 87.82 89.43
Xception Block 4 100.00 99.99 51.80 42.82 100.00 95.85 90.62

the Xception Block 2 and Xception Block 4 truncated models, and additionally
train an Extended Block 2 model by adding 2 additional Xception blocks to the
Block 2 model, modified with 1x1 convolutions. This increases the number of
parameters of the Block 2 truncated model without increasing the receptive field.
However, despite this increase in parameters, we do not see large increases in
average precision on the test datasets, suggesting that perhaps the receptive field
size contributes more to generalization on unseen faces at test time.

2.4 Training with reprojected image samples.

For detecting fake images created from generative models, we find that adding
reprojected fake images – i.e., the GAN-generated image most similar a given real
image, helps to improve performance on the test datasets in most cases. Here,
we compare those results (Table 8) to models trained only on random samples
from the fake image generators (Table 9) and models trained only on reprojected
fake images (Table 10). One exception where adding the reprojected fake images
harms classification, compared to training only with random samples, in the case
of the Glow fake images where there is a difference in AP of over 10%. On the
other hand, when training only with reprojected images there is a domain shift
between train and test data, as the model is evaluated on random samples from

What makes fake images detectable? Supplementary Material 9

the generator which are never seen during training. Hence, the test AP is lower
in most cases, except for the GMM model where it is similar.

How does training with reprojected images affect the patches that the classifier
uses for classification? For this experiment, we take the same classifiers as before,
trained on CelebA-HQ PGAN images. In Fig. 1 we show patches grouped by
semantic category when the classifier is tested on various FFHQ generators.
Training with reprojected images causes the classifier place greater emphasis
on background patches, compared to training without reprojections, suggesting
that adding the reprojection better allows the classifier to learn artifacts in the
background portion of the image.

Train without reprojectionsTrain with reprojections

Test on
 FFHQ PGAN

Test on
FFHQ SGAN2

Fig. 1. Top patches categorized by segmentation category for classifiers trained with
and with reprojected fake images. Adding reprojections to the training set causes the
classifier to place greater emphasis on background patches.

2.5 Investigating biases in the classifiers

To investigate biases in the fake-image classifier, we take the pre-trained detector
on male and female faces from [5] and compute average precision conditioned on
the male or female classes predicted by the detector. Classifiers are on trained on
CelebA-HQ faces and PGAN samples. When there is no domain gap between
training and test time, the classifier can solve the task perfectly for both male
and female categories. Next we test on two datasets where a domain gap exists –
CelebA-HQ faces generated using the Glow model and FFHQ faces generated
using the SGAN2 model. In these more difficult cases, the fake-image classifier
obtains slightly higher AP on faces categorized as male by the pre-trained
detector.

10 Chai et al.

Table 8. Average precision on datasets when trained on CelebaHQ PGAN images and
reprojected images as the fake image dataset. AP on the test set corresponding to
training images is colored in gray.

Architectures FFHQ dataset

Model PGAN SGAN GLOW GMM PGAN SGAN SGAN2

Xception Block 1 100.00 98.68 82.39 76.21 99.68 81.35 77.40
Xception Block 2 100.00 99.99 46.35 91.38 100.00 90.12 90.85
Xception Block 3 100.00 100.00 64.77 80.96 100.00 92.91 91.45
Xception Block 4 100.00 99.99 51.80 42.82 100.00 95.85 90.62
Xception Block 5 100.00 100.00 58.18 48.92 100.00 93.09 89.08

Table 9. Average precision on datasets when trained on only CelebA-HQ PGAN
samples as the fake image dataset.

Architectures FFHQ dataset

Model PGAN SGAN GLOW GMM PGAN SGAN SGAN2

Xception Block 1 100.00 93.78 95.48 78.91 89.29 67.84 66.74
Xception Block 2 100.00 99.90 67.49 77.34 99.89 84.27 84.56
Xception Block 3 100.00 99.92 74.98 71.29 99.97 88.49 87.78
Xception Block 4 100.00 98.81 66.79 68.06 99.79 84.67 79.50
Xception Block 5 100.00 95.25 60.44 68.47 98.95 71.75 70.83

Table 10. Average precision on datasets when trained on only images reprojected via
PGAN as the fake image dataset.

Architectures FFHQ dataset

Model PGAN SGAN GLOW GMM PGAN SGAN SGAN2

Xception Block 1 97.74 90.57 31.30 77.49 99.60 70.92 71.90
Xception Block 2 99.98 99.34 39.91 92.03 99.97 84.00 84.27
Xception Block 3 99.86 99.23 45.53 89.89 99.95 79.90 78.57
Xception Block 4 99.02 97.13 48.06 43.24 99.21 66.00 66.60
Xception Block 5 87.30 79.86 48.94 50.47 96.25 53.31 56.65

Table 11. We take a pre-trained classifier on male and female faces and calculate AP
on the test images to investigate biases in the fake-image classifier.

Test Set AP Overall # Total AP male # Male AP female # Female

CelebAHQ PGAN 100.0 5986 100.0 2024 100.0 3962
CelebAHQ Glow 94.9 5986 96.6 2034 93.9 3952
FFHQ SGAN2 91.7 10000 93.3 4480 90.4 5520

What makes fake images detectable? Supplementary Material 11

2.6 Additional FaceForensics Visualizations

In the main text we show patch-wise visualizations and statistics for training on
unmanipulated images and Face2Face images and testing on Neural Textures and
Deepfakes images. Here we show similar visualization when trained on Deepfakes
images in Fig. 2. In addition, we show examples of local classifier predictions and
heatmaps of the top 100 most predictive images in Fig 3. While the heatmap
of test images corresponding to the training set capture the general face area,
heatmaps of images corresponding to different manipulation methods highlight
more local features, such as lower face or eye regions.

Neural Textures
mouth eye brows

re
al

fa
ke

Deepfakes
mouth brows eye

re
al

fa
ke

Face2Face
mouth eye brows

re
al

fa
ke

Fig. 2. Histograms of the most predictive patches from a classifier trained on Deep-
fakes and un-manipulated images, and tested on the Neural Textures and Face2Face
manipulation methods

Neural
Textures

Deepfakes

Face2Face

Original AverageManipulated
Trained on Deepfakes Trained on Face2Face

Original AverageManipulated

Fig. 3. Heatmaps showing examples of the patch-wise prediction output of a classifier
on one FaceForensics method and tested on other methods. We also show the average
heatmap over the 100 most predictive real and manipulated images for each dataset.

12 Chai et al.

2.7 Example Images after Finetuning

In the main text, we finetune a face PGAN generator to evade classification by a
fakeness detector, which drops detection accuracy to from 100% to below 65%.
Fig. 4 shows random samples from the generator before and after finetuning. The
samples remain visually similar despite finetuning but are misclassified by the
detector. We further show in the main text that a secondary classifier trained on
these finetuned images can recover in classification accuracy, which suggests that
finetuning does not completely remove the detectable artifacts and the finetuned
images are still distinguishable from real faces.

Fig. 4. Samples from PGAN generator before (left) and after (right) finetuning to evade
a fakeness classifier.

What makes fake images detectable? Supplementary Material 13

References

1. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: Mesonet: a compact facial video
forgery detection network. In: 2018 IEEE International Workshop on Information
Forensics and Security (WIFS). pp. 1–7. IEEE (2018)

2. Bau, D., Zhu, J.Y., Wulff, J., Peebles, W., Strobelt, H., Zhou, B., Torralba, A.: Seeing
what a gan cannot generate. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 4502–4511 (2019)

3. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
1251–1258 (2017)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
770–778 (2016)

5. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 4401–4410 (2019)

6. Li, L., Bao, J., Zhang, T., Yang, H., Chen, D., Wen, F., Guo, B.: Face x-ray for
more general face forgery detection. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 5001–5010 (2020)

7. Richardson, E., Weiss, Y.: On gans and gmms. In: Advances in Neural Information
Processing Systems. pp. 5847–5858 (2018)

8. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Faceforen-
sics++: Learning to detect manipulated facial images. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 1–11 (2019)

9. Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: Cnn-generated images
are surprisingly easy to spot... for now. arXiv preprint arXiv:1912.11035 (2019)

