
1

Appendix

A Derivations

A.1 InfoGAN optimizes Forward-KL Divergence

This section provides the derivation of Eq. (5) in the main paper. Consider
G(s, c) as a mapping function G : S × C → X , where s and c denote nuisance
and disentangled variables, respectively. Also, assuming G is a deterministic
function of (s, c), the conditional distribution pG(x|s, c) can be approximated
to a dirac distribution δ(x − G(s, c)) = 1{x = G(s, c)}. Then, the marginal
distribution pG(x) can be described as below:

pG(x) =

∫
s

∫
c

p(s)p(c)pG(x|s, c)dcds (A.1)

= Es∼p(s),c∼p(c)[pG(x|s, c)] (A.2)

= Es∼p(s),c∼p(c)[1{x = G(s, c)}]. (A.3)

Then, the variational lower-bound of mutual information optimized in Info-
GAN [10] can be rewritten as follows:

RInfo(G, q) = Ec∼p(c),x∼G(s,c)[log qφ(c|x)] +H(c),

=

∫
s

p(s)

∫
c

p(c)

∫
x

pG(x|s, c) log qφ(c|x)dxdcds+H(c), (A.4)

=

∫
s

p(s)

∫
c

p(c)

∫
x

1{x = G(s, c)} log qφ(c|x)dxdcds+H(c), (A.5)

=

∫
s

p(s)

∫
c

p(c) log qφ(c|G(s, c))dcds+H(c), (A.6)

=

∫
s

p(s)

∫
c

p(c) log qφ(c|G(s, c))dcds−
∫
c

p(c) log p(c)dc, (A.7)

=

∫
s

p(s)

∫
c

p(c) log qφ(c|G(s, c))dcds−
∫
c

p(c) log p(c)dc

∫
s

p(s)ds,

(A.8)

=

∫
s

p(s)

∫
c

p(c) log
qφ(c|G(s, c))

p(c)
dcds, (A.9)

= − Es∼p(s)[DKL(p(c)||qφ(c|G(s, c))], (A.10)

where the Eq. (A.10) corresponds to Eq. (5) of the main paper. Similiarly, we
can rewrite the distillation regularization RID(G) (Eq. (4) in the main paper)

2

as follows:

RID(G) = Ec∼qφ(c),x∼G(s,c)[log qφ(c|x)] +Hqφ(c),

=

∫
s

p(s)

∫
c

qφ(c)

∫
x

1{x = G(s, c)} log qφ(c|x)dxdcds+Hqφ(c),

(A.11)

=

∫
s

p(s)

∫
c

qφ(c) log qφ(c|G(s, c))dcds−
∫
s

p(s)

∫
c

qφ(c) log qφ(c)dcds,

(A.12)

= − Es∼p(s)[DKL(qφ(c)||qφ(c|G(s, c))], (A.13)

where Eq. (A.13) corresponds to Eq. (7) in the main paper. As discussed in the
paper, both Eq. (A.10) and (A.13) correspond to the forward KLD; regulariza-
tion in InfoGAN RInfo(G, q) (Eq. (A.10)) is optimized with respect to both the
encoder q and the generator G, which is problematic due to the zero-avoiding
characteristics of forward KLD and the potential mismatch between the true
and generated data distributions. On the other hand, our method can effectively
avoid this problem by optimizing Eq. (A.13) with only respect to the generator
while encoder training is guided by reverse KLD using the true data distribution
(Eq. (6) in the main paper).

A.2 cGAN implicitly maximizes RID(G)

In Section 5.3 of the main paper, we define cGAN as the baseline that also op-
timizes RID(G) implicitly in its objective function. This section provides its de-
tailed derivation. Formally, we consider cGAN that minimizes a Jensen-Shannon
divergence (JSD) between two joint distributions DJS(pd(x, c)||pG(x, c)), where
pd(x, c) = p(x)qφ(c|x) and pG(x, c) = qφ(c)pG(x|c) = qφ(c)

∫
s
p(s)pG(x|s, c)ds

denote real and fake joint distributions, respectively. Then, RID(G) from
DJS(pd(x, c)||pg(x, c)) is derived as follows:

2DJS(pd(x, c)||pg(x, c)) (A.14)

= DKL(pd(x, c)||pG(x, c)) + DKL(pG(x, c)||pd(x, c)) (A.15)

= DKL(pd(x, c)||pG(x, c)) +

∫
c,x

pG(x, c) log
pG(x, c)

pd(x, c)
dxdc (A.16)

= DKL(pd(x, c)||pG(x, c)) +

∫
c,x

qφ(c)pG(x|c) log
qφ(c)pG(x|c)
p(x)qφ(c|x)

dxdc (A.17)

= DKL(pd(x, c)||pG(x, c)) +

∫
c,x

qφ(c)pG(x|c) log
pG(x|c)
p(x)

dxdc

+

∫
c,x

qφ(c)pG(x|c) log
qφ(c)

qφ(c|x)
dxdc (A.18)

= DKL(pd(x, c)||pG(x, c)) +

∫
c

qφ(c)

∫
x

pG(x|c) log
pG(x|c)
p(x)

dxdc

3

+

∫
s

p(s)

∫
c

qφ(c)

∫
x

pG(x|s, c) log
qφ(c)

qφ(c|x)
dxdcds (A.19)

= DKL(pd(x, c)||pG(x, c)) + Ec∼qφ(c)[DKL(pG(x|c)||p(x)]−RID(G). (A.20)

Eq. (A.20) implies that the cGAN objective also implicitly maximizes RID(G).
However, Eq. (A.20) is guaranteed only when the discriminator converges to
(near-)optimal with respect to real and fake joint distributions, which makes the
optimization of RID(G) highly dependent on the quality of the discriminator.
On the other hand, ID-GAN maximizes RID(G) explicitly by directly computing
RID(G) from the learned encoder qφ, which leads to a higher degree of alignment
between the input latent code and the generated output (Table 3 and Figure 5
in the main paper).

B Additional Experiment Results

B.1 Additional Results on Synthetic Dataset

We present additional qualitative results on the synthetic dataset, which corre-
sponds to Section 5.2 in the main paper. Figure A.1 presents the randomly gen-
erated images by the proposed ID-GAN. We observe that the generated images
are sharp and realistic, capturing complex patterns in the background (Screem-
dSprites and Noise-dSprites datasets). We also observe that it generates convinc-
ing foreground patterns, such as color and shape of the objects, while covering
diverse and comprehensive patterns in real objects.

Figure A.2 and A.3 present additional qualitative comparison results with
β-VAE and InfoGAN by manipulating the disentangled factors, which corre-
spond to Figure 4 in the main paper. We observe that β-VAE captures the
meaningful disentangled factors, such as location and color of the object, but
overlooks several complex but important patterns in the background (Screem-
dSprites and Noise-dSprites datasets) as well as foreground (e.g., detailed shape
and orientation). On the other hand, InfoGAN generates more convincing images
by employing a more expressive decoder, but learns much more entangled rep-
resentations (e.g., changing location and color of the objects in Color-dSprites
dataset). By combining the benefits of both approaches, ID-GAN successfully
learns meaningful disentangled factors and generates realistic patterns.

4

(a) dSprites (b) Color-dSprites

(c) Scream-dSprites (d) Noisy-dSprites

Fig. A.1. Random generated samples of ID-GAN on dSprites and its variants.

5

β-VAE ID-GANInfoGAN

(a) dSprites

β-VAE ID-GANInfoGAN

(b) Color-dSprites

Fig. A.2. Latent traversals of InfoGAN, β-VAE, and ID-GAN on (a) dSprites and (b)
Color-dSprites datasets. Each cj (j = 1, . . . , 10) represents a single dimension of c.

6

β-VAE ID-GANInfoGAN

(a) Noisy-dSprites

InfoGAN β-VAE ID-GAN

(b) Scream-dSprites

Fig. A.3. Latent traversals of InfoGAN, β-VAE, and ID-GAN on (a) Noisy-dSprites
and (b) Scream-dSprites datasets. Each cj (j = 1, . . . , 10) represents a single dimension
of c.

7

B.2 Additional Results on a Complex Dataset

Qualitative results of Table 4. Here we compare the qualitative samples gener-
ated by each model in Table 4, i.e.,. VAE, β-VAE, FactorVAE, GAN, InfoGAN,
and ID-GAN. The qualitative results are shown in Figure A.4. Although VAE-
based methods learn to represent global structures or salient factors of data in
all datasets, generated samples are often blurry and lack textural or local details.
On the other hand, GAN-based approaches (i.e., GAN, InfoGAN and ID-GAN)
generate sharp and realistic samples thanks to the implicit density estimation
and expressive generators. However, as shown in Figure A.5, InfoGAN generally
fails to capture meaningful disentangled factors into c since it exploits the nui-
sance variable s to encode the most salient factors of variations. On the other
hand, ID-GAN successfully captures major disentangled factors into c while en-
coding only local details into the nuisance variable s.

ID
-G

A
N

In
fo

G
A

N
R

ea
l

G
A

N
V

A
E

β
-V

A
E

F
ac

to
rV

A
E

C
el

eb
A

3D
 C

h
ai

rs
C

ar
s

Real VAE β-VAE FactorVAE GAN InfoGAN ID-GAN

Fig. A.4. Random samples generated by VAE [46], β-VAE [18], FactorVAE [26],
GAN [42], InfoGAN [10], and ID-GAN on CelebA, 3D Chairs, and Cars
datasets (64×64).

8

ID
-G
A
N

In
fo
G
A
N

Fig. A.5. Analysis on the learned factors of variations in ID-GAN and InfoGAN. We
sample 5 points for each c and s and visualize how they are used during the generative
process of ID-GAN and InfoGAN. The samples in each row are generated from a single
c with 5 different s. Also, we show the generated samples of β-VAE from each c at the
first column of the panes of ID-GAN. As shown above, ID-GAN successfully learns to
decode the global structures of data from c as β-VAE, while utilizing s as additional
sources of variations for modeling local details. In InfoGAN, however, the most salient
factors of variations are dominated by s while c acts as the nuisance.

9

Additional results on high-resolution synthesis. Here we provide more qualitative
results of ID-GAN on high-resolution image synthesis (CelebA 256×256 and
CelebA-HQ datasets). We first present the results on the CelebA-HQ dataset
composed of mega-pixel images (1024×1024 pixels). Figure A.6 presents the
randomly generated samples by ID-GAN. We observe that ID-GAN produces
sharp and plausible samples on high resolution images, showing on par generation
performance with the state-of-the-art GAN baseline [47] employed as a backbone
network of ID-GAN. We argue that this is due to the separate decoder and
generator scheme adopted in ID-GAN, which is hardly achievable in the VAE-
based approaches using a factorized Gaussian decoder for explicit maximization
of data log-likelihood.

Next, we analyze the learned factors of variations in ID-GAN by investigat-
ing the disentangled and nuisance variable c and s, respectively. Similarly to
Figure 8 in the main paper, we compare the samples generated by fixing one la-
tent variable while varying another. The results are summarized in Figure A.7.
Similar to Figure 8, we observe that the disentangled variable c contributes to
the most salient factors of variations (e.g.,azimuth, shape, or colour of face and
hair, etc..) while the nuisance variable s contributes to the remaining fine details
(e.g.,identity, hair style, expression, background, etc..). For instance, we observe
that fixing the disentangled variable c leads to consistent global face structure
(e.g., black male facing slightly right (first column), blonde female facing slightly
left (fourth column)), while fixing nuisance variable s leads to consistent details
(e.g., horizontally floating hair (third row), smiling expression (fourth and fifths
rows)). These results suggest that the generator in ID-GAN is well-aligned with
the VAE decoder to render the same disentangled variable c into similar obser-
vations, but with more expressive and realistic details by exploiting the nuisance
variable s.

Finally, to further visualize the learned disentangled factors in c, we present
the latent traversal results in Figure A.8 as an extension to Figures 1 and 9 in
the main paper. We also visualize the results on CelebA 256 × 256 images in
Figure A.9, where we observe a similar behavior.

10

Fig. A.6. Random samples generated by ID-GAN on the CelebA-HQ dataset
(1024 × 1024). ID-GAN is based on VGAN architecture [47] and is trained to
render learned disentangled representation c of β-VAE trained on much smaller
64× 64 image resolution.

11

Fig. A.7. Similar visualizations as Figure 8, but on a more challenging CelebA-
HQ (1024× 1024) dataset. We can clearly observe the different contributions of
disentangled variable c and nuisance variable s to the generative process G(s, c);
disentangled variable c captures the most salient factors of variations in the data
(e.g.,azimuth and overall structure/color of face/hair are largely determined by
c); nuisance variable s contributes to the remaining fine details (e.g.,identity,
hair style, expression, background, etc..).

12

azimuth

temperature

brightness

face area

background color

brightness

bang

azimuth

Fig. A.8. Latent traversal results of ID-GAN on CelebA-HQ (1024 × 1024)
dataset.

13

background coloreyeglasses

hair density (vertical) hair density (horizontal)

fringe azimuth

hair color skin tone

background coloreyeglasses

hair density (vertical) hair density (horizontal)

fringe azimuth

hair color skin tone

Fig. A.9. Latent traversals of ID-GAN on the CelebA dataset (256× 256).

14

B.3 Sensitivity of Generation Performance (FID) on the
Hyperparameter λ

Fig. A.10. Sensitivity of the generation performance (FID) on λ.

To better understand the sensitivity of our model to its hyperparmeter (λ in
Eq. (2)), we conduct an ablation study by measuring the generation performance
(FID) of our models trained with various λ. Figure A.10 summarizes the results
on the dSprite dataset. First, we observe that the proposed ID-GAN performs
well over a wide range of hyper-parameters (λ ∈ [0.001, 1]) while the perfor-
mance of InfoGAN is affected much sensitively to the choice of λ. Interestingly,
increasing the λ in our method also leads to the improved generation quality
over a certain range of λ. We suspect that it is because the information maxi-
mization in Eq. (4) using the pre-trained encoder also behaves as the perceptual
loss [13,23,30], regularizing the generator to match the true distribution in more
meaningful feature space (i.e., disentangled representation).

15

C Implementation Details

C.1 Evaluation Metrics

FactorVAE Metric (FVM). FVM [26] measures the accuracy of a majority-vote
classifier, where the encoder network to be evaluated is used for constructing
the training data of this classifier. A single training data, or vote, is gener-
ated as follows: we first extract encoder outputs from the entire samples of a
synthetic dataset; estimate empirical variances of each latent dimension from
the extracted outputs; sort out collapsed latent dimensions of variances smaller
than 0.05; synthesize 100 samples with a single factor fixed and the other factors
varying randomly; extract encoder outputs from synthesized samples; compute
variances of each latent dimension divided by the empirical variances computed
beforehand; then finally get a single vote which is a pair of the index of the
fixed factor and the index of the latent dimension with the smallest normalized
variance. We generate 800 votes to train the majority-vote classifier and report
its train accuracy as the metric score.

Mutual Information Gap (MIG). MIG [9] is an information-theoretic approach
to measure the disentanglement of representations. Specifically, assuming K gen-
erative factors vk (k = 1, . . . ,K) and D-dimensional latents zj (j = 1, . . . , D),
it computes a normalized empirical mutual information I(zj ; vk)/H(vk) to mea-
sure the information-theoretic preferences of zj towards each vk, or vice versa.
Then, it aggregates the differences, or gap, between the top two preferences for
each vk and averages them to compute MIG, i.e. 1

K

∑K
k=1

1
H(vk)

(I(zj(k); vk) −
min
j 6=j(k)

I(zj ; vk)), where I(zj(k); vk) = arg maxj I(zj ; vk). For implementation de-

tails, we directly follow the settings1 in [37].

Fréchet Inception Distance (FID). We employ Fréchet Inception Distance (FID)
to evaluate the generation quality of each model considered in our experiments.
FID measures the fréchet distance [14] between two Gaussians, constructed by
generated and real images, respectively, in the feature space of a pre-trained deep
neural network. For each model, we compare 50,000 generated images and 50,000
real images to compute FID. For dSprites and its variants, we use a manually
trained ConvNet trained to predict true generative factors of dSprites and its
varaints. For the CelebA, 3D Chairs RGB, and Cars datasets, we use Inception
V3 [49] pre-trained on the ImageNet [12] dataset. We use the publicly available
code2 to compute FID.

1 https://github.com/google-research/disentanglement lib
2 https://github.com/mseitzer/pytorch-fid

16

C.2 Dataset

Table A.1. Descriptions on datasets.

Name Description

dSprites [41] 737,280 binary 64x64 images of 2D sprites with 5
ground-truth factors, including shape (3), scale (6), ori-
entation (40), x-position (32), and y-position (32).

Color-dSprites [7,37] The sprite is filled with a random color. We randomly
sample intensities of each color channel from 8 discrete
values, linearly spaced between [0, 1].

Noisy-dSprites [37] The background in each dSprites sample is filled with
random uniform noise.

Scream-dSprites [37] The background of each dSprites sample is replaced with
a randomly-cropped patch of The Scream painting and
the sprite is colored with the inverted color of the patch
over the pixel regions of the sprite.

CelebA [35], CelebA-HQ [24] CelebA dataset contains 202,599 RGB images of
celebrity faces, which is composed of 10,177 identities, 5
landmark locations, and 40 annotated attributes of hu-
man faces. We use the aligned&cropped version of the
dataset with the image size of 64×64 and 256×256.
CelebA-HQ is the subset of the in-the-wild version of
the CelebA dataset, which is composed of 30,000 RGB
1024×1024 high-resolution images.

3D Chairs [3] 86,366 RGB 64×64 images of chair CAD models with
1,393 types, 31 azimuths, and 2 elevations.

Cars [27] 16,185 RGB images of 196 classes of cars. We crop
and resize each image into the size of 64×64 using the
bounding-box annotations provided.

C.3 Architecture

17

Table A.2. Architectures of β-VAE and FactorVAE for all datasets. Note that
Discriminator is needed only when training FactorVAE.

Encoder Decoder Discriminator

Input: 64 × 64 × # channels Input: R10 FC 1000, leaky ReLU
4×4 conv 32, ReLU, stride 2 FC 256, ReLU FC 1000, leaky ReLU
4×4 conv 32, ReLU, stride 2 FC 4×4×64, ReLU FC 1000, leaky ReLU
4×4 conv 64, ReLU, stride 2 4×4 upconv 64, ReLU, stride 2 FC 1000, leaky ReLU
4×4 conv 64, ReLU, stride 2 4×4 upconv 32, ReLU, stride 2 FC 1000, leaky ReLU
FC 256, FC 2×10 4×4 upconv 32, ReLU, stride 2 FC 1000, leaky ReLU

4×4 upconv # channels, stride 2 FC 2

Table A.3. Architectures of Generator and Discriminator networks for ID-GAN
and InfoGAN on dSprites, Color-dSprites, Noisy-dSprites, and Scream-dSprites
datasets. The encoder and the decoder networks are specified in Table A.2.

Generator Discriminator

Input: R10 Input: 64 × 64 × # channels
FC 256, ReLU 4×4 conv 32, ReLU, stride 2
FC 4×4×64, ReLU 4×4 conv 32, ReLU, stride 2
4×4 upconv 64, ReLU, stride 2 4×4 conv 64, ReLU, stride 2
4×4 upconv 32, ReLU, stride 2 4×4 conv 64, ReLU, stride 2
4×4 upconv 32, ReLU, stride 2 FC 256, FC 1
4×4 upconv # channels, stride 2

Table A.4. Architectures of Generator and Discriminator networks for ID-GAN
and InfoGAN on CelebA, 3D Chairs, and Cars (64 × 64) datasets. We directly
follow the architecture proposed in [42]. The encoder and the decoder networks
are specified in Table A.2.

Generator Discriminator

Input: R20+256 Input: 64 × 64 × 3
FC 4×4×512 3×3 conv 64, stride 1
ResBlock 512, NN Upsampling ResBlock 64, AVG Pooling
ResBlock 256, NN Upsampling ResBlock 128, AVG Pooling
ResBlock 128, NN Upsampling ResBlock 256, AVG Pooling
ResBlock 64, NN Upsampling ResBlock 512, AVG Pooling
ResBlock 64, 4×4 conv 3, stride 1 FC 1

18

Table A.5. Architectures of Generator and Discriminator networks for ID-GAN
(w/o distill), cGAN, and ID-GAN on the CelebA (128×128) dataset. We directly
follow the architecture proposed in [42]. The encoder and the decoder networks
are specified in Table A.2.

Generator Discriminator

Input: R20+256 Input: 128 × 128 × 3
FC 4×4×512 3×3 conv 64, stride 1
ResBlock 512, NN Upsampling ResBlock 64, AVG Pooling
ResBlock 512, NN Upsampling ResBlock 128, AVG Pooling
ResBlock 512, NN Upsampling ResBlock 256, AVG Pooling
ResBlock 256, NN Upsampling ResBlock 512, AVG Pooling
ResBlock 128, NN Upsampling ResBlock 512, AVG Pooling
ResBlock 128, 4×4 conv 3, stride 1 FC 1

Table A.6. Architectures of Generator and Discriminator networks for ID-GAN
on the CelebA (256×256) dataset. We directly follow the architecture proposed
in [42]. The encoder and the decoder networks are specified in Table A.2.

Generator Discriminator

Input: R20+256 Input: 256 × 256 × 3
FC 4×4×512 3×3 conv 64, stride 1
ResBlock 512, NN Upsampling ResBlock 64, AVG Pooling
ResBlock 512, NN Upsampling ResBlock 128, AVG Pooling
ResBlock 512, NN Upsampling ResBlock 256, AVG Pooling
ResBlock 256, NN Upsampling ResBlock 512, AVG Pooling
ResBlock 128, NN Upsampling ResBlock 512, AVG Pooling
ResBlock 64, NN Upsampling ResBlock 512, AVG Pooling
ResBlock 64, 4×4 conv 3, stride 1 FC 1

19

Table A.7. Architectures of Generator and Discriminator networks for ID-GAN
on the CelebA-HQ (1024×1024) dataset. We directly follow the architecture pro-
posed in [47]. The encoder and the decoder networks are specified in Table A.2.

Generator Discriminator

Input: R20+256 Input: 1024 × 1024 × 3
FC 4×4×512 ResBlock 16, AVG Pooling
ResBlock 512, NN Upsampling ResBlock 32, AVG Pooling
ResBlock 512, NN Upsampling ResBlock 64, AVG Pooling
ResBlock 512, NN Upsampling ResBlock 128, AVG Pooling
ResBlock 512, NN Upsampling ResBlock 256, AVG Pooling
ResBlock 256, NN Upsampling ResBlock 512, AVG Pooling
ResBlock 128, NN Upsampling ResBlock 512, AVG Pooling
ResBlock 64, NN Upsampling ResBlock 512, AVG Pooling
ResBlock 32, NN Upsampling 1×1 conv 2×512, Sampling 512
ResBlock 16,4×4 conv 3, stride 1 FC 1

